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Abstract 47 
 48 
Biological networks constructed from varied data, including protein-protein interactions, gene 49 
expression data, and genetic interactions can be used to map cellular function, but each data 50 
type has individual limitations such as bias and incompleteness. Unsupervised network 51 
integration promises to address these limitations by combining and automatically weighting 52 
input information to obtain a more accurate and comprehensive result. However, existing 53 
unsupervised network integration methods fail to adequately scale to the number of nodes and 54 
networks present in genome-scale data and do not handle partial network overlap. To address 55 
these issues, we developed an unsupervised deep learning-based network integration algorithm 56 
that incorporates recent advances in reasoning over unstructured data – namely the graph 57 
convolutional network (GCN) – and can effectively learn dependencies between any input 58 
network, such as those composed of protein-protein interactions, gene co-expression, or 59 
genetic interactions. Our method, BIONIC (Biological Network Integration using Convolutions), 60 
learns features which contain substantially more functional information compared to existing 61 
approaches, linking genes that share diverse functional relationships, including co-complex and 62 
shared bioprocess annotation. BIONIC is scalable in both size and quantity of the input 63 
networks, making it feasible to integrate numerous networks on the scale of the human genome. 64 

 65 
 66 

Introduction 67 
 68 
High-throughput genomics projects produce massive amounts of biological data for thousands 69 
of genes. The results of these experiments can be represented as functional gene-gene 70 
interaction networks, which link genes or proteins of similar function1. For example, protein-71 
protein interactions describe transient or stable physical binding events between proteins2–7. 72 
Gene co-expression profiles identify genes that share similar patterns of gene expression 73 
across multiple experimental conditions, revealing co-regulatory relationships between genes8,9. 74 
Genetic interactions (e.g. synthetic lethal) link genes that share an unexpected phenotype when 75 
perturbed simultaneously, capturing functional dependencies between genes10,11. Each of these 76 
data typically measures a specific aspect of gene function and have varying rates of false-77 
positives and negatives. Data integration has the potential to generate more accurate and more 78 
complete functional networks. However, the diversity of experimental methods and results 79 
makes unifying and collectively interpreting this information a major challenge. 80 
 81 
Numerous methods for network integration have been developed with a range of benefits and 82 
disadvantages. For example, many integration algorithms produce networks that retain only 83 
global topological features of the original networks, at the expense of important local 84 
relationships12–15, while others fail to effectively integrate networks with partially disjoint node 85 
sets16,17. Some methods encode too much noise in their output, for instance by using more 86 
dimensions than necessary to represent their output, thereby reducing downstream gene 87 
function and functional interaction prediction quality12–16. Most of these approaches do not scale 88 
in the number of networks or in the size of the networks to real world settings14,16,18. Supervised 89 
methods have traditionally been the most common network integration approach15,18–20. These 90 
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methods, while highly successful, require labelled training data to optimize their predictions of 91 
known gene functions, and thus risk being biased by and limited to working with known 92 
functional descriptions. 93 
 94 
Unsupervised methods have more recently been explored to address this potential weakness. 95 
They automatically identify network structure, such as modules, shared across independent 96 
input data and can function in an unbiased manner, using techniques such as matrix 97 
factorization12–14, cross-diffusion16, low-dimensional diffusion state approximation17 and 98 
multimodal autoencoding21. Theoretically, unsupervised network integration methods can 99 
provide a number of desirable features such as automatically retaining high-quality gene 100 
relationships and removing spurious ones, inferring new relationships based on the shared 101 
topological features of many networks in aggregate, and outputting comprehensive results that 102 
cover the entire space of information associated with the input data, all while remaining agnostic 103 
to any particular view of biological function. 104 
 105 
Recently, new methods have been developed that focus on learning compact features over 106 
networks22,23. These strategies aim to capture the global topological roles of nodes (i.e. genes or 107 
proteins) and reduce false positive relationships by compressing network-based node features 108 
to retain only the most salient information. However, this approach produces general purpose 109 
node features that cannot be tuned to capture the unique topology of any particular input 110 
network, which may vary greatly with respect to other input networks. Recent advances in deep 111 
learning have addressed this shortcoming with the development of the graph convolutional 112 
network (GCN), a general class of neural network architectures which are capable of learning 113 
features over networks24–27. GCNs can learn compact, denoised node features that are trainable 114 
in a network-specific fashion. Additionally, the modular nature of the GCN enables the easy 115 
addition of specialized neural network architectures to accomplish a task of interest, such as 116 
network integration, while remaining scalable to large input data. Compared to general-purpose 117 
node feature learning approaches22,23, GCNs have demonstrated substantially improved 118 
performance for a range of general network tasks, a direct result of their superior feature 119 
learning capabilities24,27. These promising developments motivate the use of the GCN for gene 120 
and protein feature learning on real-world, biological networks, which are large and numerous, 121 
and feature widely variable network topologies. 122 
 123 
Here we present a general, scalable deep learning framework for network integration called 124 
BIONIC (Biological Network Integration using Convolutions) which uses GCNs to learn holistic 125 
gene features given many different input networks. To demonstrate the utility of BIONIC, we 126 
integrate three diverse, high-quality gene or protein interaction networks to obtain integrated 127 
gene features that we compare to a range of function prediction benchmarks. We compare our 128 
findings to those obtained from a wide range of integration methodologies12,17, and we show that 129 
BIONIC features perform well at both capturing functional information, and scaling in the 130 
number of networks and network size, while maintaining gene feature quality. 131 
 132 
 133 
 134 
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 135 
Results 136 

