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31 Abstract 

32 Disease, ocean warming, and pollution have caused catastrophic declines in the cover of living 

33 coral on reefs across the Caribbean. Subsequently, reef-building corals have been replaced by 

34 invertebrates and macroalgae, leading to changes in ecological functioning. We describe changes 

35 in benthic community composition and cover at 15 sites across the Belizean Barrier Reef (BBR) 

36 following numerous major disturbances—bleaching, storms, and disease outbreaks—over the 

37 20-year period 1997–2016. We tested the role of potential drivers of change on coral reefs, 

38 including local human impacts and ocean temperature. From 1997 to 2016, mean coral cover 

39 significantly declined from 26.3% to 10.7%, while macroalgal cover significantly increased from 

40 12.9% to 39.7%. We documented a significant decline over time of the reef-building corals 

41 Orbicella spp. and described a major shift in benthic composition between early sampling years 

42 (1997–2005) and later years (2009–2016). The covers of hard-coral taxa, including Acropora 

43 spp., M. cavernosa, Orbicella spp., and Porites spp., were negatively related to marine heatwave 

44 frequency. Only gorgonian cover was related, negatively, to our metric of the magnitude of local 

45 impacts (the Human Influence Index). Changes in benthic composition and cover were not 

46 associated with local protection or fishing. This result is concordant with studies throughout the 

47 Caribbean that have documented living coral decline and shifts in reef-community composition 

48 following disturbances, regardless of local fisheries restrictions. Our results suggest that benthic 

49 communities along the BBR have experienced disturbances that are beyond the capacity of the 

50 current management structure to mitigate. We recommend that managers devote greater 

51 resources and capacity to enforce and expand existing marine protected areas and that 

52 government, industry, and the public act to reduce global carbon emissions.

53
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54 INTRODUCTION

55 Coral reefs worldwide have experienced remarkable changes over the past 50 years, particularly 

56 the widespread declines of reef-building corals and large, predatory fishes (1–7). These changes 

57 have caused a reduction in or effective loss of essential ecological functions, including the 

58 provisioning of habitat for fisheries production and the maintenance of reef structure for 

59 shoreline protection (8,9). Given the substantial economic and cultural value of healthy reefs 

60 (10), this degradation is affecting coastal human communities that depend on reefs for food, 

61 income, and protection from storms. 

62

63 Numerous factors are responsible for the well-documented degradation of Caribbean reefs. 

64 Acroporid corals, which dominated Caribbean reefs for millions of years, experienced 90–95% 

65 mortality due to white-band disease in the 1980s (11). This disease, likely exacerbated by ocean 

66 warming (12), coupled with increased frequency and intensity of hurricanes (13–15), reduced the 

67 habitat complexity, or rugosity, of Caribbean reefs (16). Several other disease syndromes have 

68 greatly reduced the cover of other coral taxa, including black-band disease, which primarily 

69 affects brain corals (17), yellow-band disease, which primarily affects Orbicella spp. (18), and, 

70 more recently, stony coral tissue loss disease, which affects numerous species, including 

71 Dendrogyra cylindrus, Pseudodiploria strigosa, Meandrina meandrites, Eusmilia fastigiata, 

72 Siderastrea siderea and Diploria labyrinthiformis (19). Coral bleaching and other manifestations 

73 of ocean warming, including increased disease severity, are primary causes of coral loss in the 

74 Caribbean (20–27). On local scales, increased sedimentation from coastal development affects 

75 coral reefs by increasing turbidity and smothering corals (28,29). Secondary drivers include 

76 factors that have increased the cover of fleshy macroalgae (seaweeds), including the death of 
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77 scleractinian corals and the consequent opening of space and other resources (30), nutrient 

78 loading, and the loss of herbivores, particularly the sea urchin Diadema antillarum due to a 

79 regional disease outbreak (31), and herbivorous fishes due to fishing (32–37). 

