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Abstract13

Microbial metabolism can be harnessed to produce a large library of useful chem-14

icals from renewable resources such as plant biomass. However, it is laborious and15

expensive to create microbial biocatalysts to produce each new product. To tackle this16

challenge, we have recently developed modular cell (ModCell) design principles that en-17

able rapid generation of production strains by assembling a modular (chassis) cell with18

exchangeable production modules to achieve overproduction of target molecules. Pre-19

vious computational ModCell design methods are limited to analyze small libraries of20

around 20 products. In this study, we developed a new computational method, named21

ModCell-HPC, capable of designing modular cells for large libraries with hundredths22

of products with a highly-parallel and multi-objective evolutionary algorithm. We23

demonstrated ModCell-HPC to design Escherichia coli modular cells towards a library24

of 161 endogenous production modules. From these simulations, we identified E. coli25

modular cells with few genetic manipulations that can produce dozens of molecules in26

a growth-coupled manner under different carbons sources. These designs revealed key27

genetic manipulations at the chassis and module levels to accomplish versatile modu-28

lar cells. Furthermore, we used ModCell-HPC to identify design features that allow an29

existing modular cell to be re-purposed towards production of new molecules. Overall,30

ModCell-HPC is a useful tool towards more efficient and generalizable design of mod-31

ular cells to help reduce research and development cost in biocatalysis.32

33

Keywords: Modular cell design; Modular (chassis) cell; Production Modules;34

Compatibility; ModCell; ModCell-HPC; Multiobjective optimization; Multiobjective35

evolutionary algorithm; Master-slave parallelization; Island parallelization; High per-36

formance computing.37
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1 Introduction38

Modular design has gained recent interest as an effective approach to understand and re-39

design cellular systems.1 In the fields of metabolic engineering and synthetic biology, var-40

ious modularization strategies2–7 have been proposed to address the slow and expensive41

design-build-test cycles of developing microbial catalysts for renewable chemical synthesis.842

A promising system-level modularization9 approach is ModCell,4 that aims to design a mod-43

ular (chassis) cell compatible with exchangeable production modules that enable metabolite44

overproduction. ModCell could be used as an effective tool to design modular cells capable45

of efficiently producing a vast number of molecules offered by nature with minimal strain46

optimization requirements,10,11 but it remains unexplored for large product libraries.47

Previous efforts in computational modular cell design are limited to analyze small libraries48

of around 20 products.4,6 However, the design of modular cells for larger product libraries49

is both of practical and theoretical interest. Theoretically, using large libraries can lead to50

more general modular cell design rules, which might help to explain the naturally existing51

modularity of metabolic networks.1 Practically, such modular cells could be implemented52

with genetic engineering techniques that enable rapid pathway generation, such as combina-53

torial ester pathways,12 and where the modular cell could serve as a versatile platform for54

pathway selection and optimization using adaptive laboratory evolution.1355

Modular cell design was formulated as a multi-objective optimization problem (MOP),56

named ModCell2, where each target phenotype activated by a module is an independent ob-57

jective.4 ModCell2 was solved with multi-objective evolutionary algorithms (MOEAs) that58

used a master-slave parallelization scheme, where the objective functions are evaluated in59

parallel by slave processes, but every other step in the algorithm is performed serially (Fig-60

ure 1 a).4,5 This approach contains many serial steps, and hence limits the scalability of61

the algorithm with the number processes according to Ahmdal’s law.14 In particular, large62

population sizes, an effective strategy to deal with many objectives,5,15 can dramatically slow63

down serial algorithm operations such as non-dominated sorting in NSGA-II,16 one of the64
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best performing MOEAs to solve ModCell2.5 Furthermore, increasing the product library size65

for ModCell leads to very large multi-objective optimization problems, which are notoriously66

difficult to solve.17,18 Therefore, the master-slave approach used in ModCell2 is not suitable67

to analyze large problems that contain hundredths of exchangeable production modules. A68

new parallelization approach that uses high-performance computing (HPC) more effectively69

is needed to advance ModCell.70

In recent years, multiple approaches to harness HPC have been developed to solve single-71

objective evolutionary algorithms (EA).19 In particular, the island-parallelization approach72

has been proposed, where multiple instances of the EA are run independently but communi-73

cate with each other to enhance overall convergence towards optimal solutions (Figure 1 b).74

This new approach helps address the serial bottlenecks of the master-slave approach by sep-75

arating the algorithm into highly independent processes that directly map to the computing76

hardware. While this approach has not been throughly examined in MOEA, there are a few77

successful applications to specific design problems.20–2278

In this study, we developed ModCell-HPC, a highly parallel MOEA that uses the island79

parallelization approach to solve modular cell design problems with hundredths of objectives.80

We demonstrated ModCell-HPC to design Escherichia coli modular cells with a large pro-81

duction module library of metabolically and biochemically diverse endogenous compounds.82

Analysis of these designs revealed key genetic manipulations both at the chassis and module83

levels required for highly compatible modular cells. Furthermore, we designed modular cells84

for conversion of various hexoses and pentoses, since these sugars are the main components85

of biomass feedstocks.23 Finally, we used ModCell-HPC to identify the features of a modular86

cell that makes it compatible towards new production modules.87
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2 Methods88