 137 
Method overview 138 
BIONIC uses the GCN neural network architecture to learn optimal gene (protein) interaction 139 
network features individually, and combines these features into a single, unified representation 140 
for each gene (Fig. 1). First, the input data, if not already in a network format, are converted to 141 
networks (e.g. by gene expression profile correlation). Each input network is then run through 142 
an independent GCN to produce network-specific gene features. Using an independent GCN for 143 
each network enables BIONIC to learn the parameters that capture unique input network 144 
features. Each input network is passed through its corresponding GCN multiple times (two times 145 
in our experiments - see Methods) to capture higher-order gene neighborhood information24 146 
and, with the addition of residual connections, BIONIC produces both local and global gene 147 
features28. The network-specific features are then summed through a stochastic gene dropout 148 
procedure to produce unified gene features which can be used in downstream tasks, such as 149 
functional module detection or gene function prediction. To optimize the functional information 150 
encoded in its integrated features, BIONIC must have a relevant training objective that facilitates 151 
capturing salient features across multiple networks. Here, BIONIC uses an autoencoder design 152 
and reconstructs each input network by mapping the integrated features to a network 153 
representation (decoding) and minimizing the difference between this reconstruction and the 154 
original input networks. By optimizing the fidelity of the network reconstruction, BIONIC forces 155 
the learned gene features to encode as much salient topological information present in the input 156 
networks as possible and reduces the amount of spurious information encoded. Indeed, in many 157 
cases, inputting even individual networks into BIONIC improves their performance on several 158 
benchmarks (below) compared to their original raw format (Fig. S1). 159 
 160 
Few biological networks are comprehensive in terms of genome coverage and the overlap in the 161 
set of genes captured by different networks is often limited. Some methods ignore this problem 162 
by simply integrating genes that are common to all networks16, resulting in progressively smaller 163 
gene sets as more networks are added, whereas others unintentionally produce gene features 164 
that are dependent on whether a gene is present in all or only some of the input networks17. 165 
Integration methods generally require each input network to have the same set of genes, so to 166 
produce an integrated result that encompasses genes present across all networks (i.e. the 167 
union of genes) each network must be extended with any missing genes12,15–17,21. However, 168 
existing methods do not distinguish between genes that have zero interactions due to this 169 
extension or genes with zero measured interactions in the original data12,15–17. To address this, 170 
BIONIC implements a masking procedure which prevents penalizing the reconstruction fidelity 171 
of gene interaction profiles in networks where the genes were not originally present (see 172 
Methods). 173 
 174 
Evaluation criteria 175 
We compared the quality of BIONIC’s learned features to two established unsupervised 176 
integration methods, a matrix factorization method12 and a diffusion state approximation 177 
method17, as well as a naive union of networks as a baseline. We assessed the quality of these 178 
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method outputs using three evaluation criteria: gene co-annotation precision-recall, gene 179 
module detection, and supervised gene function prediction. First, we used an established 180 
precision-recall evaluation strategy11,29 to compare pairwise gene-gene relationships produced 181 
by the given method to sets of known positive and negative relationships (co-annotations). 182 
Second, we evaluated the capacity of each method to produce biological modules by comparing 183 
clusters computed from the output of each method to known modules such as protein 184 
complexes, pathways, and biological processes. Finally, the supervised gene function prediction 185 
evaluation determines how discriminative the method outputs are for predicting known gene 186 
functions. Here, a portion of the genes were held out and used to evaluate the accuracy of a 187 
support vector machine classifier30 trained on the remaining gene features to predict known 188 
functional classes17. 189 
 190 
BIONIC produces high quality gene features 191 
We first used BIONIC to integrate three high-quality yeast networks: a comprehensive network 192 
of correlated genetic interaction profiles (4,529 genes, 33,056 interactions)11, a co-expression 193 
network derived from transcript profiles of yeast strains carrying deletions of transcription factors 194 
(1,101 genes, 14,826 interactions)9, and a protein-protein interaction network obtained from an 195 
affinity-purification mass-spectrometry assay (2,674 genes, 7,075 interactions)5, which combine 196 
for a total of 5,232 unique genes and 53,351 unique interactions (Fig. 2, Supplementary Data 197 
File 1). 198 
 199 
We compared BIONIC integrated features to a naive union of networks integration approach 200 
(Union), a non-negative matrix tri-factorization approach (iCell)12, and a low-dimensional 201 
diffusion state approximation approach (Mashup)17. These unsupervised integration methods 202 
cover a diverse set of methodologies and the major possible output types (networks for Union 203 
and iCell, features for Mashup). Compared to these approaches, BIONIC integrated features 204 
have superior performance on all evaluation criteria over three different functional benchmarks: 205 
IntAct protein complexes31, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways32 206 
and Gene Ontology biological processes (GO)33 (Fig. 2a, Supplementary Data File 2). As an 207 
additional test, BIONIC produces high-quality features that accurately predict a diverse set of 208 
yeast biological process annotations per gene11 (Fig. 2b). Some categories in this latter test do 209 
better than others. These performance patterns were mirrored in the individual input networks 210 
(Fig. S2), indicating that this is the result of data quality, rather than method bias. Thus, BIONIC 211 
can capture high-quality functional information across diverse input networks, network 212 
topologies and gene function categories, and its features can be used to accurately identify 213 
pairwise gene co-annotation relationships, functional modules, and predict gene function. 214 
 215 
Applying our benchmark-optimized module detection analysis to the individual input networks, 216 
we observed that features obtained through BIONIC network integration often outperformed the 217 
individual input networks at capturing functional modules (Fig. S1) and captured more modules 218 
(Fig. 2c, Supplementary Data File 3), demonstrating the utility of the combined features over 219 
individual networks for downstream applications such as module detection. Here we treated the 220 
network adjacency profiles (rows in the adjacency matrix) as gene features. We then examined 221 
how effectively the input networks and integrated BIONIC features captured known protein 222 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.15.435515doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.435515
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