80

81 Despite the clear and well-documented changes to Caribbean reefs, there is ongoing 

82 disagreement about the causes of and best remedies for reef decline (20,38–41). The crux of the 

83 debate is about the relative importance of local causes—pollution, eutrophication, fishing, and 

84 consequent seaweed blooms—compared with regional-to-global causes such as ocean warming 

85 and acidification. Scientists, agencies, and organizations that view localized drivers as 

86 predominant generally argue for local mitigation, the primary recommendation being fisheries 

87 restrictions, such as within Marine Protected Areas (MPAs) (34,42–44). In contrast, the view that 

88 anthropogenic climate change has been a significant or predominant cause of reef decline leads 

89 to the conclusion that without rapid cuts in carbon emissions, local protections and other 

90 localized management actions, such as restoration, will ultimately fail (20,39,45).

91

92 The purpose of this study was to measure changes to benthic communities of the Belizean 

93 Barrier Reef (BBR) from 1997 to 2016 and to determine whether they were related to protection 

94 status, fishing, local human impacts, and ocean-temperatures anomalies (i.e., ocean heatwaves). 

95 We performed surveys of the coral reef benthos at 15 sites between 1997 and 2016 (46–48). We 

96 found that benthic-community composition changed substantially during this period, and that the 

97 observed loss of corals was negatively related to ocean heatwaves and largely unaffected by local 

98 impacts, fishing or protection status.

99
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100 MATERIALS AND METHODS

101 Study area

102 Scientists have tracked reef community composition across Belize for over 50 years, mostly in 

103 short-term, longitudinal studies (e.g., 11,46,48–50). Belize has an extensive, 30-plus-year-old 

104 MPA network (46) and a history of frequent large-scale disturbances (Table 1). We surveyed 

105 fore-reef benthic communities at 15–18 m depth at 15 sites along the BBR during the summer 

106 months in 1997, 1999, 2005, 2009, and 2016 (Figure 1; Table S1). Due to logistical and resource 

107 constraints, only three of the 15 sites were surveyed every year: Bacalar Chico, Middle Caye, 

108 and Tacklebox (Table S1). Study sites were selected to maximize spatial heterogeneity and 

109 include a range of protections or management zones (5,47). These management protections 

110 included five sites within fully protected (FP) zones (otherwise known as “marine reserves”), 

111 where only non-extractive activities are permitted, three sites within general-use (GU) zones, 

112 where fishing is permitted with some gear restrictions (e.g., prohibitions on longlines, gillnets, 

113 and the use of spearguns and slings with SCUBA) and modest fishing limits (e.g., catch-size 

114 limits for queen conch and lobster), and seven sites in unprotected (NP) zones, where fishing is 

115 not restricted (46). Note that national seasonal closures for some species (e.g., Nassau grouper) 

116 and bans (e.g., on catching parrotfishes) applied to all three zones. 

117

118 Benthic surveys

119 Benthic surveys were conducted in situ using SCUBA. At each site, dive teams laid out four to 

120 ten, 25-30 m x 2 m belt transects down the centers of reef spurs, perpendicular to the shoreline. 

121 The transects generally began on or near the shoulders of the spurs at 15–18 m depth, shoreward 

122 of the drop-off that characterizes most of the reefs, and ran upward toward the reef crest. 
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123 Transects were parallel to each other and were usually separated by > 10 m. Divers worked in 

124 buddy pairs, in which one diver laid out the transect tape and the other used a digital camera in 

125 an underwater housing to obtain videos and still-frame images of the benthos. At each site, we 

126 photographed or videotaped the belt transects at a standard distance of 25 cm above the benthos 

127 using a horizontal bar projected from the front of the camera housing. In all sampling years 

128 except 2016, we obtained underwater videos along the belt transects and extracted still frames 

129 from those videos (as outlined below). In 2016, we photographed the transects using a GoPro 

130 HERO4 by swimming at a rate of 5–7 minutes along the 30-m-long transect and taking a 

131 photograph every five seconds.