complexes, by matching each individual known complex to its best matching predicted module 223 
and quantifying the overlap (Fig. 2c). We then compared the overlap scores from each network 224 
to the BIONIC overlap scores to identify complexes where BIONIC performs either better or 225 
worse than the input networks. Of 330 protein complexes tested, BIONIC strictly improved 204, 226 
292, 171 complex predictions and strictly worsened 103, 27, 128 complex predictions compared 227 
to the input protein-protein interaction, co-expression, and genetic interaction networks, 228 
respectively. The distributions of complex overlap scores for each dataset indicate that BIONIC 229 
predicts protein complexes more accurately than the input networks on average. Indeed, if we 230 
use an overlap score of 0.5 or greater to indicate a successfully captured complex, BIONIC 231 
captures 96 complexes, compared to 81, 3 and 72 complexes for the protein-protein interaction, 232 
co-expression, and genetic interaction networks, respectively (Fig. 2c). We also repeated this 233 
module analysis, instead optimizing the clustering parameters on a per-module basis, an 234 
approach that tests how well each network and BIONIC perform at capturing modules under 235 
optimal clustering conditions for each module. Here too, BIONIC captured more modules and 236 
with a greater average overlap score than the input networks (Fig. S3, S4, Supplementary 237 
Data File 4). 238 
 239 
To understand how BIONIC is able to improve functional gene module detection compared to 240 
the input networks, we examined the SEC62-SEC63 complex, which was identified in our 241 
benchmark-optimized module evaluation (Fig. 2a) as an example to show how BIONIC 242 
effectively combines gene-gene relationships across different networks and recapitulates known 243 
biology. The SEC62-SEC63 complex is an essential protein complex required for post-244 
translational protein targeting to the endoplasmic reticulum and is made up of the protein 245 
products of four genes - SEC62, SEC63, SEC66, and SEC7234. We found that the cluster which 246 
best matched the SEC62-SEC63 complex in each input network only captured a subset of the 247 
full complex, or captured many additional members not known to be SEC62-SEC63 members 248 
(Supplementary Data File 3). The BIONIC module, however, contained the four known 249 
subunits of the SEC62-SEC63 complex, along with one member of the translocation complex, 250 
which shares a closely related function to the SEC62-SEC63 complex. We examined the best-251 
matching clusters and their local neighborhood, consisting of genes that show a direct 252 
interaction with predicted members of the SEC62-SEC63 complex, in the input networks, and in 253 
a profile similarity network obtained from the integrated BIONIC features of these networks (Fig. 254 
2d). We found that the PPI network captured two members of the SEC62-SEC63 complex, with 255 
an additional member in the local neighborhood. Interactions between members of the complex 256 
are sparse however, preventing the clustering algorithm from identifying the full complex. The 257 
co-expression network only identified one complex member, and the local neighborhood of the 258 
best matching module does not contain any additional known complex members. The genetic 259 
interaction network is able to connect and localize all members of the SEC62-SEC63 complex, 260 
though the presence of three additional predicted complex members obscures the true complex. 261 
Finally, BIONIC utilizes the interaction information present in the PPI and genetic interaction 262 
networks to fully identify the SEC62-SEC63 module, with only one additional predicted complex 263 
member. This analysis demonstrates the utility of BIONIC for identifying meaningful biological 264 
modules in sparse networks and noisy networks by clustering its learned features. Indeed, when 265 
we optimized the module detection procedure to specifically resolve the SEC62-SEC63 266 
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complex, we found that BIONIC was able to capture the complex with a higher overlap score 267 
than any of the input networks and other integration methods (Supplementary Data File 4). 268 
 269 
 270 
BIONIC is scalable in number of networks and number of genes 271 
High-throughput experiments have led to a rapidly growing wealth of biological networks. For 272 
the major studied organisms, including yeast and human, there are hundreds of available 273 
networks which, when unified, often include close to a genome-wide set of genes. Ideally, all of 274 
these networks could be unified to improve available gene function descriptions. However, 275 
many unsupervised integration methods either cannot run with many input networks or networks 276 
with large numbers of genes, or they scale with reduced performance. To test network input 277 
scalability, we randomly sampled progressively larger sets of yeast gene co-expression 278 
networks (Fig. 3a, Supplementary Data File 1) and assessed the performance of the resulting 279 
integrations of these sets. We similarly tested node scalability by randomly subsampling 280 
progressively larger gene sets of four human protein-protein interaction networks3,6,7,35 (Fig. 3b, 281 
Supplementary Data File 1). BIONIC can integrate numerous networks (Fig. 3a), as well as 282 
networks with many nodes (Fig. 3b), outperforming all other methods assessed for 283 
progressively more and larger networks. To achieve this scalability, BIONIC takes advantage of 284 
the versatile nature of deep learning technology by learning features for small batches of genes 285 
and networks at a time, reducing the computational resources required for any specific training 286 
step. To learn gene features over large networks, BIONIC learns features for random subsets of 287 
genes at each training step, and randomly subsamples the local neighborhoods of these genes 288 
to perform the graph convolution (see Methods), maintaining a small overall computational 289 
footprint. This subsampling allows BIONIC to integrate networks with many genes, whereas 290 
methods like Mashup can only do so with an approximate algorithm which substantially reduces 291 
performance (Fig. S5). To integrate many networks, BIONIC uses a network-wise sampling 292 
approach, where a random subset of networks is integrated at a time during each training step. 293 
This reduces the number of parameter updates required at once, since only GCNs 294 
corresponding to the subsampled networks are updated in a given training step. 295 
 296 

Discussion 297 
 298 
We present BIONIC, a new deep-learning algorithm that extends the graph convolutional 299 
network architecture to integrate biological networks. We demonstrated that BIONIC produces 300 
gene features which capture functional information well when compared to other unsupervised 301 
methods12,17 as determined by a range of benchmarks and evaluation criteria, covering a 302 
diverse set of downstream applications such as gene co-annotation prediction, functional 303 
module detection and gene function prediction. We have also shown that BIONIC performs well 304 
for a range of numbers of input networks and network sizes, where established methods are not 305 
able to scale past relatively few networks or scale only with reduced performance. 306 
 307 
In a global sense, BIONIC performs well and captures relevant functional information across 308 
input networks. However, input networks do not have uniform quality and some networks may 309 
only describe certain types of functional relationships effectively (such as those within a 310 
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particular biological process) while obscuring other relationships. Indeed, while BIONIC is able 311 
to capture a greater number of functional modules than a given input network alone (Fig. 2c, 312 
Fig. S3), BIONIC does not capture every functional module present in the input networks (Fig. 313 
2c, Fig. S4, Supplementary Data Files 3, 4). This is likely due to some networks obscuring 314 
signals present in other networks. Implementing more advanced input network feature weighting 315 
or learning these weightings should ensure that high-quality information is preferentially 316 
encoded in the learned features and that low-quality information is not enriched. This may 317 
additionally help to identify which functional relationships are driven by which networks and 318 
network types - indicating which parts of the functional spectrum have good or poor coverage 319 
and identifying areas to target for future experimental work. 320 
 321 
Interestingly, the naive union of networks approach performs surprisingly well, motivating its 322 
inclusion as a baseline in our network integration algorithm assessments. While the union 323 
network contains all possible relationships across networks, it likely contains relatively more 324 
false-positive relationships in the integrated result, since all false-positives in the input networks 325 
are retained by the union operation. 326 
 327 
Finally, BIONIC learns gene features based solely on their topological role in the given 328 
networks. GCN’s are able to incorporate a priori node features. A powerful future addition to 329 
BIONIC would be to include gene or protein features such as amino acid sequence36, protein 330 
localization37, morphological defect38, or other non-network features to provide additional 331 
context for genes in addition to their topological role. Continued development of integrative gene 332 
function prediction using deep learning-based GCN and encoder-decoder technologies will 333 
enable us to map gene function more richly and at larger scales than previously possible. 334 

 335 
 336 
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Online Methods 455 
 456 