132

133 Image extraction and analysis

134 Because of changes in imaging technology and analytical software over the course of this study 

135 we used several techniques to extract and analyze the benthic images from the underwater 

136 transects. For sampling year 1997, we recorded Hi-8 video of each transect, using two 30-watt 

137 ultrabright lights for illumination; in 1999 and 2005, we used Sony 3chip mini DVR without 

138 illumination. From these video cassettes we randomly selected 50 frames per transect, processed 

139 the images by de-interlacing, sharpening, and enhancing them, and saved them onto a CD-ROM. 

140 In 2009, we switched to digital video. We extracted the images from the video at a rate of 1-fps 

141 using Adobe Premiere Pro CC 2014. We ran the images through the Automator program in OS-

142 X software to select every third, fifth or seventh image, depending on the length (in time) of the 

143 transect. We analyzed 15 images/transect/site for 2009 and 2016 because we found that we could 

144 obtain a similar level of inference about community composition with 15 images per transect as 

145 with the 50 images per transect suggested by Aronson et al. (51). To select the images, we 
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146 automated the process using a code in R version 3.6.3 [1] to randomly choose, copy, and paste 

147 15 images into a new folder from our source-folder of all images.

148

149 We analyzed the benthic cover of images from 1997–2005 using Coral Point Count software 

150 (52), and from 2009 and 2016 using CoralNet (53). We manually input species-level benthic 

151 identifications for each of 10 random points overlaid onto each image (51). When species-level 

152 identifications were not possible, benthic components were identified to genus or family. All 

153 benthic components identified were pooled into five benthic categories: (1) crustose–turf–bare 

154 space (abbreviated CTB), which represents substrate that is bare, dead, covered in turf algae, 

155 and/or crustose coralline algae (48,54), (2) hard corals (which includes all scleractinian corals 

156 and milleporine fire corals), (3) macroalgae, including algae in the genus Halimeda, (4) 

157 gorgonians, and (5) sponges. The corals Orbicella annularis, O. favelota, and O. franksii were 

158 pooled as Orbicella spp. because the species complex was not divided into three distinct species 

159 during the 1997 and 1999 data collection and because they were difficult to distinguish in some 

160 video frames. In all instances, image-level point-count data were converted to percent-cover 

161 estimates, and we calculated overall mean percent covers of each category for each site and year.

162

163 Putative drivers of benthic community dynamics

164 We estimated local human impacts using the Global Human Influence Index (HII, version 2) 

165 from NASA’s Socioeconomic Data and Applications Center (SEDAC) database (55). The HII is 

166 a global dataset of 1-km grid cells aggregated from 1995–2004 designed to estimate location-

167 specific human influence and thus potential impacts to natural populations and ecosystems via 

168 local direct and indirect human activities (e.g., harvesting and pollution). It is based on nine 
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169 global data layers including human population density, land use, and access (which is estimated 

170 from coastlines, roads, railroads and navigable rivers). These aspects of human communities are 

171 known to be predictive of local human impacts in many natural systems including coral reefs 

172 (6,7,28,56–59). We extracted HII values for the BBR (Fig. S1) and calculated the sum of the HII 

173 scores of grid cells within a 50-km, 75-km, and 100-km buffer from the center-coordinates of 

174 each study site (Table S1). We used HII scores within the 50-km buffer for the final analysis 

175 because this metric performed well in exploratory models and it has been used successfully in 

176 prior work (5, 56). We then tested whether this index of local human impacts was related to 

177 observed changes on the monitored benthic reef communities. 