Network Preprocessing 457 
The yeast protein-protein interaction network5 and human protein-protein interaction 458 
networks3,6,7,35 were obtained from BioGRID39, genetic interaction profiles11 were obtained 459 
directly from the published supplementary data of Costanzo et al. 2016, and gene expression 460 
profiles were obtained from the SPELL database8. To create a network from the genetic 461 
interaction profiles, genes with multiple alleles were collapsed into a single profile by taking the 462 
maximum profile values across allele profiles. Pairwise Pearson correlation between the profiles 463 
was then calculated, and gene pairs with a correlation magnitude greater than or equal to 0.2 464 
were retained as edges, as established11. For the gene expression profiles, networks were 465 
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constructed by retaining gene pairs with a profile Pearson correlation magnitude in the 99.5th 466 
percentile. Co-expression and genetic interaction networks had their edge weights normalized 467 
to the range [0, 1]. 468 
 469 
Obtaining Integrated Results 470 
The naive union of networks benchmark was created by taking the union of node sets and edge 471 
sets across input networks. For edges common to more than one network, the maximum weight 472 
was used. iCell results were obtained by running the algorithm with default parameters. Mashup 473 
and BIONIC were set to have the same dimensionality (512 for all experiments). All other 474 
Mashup parameters were defaults. For human networks, an SVD approximation feature of 475 
BIONIC was used (see Implementation Details below) to compute low-dimensional initial node 476 
features and preserve memory. BIONIC features used in this study are found in 477 
Supplementary Data File 5. 478 
 479 
Benchmark Construction 480 
Functional benchmarks were derived from GO Biological Process ontology annotations, KEGG 481 
pathways and IntAct complexes for yeast, and CORUM complexes for human (Supplementary 482 
Data File 2). Analyses were performed using positive and negative gene pairs, clusters or 483 
functional labels obtained from the standards as follows: the GO Biological Process benchmark 484 
was produced by filtering IEA annotations, as they are known to be lower quality, removing 485 
genes with dubious open reading frames, and filtering terms with more than 30 annotations (to 486 
prevent large terms, such as those related to ribosome biogenesis, from dominating the 487 
analysis40). For the co-annotation benchmark, all gene pairs sharing at least one annotation 488 
were retained as positive pairs, while all gene pairs not sharing an annotation were considered 489 
to be negative pairs. KEGG, IntAct and CORUM benchmarks were produced analogously, 490 
without filtering.  491 
 492 
For the module detection benchmark, clusters were defined as the set of genes annotated to a 493 
particular term, for each standard. Modules of size 1 (singletons) were removed from the 494 
resulting module sets as they are uninformative. 495 
 496 
The supervised standards were obtained by treating each gene annotation as a class label, 497 
leading to genes with multiple functional classes (i.e. a multilabel classification problem). The 498 
standards were filtered to only include classes with 20 or more members for GO Biological 499 
Process and KEGG, or 10 members for IntAct. This was done to remove classes with very few 500 
data points, ensuring more robust evaluations. 501 
 502 
The granular function standard in Fig. 2b was obtained from the Costanzo et al. 2016 503 
supplementary materials. Any functional category with fewer than 20 gene members was 504 
removed from the analysis to ensure only categories with robust evaluations were reported. 505 
 506 
Evaluation Methods 507 
We used a precision-recall (PR) based co-annotation framework to evaluate individual networks 508 
and integrated results. We used PR instead of receiving operator curve (ROC) because of the 509 
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substantial imbalance of positives and negatives in the pairwise benchmarks for which ROC 510 
would overestimate performance. Here, we computed the pairwise cosine similarities between 511 
gene profiles in each network or integration result. Due to the high-dimensionality of the 512 
datasets, cosine similarity is a more appropriate measure than Euclidean distance since the 513 
contrast between data points is reduced in high-dimensional spaces under Euclidean distance41. 514 
PR operator points were computed by varying a similarity threshold, above which gene or 515 
protein pairs are considered positives and below which pairs are considered negative. Each set 516 
of positive and negative pairs was compared to the given benchmark to compute precision and 517 
recall values. To summarize the PR curve into a single metric, we computed average precision 518 
(AP) given by: 519 

  520 = ( − )  

 (1) 521 
where  is the number of operator points (i.e. similarity thresholds) and  and  are the 522 
precision and recall values at operator point  respectively. This gives the average of precision 523 
values weighted by their corresponding improvements in recall. We chose this measure over the 524 
closely related area under the PR curve (AUPRC) measure since AUPRC interpolates between 525 
operator points and tends to overestimate actual performance42. 526 
 527 
The module detection evaluation was performed by clustering the integrated results from each 528 
method and comparing the coherency of resulting clusters with the module-based benchmarks. 529 
Since the benchmarks contain overlapping modules (i.e. one gene can be present in more than 530 
one module) which prevents the use of many common clustering evaluation metrics (since 531 
these metrics assume unique assignment of gene to cluster), the module sets are subsampled 532 
during the evaluation to ensure there are no overlapping modules (the original module sets are 533 
used as-is for the per-module-optimized experiments in Fig. S4, Supplementary Data File 3). 534 
Next, the integrated results are hierarchically clustered with a range of distance metrics 535 
(Euclidean and cosine), linkage methods (single, average and complete) and thresholds to 536 
optimize benchmark comparisons over these clustering parameters (this is done for all methods 537 
that are compared). The resulting benchmark-optimized cluster sets are compared to the 538 
benchmark module sets by computing adjusted mutual information (AMI) - an information 539 
theoretic comparison measure which is adjusted to normalize against the expected score from 540 
random clustering. The highest AMI score for each integration approach is reported - ensuring 541 
the optimal cluster set for each dataset across clustering parameters is used for the comparison 542 
and that our results are not dependent on clustering parameters. Finally, this procedure is 543 
repeated ten times to control for differences in scores due to the cluster sampling procedure. 544 
The sets of clustering parameter-optimized BIONIC clusters obtained from the Fig. 2 integration 545 
for each standard are in Supplementary Data File 3. 546 
 547 
To perform the supervised gene function prediction evaluation, ten trials of five-fold cross 548 
validation were performed using support vector machine (SVM) classifiers each using a radial 549 
basis function kernel30. The classifiers were trained on a set of gene features obtained from the 550 
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given integration method with corresponding labels given by the IntAct, KEGG and GO 551 
Biological Process supervised benchmarks in a one-versus-all fashion (since each individual 552 
gene has multiple labels). Each classifier’s regularization and gamma parameters were tuned in 553 
the validation step. For each trial, the classifier results were evaluated on a randomized held out 554 
set consisting of 10% of the gene features not seen during training or validation and the 555 
resulting classification accuracy was reported. 556 
 557 
The granular functional evaluation in Fig. 2b was generated by computing the average precision 558 
(as mentioned in the precision-recall evaluation framework description) for the gene subsets 559 
annotated to the given functional categories. 560 
 561 
To perform the module comparison analysis in Fig. 2c, we additionally applied the module 562 
detection analysis performed in Fig. 2a to the input networks. Here, the interaction profiles of 563 
the networks were treated as gene features and the clustering parameters were optimized to 564 
best match the IntAct complexes standard. We compared the resulting module sets from the 565 
input networks and BIONIC features to known protein complexes given by the IntAct standard. 566 
For each complex in the standard, we reported the best matching predicted module in each 567 
dataset as determined by the overlap (Jaccard) score between the module and the known 568 
complex (Supplementary Data File 3). To generate the Venn diagram, we defined a complex 569 
to have been captured in the dataset if it had an overlap score of 0.5 or greater with a predicted 570 
module. 571 
 572 
To perform the SEC62-SEC63 module analysis in Fig. 2d, we analyzed the predicted module in 573 
each dataset that had the highest overlap score with the SEC62-SEC63 complex. We created a 574 
network from the BIONIC features by computing the cosine similarity between all pairs of genes 575 
and setting all similarities below 0.5 to zero. The resulting non-zero values were then treated as 576 
weighted edges to form a network. We extracted a subnetwork from each of the protein-protein 577 
interaction, co-expression, genetic interaction and newly created BIONIC networks, consisting 578 
of the best scoring predicted module and the genes showing direct interactions with those in the 579 
predicted module. We laid out these networks using the prefuse force-directed algorithm in 580 
Cytoscape43. The edges in the protein-protein interaction network correspond to direct, physical 581 
interactions, and the edges in the co-expression and genetic interaction networks correspond to 582 
the pairwise Pearson correlation of the gene profiles, as described above. 583 
 584 
Network Scaling Experiment 585 
To perform the network scaling experiment, we sampled subsets of the yeast co-expression 586 
networks (Supplementary Data File 1). We performed 10 integration trials for each network 587 
quantity, and these trials were paired (i.e. each method integrated the same randomly sampled 588 
sets of networks). The average precision scores of the resulting integrations with respect to the 589 
KEGG pathways co-annotation standard (Supplementary Data Files 2) were then reported. 590 
The Mashup method did not scale to the 15 network input size or beyond on a machine with 591 
64GB of RAM. 592 
 593 
Node Scaling Experiment 594 
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The node scaling experiment was performed by subsampling the nodes of four large human 595 
protein-protein interaction networks3,6,7,35 (Supplementary Data File 1) for a range of node 596 
quantities and integrating these subsampled networks. Ten trials of subsampling were 597 
performed for each number of nodes (paired, as above) and the average precision scores with 598 
respect to the CORUM complexes co-annotation standard (Supplementary Data File 2) were 599 
reported. The Mashup method did not scale to 4000 nodes or beyond on a machine with 64GB 600 
of RAM. 601 
 602 
BIONIC Method Overview 603 
An undirected input network can be represented by its adjacency matrix  where = > 0 if 604 

node  and node  share an edge and = = 0otherwise. BIONIC first preprocesses each 605 

input network to contain the union of nodes across all input networks and ensures the 606 
corresponding row and column orderings are the same. In instances where networks are 607 
extended to include additional nodes not originally present in them (so all input networks share 608 
the same union set of nodes), the rows and columns corresponding to these nodes are set to 0. 609 
 610 
BIONIC encodes each input network using instances of a GCN variant known as the Graph 611 
Attention Network (GAT)27. The GAT has the ability to learn alternative network edge weights, 612 
allowing it to downweight or upweight edges based on their importance for the network 613 
reconstruction task. In the original formulation, the GAT assumes binary network inputs. We 614 
modify the GAT to consider a priori network edge weights. The GAT formulation is then given 615 
by: 616 