178

179 Our measure of ocean-heatwave events was the site-specific frequency of Thermal Stress 

180 Anomalies (TSA Freq), obtained from the Coral Reef Temperature Anomaly Database 

181 (CoRTAD, Version 6) (60,61) (Fig. S2, Table S2). We used this metric to test for effects of 

182 thermal stress on the measured benthic groups. TSA Freq is defined as the number of deviations 

183 of 1 °C or greater from maximum weekly climatological sea-surface temperature during the 52 

184 weeks preceding a reef survey. Other studies have found that TSA Freq is a significant predictor 

185 of coral-cover loss and coral-disease prevalence (62–64). The CoRTAD is based on 4-km-

186 resolution weekly measurements made by the Advanced Very High-Resolution Radiometer 

187 (AVHRR) sensor (Pathfinder 5.0 and 5.2) beginning in 1982.  Daytime and nighttime data were 

188 averaged weekly using data with a quality flag of 4 or better. 

189

190 Data analyses
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191 To analyze changes in benthic composition and test for the effects of potential drivers of change, 

192 we built generalized linear mixed models (GLMM) in a Bayesian setting using the blme package 

193 (65). The response variables were the logit-transformed percent covers of key benthic categories. 

194 The final models had Year, Fishing level (“fishing”, which were the sites within FP zones, and 

195 “no fishing” which included GU and NP sites), HII at the 50-km buffer, and TSA Freq as fixed 

196 effects; and Site as a random effect. A blme prior with a wishart distribution was imposed over 

197 the covariance of the random effect and modeled coefficients. All predictor variables were 

198 additive, and the REML estimation was used to fit the data as it provides unbiased estimates for 

199 the variance components. Prior to fitting models, we rescaled and centered all numerical fixed 

200 effects to optimize comparisons among variables. The final model structure for each benthic 

201 category was as follows:

202 Logit (benthic cover)i  =

203 α + β1j  Yearij + β2j  Fishing Levelij + β3j  HIIij + β4j  TSA Freqij + 

204 αi + eij

205

206 where α = intercept, αi = random intercept (Site), eij = error term, and β1j – β4j are the coefficient 

207 estimates for covariates. The logit-transformed coral cover was modeled as an intercept (α), plus 

208 linear effects of Year, Fishing level, HII at 50km, and TSA Freq; a random intercept (αi) for Site, 

209 which is assumed to be normally distributed with a mean of 0 and variance σα2; and an error (eij). 

210 The index i refers to sites (i = 1, …, 15), and j refers to the year of survey (j = 1997, …, 2016). 

211 The term eij was the within-site variance of benthic group cover and is assumed to be normally 

212 distributed with mean of 0 and a variance of σ2.

213
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214 We evaluated collinearity among fixed factors by assessing variance-inflation factors and chose a 

215 threshold of 3 to determine correlated variables. We tested for homoscedasticity (equal variances 

216 across predictor variables) by plotting residuals against fitted values. Comparing fitted and 

217 residual values suggested that our models were reasonable models of the means. We also 

218 examined the marginal and conditional R-squared values of the models.

219

220 To examine changes in community composition of all benthic taxa within sites and across years, 

221 we constructed a non-metric multidimensional scaling (NMDS) ordination using the vegan 

222 package in R. We used the Bray–Curtis dissimilarity index to calculate distances among taxon-

223 level cover data because it handles the large numbers of zeros (which denote absences) 

224 commonly found in ecological data and does not consider shared absences as being similar (66). 

225 To determine the effects of covariates (Year, TSA Freq, HII_50km, and Fishing level) on 

226 community composition changes of benthic taxa we ran a Permutational Multivariate Analysis of 

227 Variance (PERMANOVA) using the Bray-Curtis dissimilarity index to calculate distance 

228 matrices. All statistical analyses were performed in R version 3.6.3. The code and processed data 

229 are available at https://github.com/calves06/BRC. 

230

231 RESULTS

232 Among the five benthic groups of interest—hard corals, macroalgae, CTB, gorgonians, and 

233 sponges—we identified a significant decline in hard coral and CTB cover, significant increases 

234 in macroalgal and gorgonian cover, and no change in sponge cover (Figs. 2 & S3, Table 2). 

235 Fishing status (fished versus unfished) was not predictive of observed spatiotemporal variation in 

236 hard-coral, macroalgal, CTB, or sponge cover (Figs. 2 & 3, Table 2) and was marginally and 
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237 negatively related to gorgonian cover. The Human Influence Index (HII) was also unrelated to 

238 hard-coral, macroalgal CTB, or sponge cover (Fig. 3, Table 2). HII was significantly and 

239 negatively related to gorgonian cover. TSA Freq, our metric of ocean-heatwave frequency, was 

240 significantly negatively related to the cover of hard corals and gorgonians, and unrelated to the 

241 cover of macroalgae, CTB, and sponges (Fig. 3). 

242

243 Throughout the two decades of this study, the substantial decline in hard-coral cover across the 

244 Belizean Barrier Reef from 26.3 % (± 7.3 SD) to 10.6 % (± 3.5 SD) (Fig. 2) was driven by a 

245 handful of reef-building coral species (Fig. 5). Notably, there was a significant decline of 

246 Orbicella spp., with mean cover falling from 12.7 % (± 7.4 SD) in 1997 to 2.2 % (± 0.9 SD) in 

247 2016 (Fig. 5, Table S4; model estimate = - 0.719, p < 0.001). This decline was predominantly 

248 observed from 1997 to 1999, which included a major bleaching event and Hurricane Mitch (Fig. 

249 5, Table 1), and from 2005 to 2009, which included a second bleaching event, Hurricane Dean, 

250 and an earthquake (Fig. 5, Table 1). The cover of hard-coral taxa such as Acropora spp., 

251 Colpophyllia natans, and the combined cover of “other coral” taxa (e.g., Mycetophyllia spp., 

252 Madracis spp., Favia spp. see Table S5 for a complete list) also declined significantly from 1997 

253 to 2016 (Fig. 5, Table S4). The cover of the coral taxa Agaricia agaricities, 

254 Diploria/Pseudodiploria spp., Montastrea cavernosa, Siderastrea spp., Porites astreoides, and 

255 Porites spp. (P. porites, P. furcata, and P. divericata) remained relatively low and did not 

256 change significantly during the study period (Fig. 5, Table S4). The cover of Agaricia tenuifolia 

257 slightly but significantly increased (Fig. 5, Table S4). Fishing level and HII were not significant 

258 predictors of spatial and temporal changes of any coral taxa (Table S4), except for P. astreoides, 

259 for which sites with higher cover were associated with areas of higher HII (Table S4). The cover 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.15.435443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.435443
http://creativecommons.org/licenses/by/4.0/


13

260 of Acropora spp., M. cavernosa, Orbicella spp. Porites spp., and “other coral” taxa were 

261 negatively correlated with TSA frequency (Table S4).

262

263 Based on the ordination analysis, there were major compositional shifts in the dominant benthic 

264 assemblages during 1997–2005 (left) and 2009–2016 (right) at every site (Fig. 6, Table 3), 

265 supporting the results of our models. The PERMANOVA showed that, among all covariates, 

266 time explained about 50% of the variability in benthic community changes (F = 45.8, p < 0.001) 

267 and was the only significant predictor of change in overall community composition (Fig. 6, Table 

268 3). Fishing level, HII, and TSA frequency combined only accounted for 6% of community 

269 differences and were not good predictors of overall change of all taxa studied (Table 3). In 1997–

270 2005, the benthic communities of the BBR were dominated by CTB and long-lived, massive 

271 reef-building corals such as Orbicella spp. and C. natans. During 2009–2016, composition had 

272 shifted to domination by small and/or weedy hard-coral species, macroalgae, and gorgonians 

273 (Fig. 6). 

274

275 DISCUSSION

276 Belize’s network of protected areas, designed and implemented in part to prevent the degradation 

277 of benthic reef assemblages on the BBR, has not achieved this goal. Our results complement 

278 previous findings for Belize reporting the failure of individual MPAs or the network overall to 

279 protect and restore populations of overharvested reef fishes (5,46,67,68), but see (68). We 

280 documented a statistically and ecologically significant decline in hard-coral cover, an increase in 

281 macroalgae and gorgonians, and a substantial decline of CTB, regardless of protection status 
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282 (Fig. 2). Similar coral declines in isolated, well-protected, and seemingly “pristine” locations 

283 have been documented at many other sites globally (69,70). 