  617 ( , ) = ( ) 
  (2) 618 
where 619 

  620 = ∙ ( ( ⊤[ ℎ || ℎ ]))∑ ∙ ( ( ⊤[ ℎ || ℎ ]))=1  

 (3) 621 
Here,  is a trainable weight matrix which projects aggregated node features into another 622 
feature space,  is a vector of trainable attention coefficients which determine the resulting edge 623 
weighting, ℎ  is the feature vector for node  (that is, the th row of feature matrix ), || denotes 624 
the concatenation operation and  corresponds to a nonlinear function (in our case a leaky 625 
rectified linear unit (LeakyReLU)) which produces more sophisticated features than linear maps. 626 
(2) corresponds to a node neighborhood aggregation and projection step which incorporates an 627 
edge weighting scheme (3). In practice, several edge weighting schemes (known as attention 628 
heads) are learned and combined simultaneously, resulting in: 629 

  630 ( , ) = || ( ( ) ( ) ) 
  (4) 631 
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where  is the number of attention heads. This is done to stabilize the attention learning 632 
process, as per the author’s original results27. In our experiments we use 10 attention heads per 633 
GAT encoder, each with a hidden dimension of 64. 634 
 635 
Initial node features  are a one-hot encoding so that each node is uniquely identified (i.e. 636 =  where  is the identity matrix). These features are first mapped to a lower dimensional 637 
space through a learned linear transformation to reduce memory footprint and improve training 638 
time. Due to the current technical limitations in how the underlying deep learning framework 639 
handles sparse matrices, the GAT cannot handle a sparse representation of  as an input. 640 
BIONIC encodes each network by passing it through a GAT several times to learn node 641 
features based on higher-order neighborhoods. We use two sequential GAT passes in our 642 
experiments, as we found this to give the best results while limiting computation time. After all 643 
networks are separately encoded, the network-specific node features are combined through a 644 
weighted, stochastically masked summation given by: 645 

  646 = ( ) ⊙ ( ) 
 (5) 647 
Here,  is the number of input networks,  is the learned scaling coefficient for feature 648 

representations of network , ⊙ is the element-wise product, ( ) is the matrix of learned 649 

feature vectors for nodes in network , and ( ) is the node-wise stochastic mask for network , 650 
calculated as: 651 

(6) 652 
The mask  is designed to randomly drop node feature vectors produced from networks with 653 
the constraint that a node cannot be masked from every network, and node features from nodes 654 
not present in the original, unextended networks are dropped. This masking procedure forces 655 
the network encoders to compensate for missing node features in other networks ensuring the 656 
encoders learn cross-network dependencies and map their respective node features to the 657 
same feature space. The network scaling vector  in (5) enables BIONIC to scale features in a 658 
network-wise fashion, affording more flexibility in learning the optimal network-specific node 659 
features for the combination step.  is learned with the constraint that its elements are positive 660 
and sum to 1, ensuring BIONIC does not over- or negatively-scale the features. 661 
 662 
To obtain the final, integrated node features , BIONIC maps  to a low dimensional 663 
space through a learned linear transformation. In , each column corresponds to a specific 664 
learned feature and each row corresponds to a node. To obtain a high quality , BIONIC 665 
decodes  into reconstructions of the original input networks and minimizes the discrepancy 666 
between the reconstructions and the inputs. The decoded network reconstruction is given by: 667 
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  668 = ∙  
 (7) 669 
BIONIC trains by minimizing the following loss equation: 670 

  671 = 1 || ( ) ⊙ ( − ( )) ⊙ ( ) ||  

 (8) 672 

where  is the total number of nodes present in the union of networks, ( ) is a binary mask 673 
vector for network  indicating which nodes are present (value of 1) or extended (value of 0) in 674 

the network, ( ) is the adjacency matrix for network  and || ⋅ ||  is the Frobenius norm. This 675 

loss represents computing the mean squared error between the reconstructed network  and 676 

input ( ) while the mask vectors remove the penalty for reconstructing nodes that are not in the 677 
original network  (i.e. extended), then summing the error for all networks.  678 
 679 
Implementation Details 680 
BIONIC was implemented using PyTorch44, a popular Python-based deep learning framework 681 
and relies on functions and classes from the PyTorch Geometric library45. It uses the Adam46 682 
optimizer to train and update its weights. To be scalable in the number of networks, BIONIC 683 
utilizes a network batching approach where subsets of networks are sampled and integrated at 684 
each training step. The sampling procedure is designed so that each network is integrated 685 
exactly once per training step. Network batching yields a constant memory footprint at the 686 
expense of increased runtime with no empirical degradation of feature quality. In addition to this, 687 
BIONIC is also scalable in the number of network nodes. It uses a node sampling approach to 688 
learn features for subsets of nodes in a network, and a neighborhood sampling procedure to 689 
subsample node neighborhoods. Node sampling ensures only part of a network needs to be 690 
retained in memory at a time while neighborhood sampling reduces the effective higher order 691 
neighborhood size in sequential GAT passes, again reducing the number of nodes required to 692 
be retained in memory at any given time - further reducing BIONIC’s memory footprint.  693 
 694 
For very large networks where the initial node feature matrix (i.e. the identity matrix) cannot fit 695 
into memory due to limitations with PyTorch matrix operations, BIONIC incorporates a singular 696 
value decomposition (SVD) based approximation. First, the union of networks is computed by 697 
creating a network that contains the nodes and edges of all input networks. If an edge occurs in 698 
multiple networks, the maximum weight is used. A low-dimensional SVD approximation of 699 
normalized Laplacian matrix of the union network is computed and used as the initial node 700 
features for each network. Finally, BIONIC uses sparse representations of network adjacency 701 
matrices (except for the input node feature matrix, see above), further reducing memory 702 
footprint. All BIONIC experiments in this paper were run on an NVIDIA Titan X GPU with 12GB 703 
of VRAM, no more than 16GB of system RAM and a single CPU. 704 
 705 
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Data Availability 706 
All data, standards and BIONIC yeast features are available at https://data.wanglab.ml/BIONIC/. 707 
 708 
Code Availability 709 
The BIONIC code is available at https://github.com/bowang-lab/BIONIC. 710 
 711 
 712 