284

285 We found that the benthic assemblages changed over time and were ecologically distinct 

286 between the earlier and later sampling intervals (1997–2005 and 2009–2016) (Fig. 6).  For 

287 instance, the hard corals Acropora spp. and Orbicella spp. were more often present and more 

288 dominant (both had higher relative and absolute cover) in the early sampling years, as opposed to 

289 fleshy macroalgae and gorgonians, which dominated during later sampling years. In contrast, the 

290 cover of ‘weedy’ coral taxa such as Porites spp. and Agaricia spp. remained relatively consistent 

291 throughout the course of the study (Fig 5). The striking decline in Orbicella spp. (Fig. 5) was 

292 likely due to mortality from coral bleaching in 1998 (54,71) and 2005 (21,72–74), Hurricane 

293 Mitch in 1998, Hurricane Dean in 2007, and yellow-band disease in the early 2000s (Table 1). 

294

295 Our results are concordant with previous studies in Belize that documented shifts in hard-coral 

296 and macroalgal cover (75). For example, the patch reefs of Glovers Reef atoll had ~0% hard 

297 coral and 20% fleshy-macroalgal cover in 1970–1971 but phase-shifted to 20% hard coral and 

298 80% macroalgal cover by 1996–1997 (75). This change was due to massive declines in the reef-

299 building corals Acropora cervicornis, A. palmata, and Orbicella spp., and large increases in the 

300 cover and biomass of fleshy and corticated seaweeds including Lobophora, Dictyota, Turbinaria, 

301 and Sargassum. Prior to the beginning of our study, acroporid abundance had already declined 

302 across much of the BBR due to both hurricanes and white-band disease (11,68,76). Most 

303 remaining A. cervicornis and A. palmata was killed by high ocean temperatures during the 1998 

304 mass-bleaching event (54,71). A longitudinal study of A. palmata along the Mexican portion of 
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305 the Mesoamerican Barrier Reef also reported declines in acroporids, with A. palmata decreasing 

306 from 7.7% in 1985 to 2.9% in 2012 (76). 

307

308 We attribute changes in the benthic assemblages of coral reefs along the BBR primarily to the 

309 large-scale disturbances to the system over the last several decades, including seven hurricanes 

310 and two mass-bleaching events caused by anthropogenic climate change (Table 1). We measured 

311 the potential effects of several putative drivers, including local human impacts estimated using 

312 the Human Influence Index (HII) and the frequency of ocean heatwaves (TSA Freq). Our results 

313 indicate that the local impacts had no measurable effect on hard-coral cover. HII was, however, 

314 significantly and negatively related to changes in gorgonians and positively associated with the 

315 cover of Porites astreoides. There is abundant evidence that local impacts, including pollution, 

316 fishing, and coastal land-use practices, can severely impact coral populations (28). Yet even 

317 when these stressors are clearly present, they are often overwhelmed by the effects of large-scale 

318 disturbances including ocean heatwaves and storms (20,39,57,75). 

319

320 Shifts in the dominant benthic assemblages have been documented across the Caribbean, linked 

321 to regional disturbances such as herbivore declines, coral diseases, and mass-bleaching events  

322 (2,3,69,77,78). Across seven subregions in the Caribbean, Schutte et al. (2) found significant 

323 declines in hard-coral cover and increases in macroalgal cover from 1970–2005. Corals failed to 

324 recover in the Florida Keys (79) and the U.S. Virgin Islands (80) due to subsequent, repeated 

325 disturbances. The coral reefs of Bonaire exhibited similar trends over 15 years of bleaching, 

326 storms, and diseases, with a 22% decline in coral cover and an 18% increase in macroalgal cover 

327 by 2017 (81). These trends were also apparent in our study. 
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328