 713 
 714 
Figure 1. a) 1. Gene interaction networks input into BIONIC are represented as adjacency matrices. 2. Each network 715 
is passed through a graph convolution network (GCN) to produce network-specific gene features which are then 716 
combined into an integrated feature set which can be used for downstream tasks such as functional module 717 
detection. 3. BIONIC attempts to reconstruct the input networks by decoding the integrated features through a dot 718 
product operation. 4. BIONIC trains by updating its weights to reproduce the input networks as accurately as 719 
possible. b) The GCN architecture functions by 1. adding self-loops to each network node, 2. assigning a “one-hot” 720 
feature vector to each node in order for the GCN to uniquely identify nodes and 3. propagating node features along 721 
edges followed by a low-dimensional, learned projection to obtain updated node features which encode network 722 
topology. 723 
 724 
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 727 
Figure 2. a) Co-annotation prediction, module detection, and gene function prediction evaluations for three yeast 728 
networks integrated by the tested unsupervised network integration methods. The co-annotation and module 729 
detection standards contain between 1786 and 4170 genes overlapping the integration results. The module detection 730 
standards define between 107 and 1803 modules. The IntAct, KEGG and GO BP gene function prediction standards 731 
cover 567, 1770 and 1211 genes overlapping the integration results, and 48, 53 and 63 functional classes, 732 
respectively (see Supplementary Data File 2). Error bars indicate the 95% confidence interval. b) Evaluation of 733 
integrated features using high-level functional categories, split by category. Each category contains between 21 and 734 
149 genes overlapping the integration results (denoted by counts above the heatmap columns, see Supplementary 735 
Data File 2) c) Top row: Comparison of overlap scores between known complexes and predicted modules, between 736 
BIONIC and the input networks. Each point is a protein complex. The x and y axes indicate the overlap (Jaccard) 737 
score, where a value of 0 indicates no members of the complex were captured, and 1 indicates the complex was 738 
captured perfectly. The diagonal indicates complexes where BIONIC and the given input network have the same 739 
score. Points above the diagonal are complexes where BIONIC outperforms the given network, and points below the 740 
diagonal are complexes where BIONIC underperforms the network. The arrows indicate the SEC62-SEC63 complex, 741 
shown in d). A Venn diagram describes the overlap of captured complexes (defined as a complex with an overlap 742 
score of 0.5 or higher) between the input networks and BIONIC integration. Bottom row: The distribution of overlap 743 
scores between predicted and known complexes for each network and BIONIC. The dashed line indicates the 744 
distribution mean. d) Functional relationships between predicted SEC62-SEC63 complex members and genes in the 745 
local neighborhood, as given by the three input networks and corresponding BIONIC integration of these networks. 746 
The predicted cluster best matching the SEC62-SEC63 complex in each network, based on the module detection 747 
analysis in a), is circled. The overlap score of the predicted module with the SEC62-SEC63 complex is shown. Edges 748 
correspond to protein-protein interactions in PPI5, Pearson correlation between gene profiles in Co-expression9 and 749 
Genetic Interaction11 networks, and cosine similarity between gene features in the BIONIC integration. Edge weight 750 
corresponds to the strength of the functional relationship (correlation), where a heavier edge implies a stronger 751 
functional connection. PPI = Protein-protein interaction, GO = Gene Ontology, BP = Biological process. 752 
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 755 
 756 
Figure 3. a) Performance of integrating various numbers of randomly sampled yeast co-expression input networks on 757 
KEGG Pathways gene co-annotations. b) Performance of integrating four human protein-protein interaction networks 758 
over a range of sub-sampled nodes (genes) on CORUM Complexes protein co-annotations. In these experiments the 759 
Mashup method failed to scale to a) 15 or more networks and b) 4000 or more nodes, as indicated by the absence of 760 
bars in those cases (see Methods). Error bars indicate the 95% confidence interval. 761 
 762 
 763 
 764 
 765 
 766 
 767 
 768 
 769 
 770 
 771 
 772 
 773 
 774 
 775 
 776 
 777 
 778 
 779 
 780 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.15.435515doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.435515
http://creativecommons.org/licenses/by-nc-nd/4.0/