329 The primary management response to reef degradation has been implementation of MPAs 

330 (34,41,44,82). MPAs and MPA networks are areas where extractive activities are regulated via 

331 fishing closures or gear restrictions among others. Within well-designed and enforced MPAs, 

332 fish abundance and diversity often increase and in some cases spill over into adjacent, non-

333 protected areas (68,83–86). Some MPAs also reduce other extractive activities that could directly 

334 or indirectly impact coral populations. However, a large majority of studies have found that 

335 MPAs are not slowing or preventing the decline of reef-building corals (50,63,67,79,87–89). A 

336 recent meta-analysis of 18 studies, encompassing 66 MPAs, reported that MPAs did not affect 

337 coral loss or recovery in response to large-scale disturbances including disease, bleaching, and 

338 storms (39). Our results for the BBR agree with this broad consensus. 

339

340 Unlike local human impacts, anthropogenic climate change was clearly a significant driver of the 

341 dramatic shifts in community composition that occurred on the BBR over the two-decade study. 

342 Overall coral cover, and the cover of four coral taxa—Acropora spp. Orbicella spp., Montastrea 

343 cavernosa, and Porites spp.—were negatively related to heatwave frequency (Figs. 3 and 4). 

344 This result is in agreement with other studies that have documented coral mortality and 

345 consequent declines in coral cover following the temperature-induced mass-bleaching events on 

346 the BBR in 1998 and 2005 (48,54). Many other studies have documented the role of ocean 

347 heatwaves in coral decline around the world (21,22,63,69,88–93).  

348

349 Our data show a substantial shift in the state of coral reefs along the Belizean Barrier Reef over a 

350 two-decade period rife with large-scale disturbances. The results illustrate the shortcoming of 
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351 protected areas in mitigating these impacts. We documented declines in the key reef-building 

352 coral genera Acropora and Orbicella, subsequent increases in macroalgal and gorgonian cover, 

353 and an overall change in the benthic assemblages over the two-decade study. Ocean-heatwave 

354 frequency was the only significant predictor of coral population declines over time. Our results 

355 provide insight into the overriding influence of regional, and global drivers at a time of rapid 

356 climate change, which will help managers improve their decision-making. 

357
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645 TABLES AND FIGURES 

646

647 Table 1. Timeline of major disturbances to the Belizean Barrier Reef.

Year Disturbance References
1980s Acroporid-specific white-band disease (54)
1983 Diadema-specific disease (31)
1998 Temperature-induced coral bleaching (54,71)
1998 Hurricane Mitch (94)
2001 Tropical Cyclone Iris (95)
2005 Temperature-induced coral bleaching (21,72–74)
2007 Hurricane Dean (96)
2009 Earthquake (97)

648

649
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650 Table 2. Estimated regression parameters for benthic groups coverage. Estimated regression 

651 parameters, standard errors, F-statistics, p-values, significance levels, and marginal/conditional 

652 R2 from the final Bayesian generalized linear mixed models for each benthic group. Significance 

653 levels (Sig.) are: *** < 0.001; ** < 0.01, * < 0.05.

654

Benthic group/Terms Estimates Std. error Statistic p-value Sig.
Hard Coral
  (Intercept) -1.877 0.126 -14.849 < 0.001 ***
  Year -0.492 0.103 -4.773 < 0.001 ***
  Fishing vs. No Fishing 0.127 0.225 0.567 0.570
  HII at 50 km 0.324 0.217 1.492 0.136
  TSA Freq -0.383 0.117 -3.278 0.001 **
Marginal R2/Conditional R2 0.347/ 0.665
Macroalgae
  (Intercept) -0.929 0.148 -6.274 < 0.001 ***
  Year 0.925 0.108 8.576 < 0.001 ***
  Fishing vs. No Fishing 0.138 0.265 0.522 0.602
  HII at 50 km 0.307 0.256 1.202 0.229
  TSA Freq 0.225 0.123 1.829 0.067
Marginal R2/Conditional R2 0.480/0.775
CTB
  (Intercept) -0.998 0.149 -6.695 < 0.001 ***
  Year -1.622 0.194 -8.360 < 0.001 ***
  Fishing vs. No Fishing 0.212 0.248 0.853 0.394
  HII at 50 km -0.243 0.243 -0.999 0.318
  TSA Freq 0.255 0.205 1.245 0.213
Marginal R2/Conditional R2 0.613/0.652
Gorgonian
  (Intercept) -2.152 0.097 -22.092 < 0.001 ***
  Year 0.407 0.111 3.658 < 0.001 ***
  Fishing vs. No Fishing -0.373 0.166 -2.240 0.025 *
  HII at 50 km -0.450 0.162 -2.777 0.005 **
  TSA Freq -0.352 0.121 -2.921 0.003 **
Marginal R2/Conditional R2 0.430/0.550
Sponge
 (Intercept) -3.443 0.159 -21.724 < 0.001 ***
  Year -0.209 0.172 -1.215 0.224
  Fishing vs. No Fishing 0.070 0.273 0.258 0.797
  HII at 50 km -0.125 0.265 -0.469 0.639
  TSA Freq -0.299 0.188 -1.591 0.112
Marginal R2/Conditional R2 0.099/0.329
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655 Table 3. Results of the Permutational Multivariate Analysis of Variance (PERMANOVA) using 

656 the Bray-Curtis dissimilarity index to determine the effects of covariates in changes of benthic 

657 community composition cover. df: degrees of freedom, SS: sum of squares. Significance level 

658 (Sig.): *** < 0.001

Term df SS R2 F Pr(>F) Sig.
Year 1 2.347 0.501 45.761 <0.001 ***
HII 50km 1 0.137 0.029 2.679 0.062
TSA Freq 1 0.072 0.015 1.401 0.218
Fishing level 1 0.075 0.016 1.465 0.200
Residual 40 2.051 0.438
Total 44 4.683 1.000

659
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660

661 Figure 1. Study sites along the Belizean Barrier Reef. Sites are categorized by management 

662 and fishing level. Fishing is allowed in general use and unprotected sites (red), whereas fishing is 

663 prohibited in fully protected sites (blue).
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664

665 Figure 2. Percent cover of five benthic categories over time grouped by fishing level. Points 

666 are site means, lines are loess smoothed curves with a span of 1, shading indicates the 95% 

667 confidence intervals of the loess fits.
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668

669 Figure 3. Effect-sizes (± 95% CI) of covariates from the Bayesian generalized linear mixed-

670 effect model on the five benthic groups. Values above points are effect sizes. CIs crossing the 

671 vertical grey line represents a non-significant effect. Significance levels:  *** = 0.001; ** = 0.01, 

672 * = 0.05.
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673

674 Figure 4. Predicted effect of TSA frequency on hard-coral and gorgonian cover. Points are 

675 predicted benthic group cover (back calculated from logit transformation) from Bayesian 

676 generalized liner mixed model accounting for time, fishing level, and human influence index. 

677 Blue lines are the fitted curves of the models and shaded areas are the 95 % CIs.
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678

679 Figure 5. Mean percent cover of twelve taxonomic categories of hard corals, grouped by 

680 fishing level.  Fishing occurs in red sites and is prohibited in blue sites. Points are site means for 

681 each surveyed year, lines are a loess smoothed curves with a span of 1, and shading indicates the 

682 95% confidence intervals of the loess fits.
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683

684 Figure 6. Non-metric multidimensional scaling (MDS) plot depicting taxon-level cover data 

685 colored by year. In the top panel, points represent individual sites, circles are fishing sites, and 

686 squares are no-fishing sites. Arrows represent the fitted loadings scores for Year, TSA_Freq, and 

687 HII_50km. In the bottom panel, the arrows and labels represent specific benthic categories 

688 loadings. The Bray–Curtis dissimilarity matrix was used and the stress value was 0.098.
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