2.1 Multi-objective optimization formulation of modular cell de-89

sign problem90

The modular (chassis) cell is built in a top-down manner by removing metabolic functions

from a parent strain, and then inserting exchangeable modules into the chassis to create

production strains that optimally display the target phenotypes. Due to the conflicting

biochemical and metabolic requirements of different product synthesis pathways, the modular

cell design problem is formulated as the following MOP known as ModCell2:4

max
yj ,zjk

(f1, f2, . . . , f|K|)
T s.t. (1)

fk ∈ arg max

{
1

fmax
k

∑
j∈Jk

cjkvjk s.t. (2)

∑
j∈Jk

Sijkvjk = 0 for all i ∈ Ik (3)

ljk ≤ vjk ≤ ujk for all j ∈ Jk (4)

ljkdjk ≤ vjk ≤ ujkdjk for all j ∈ C (5)

djk = yj ∨ zjk

}
for all k ∈ K (6)

zjk ≤ (1− yj) for all j ∈ C, k ∈ K (7)∑
j∈C

zjk ≤ β for all k ∈ K (8)

∑
j∈C

(1− yj) ≤ α (9)

This MOP simultaneously maximizes all objectives fk (1), where k belongs to the set of91

production networks K. Each production network represents the combination of the chassis92

with a specific production module, and it is simulated through a stoichiometric model24 (2-6)93

with a set of metabolites Ik and a set of reactions Jk. The stoichiometric model predicts94
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metabolic fluxes according to the following constraints: (i) mass-balance (3), where Sijk95

represents the stoichiometric coefficient of metabolite i in reaction j of production network96

k, (ii) flux bounds (4) that determine reaction reversibility and available substrates, where97

ljk and ujk are lower and upper bounds respectively, and (iii) genetic manipulation (5), i.e.,98

deletion of a reaction j in the chassis through the binary indicator yj, or insertion of a99

reaction j in a specific production network k through the binary indicator zjk. Only a subset100

of all metabolic reactions, C, are considered as candidates for deletion, since many of the101

reactions in the metabolic model cannot be manipulated to enhance the target phenotype.102

The desirable phenotype fk for production module k is determined based on key metabolic103

fluxes vjk (mmol/gDCW/h) predicted by the model (2-5). For this study, we selected the104

weak growth coupled to product formation (wGCP) design objective that requires a high105

minimum product synthesis rate at the maximum growth rate, enabling growth selection of106

optimal production strains. Hence, in wGCP design, the inner optimization problem seeks107

to maximize growth rate while calculating the minimum product synthesis rate through the108

linear objective function (2). Here cjk is 1 and −0.0001 for j corresponding to the biomass109

and product reactions across all networks k, respectively, and 0 otherwise. In general, the110

definition of fk needs not be linear and other design phenotypes can be defined.4111

Finally, design constraints (7-9) define the limitations of the design variables representing112

genetic manipulations, yj and zjk. As part of modular cell design, reactions can be removed113

from the chassis but inserted back to specific production modules, enabling the chassis to be114

compatible with a broader number of modules (7). The total numbers ofl module reaction115

additions and reaction deletions in the chassis are limited by parameters β (8) and α (9),116

respectively.117

To define the solutions of ModCell2 (1-9), the general multi-objective optimization prob-

lem with design variables x from a set X and objective functions fi(x) is expressed as follows:

max
x

F (x) = (f1(x), f2(x), . . .)T ∀x ∈ X

6
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The solution of such an optimization problem is denoted as a Pareto set:

PS := {x ∈ X : @x′ ∈ X , F (x′) ≺ F (x)}

Here F (x′) ≺ F (x) indicates that the objective vector F (x′) dominates F (x), defined as

fi(x
′) ≥ fi(x) for all objectives i, and fi(x

′) 6= fi(x) for at least one i. Hence, the Pareto set

contains all non-dominated solutions to the optimization problem; that is, when comparing

any two non-dominated solutions, the value of a certain objective must be diminished in

order to increase the value of a different objective. The projection of the Pareto set on the

objective space is denoted as a Pareto front:

PF := {F (x) : x ∈ PS}

2.2 Implementation of many-objective evolutionary algorithm with118

high-performance computing119

To overcome the issues of the master-slave approach (Figure 1 a) used in ModCell2,4 we120

implemented an island parallelization scheme,19 where each computing process is an instance121

of the MOEA (Figure 1 b). These instances exchange individuals (i.e., potential solutions) in122

a process called migration, hence enhancing overall convergence towards optimal solutions123

(Figure 1 c). The migration operation can be performed in different modes, depending124

on which individuals from the local population are exchanged, and also how often such125

exchanges happen. These options are captured by the migration type and migration interval126

parameters, respectively (Table 1). To enhance performance and scalability, the migration127

process was implemented asynchronously, i.e., the population within each island can continue128

to evolve without a need to wait for sent individuals to arrive at their destination island or129

for incoming individuals to be received.130

To improve the quality of the MOEA solutions, we implemented two post-processing steps131
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specific to ModCell (Figure S1): First, we eliminate futile module reactions. These module132

reactions once removed do not diminish the objective value of the associated production133

network. Second, we coalesce multiple designs with the same deletions but different module134

reactions. This combination helps obtain a superior solution.135

The software implementation of the proposed island-MOEA, denoted ModCell-HPC, is136

written in the C programming language and available at https://github.com/TrinhLab/137

modcell-hpc.138

2.3 Computation hardware139

We conducted all ModCell-HPC computations in beacon nodes from the Advanced Comput-140

ing Facility at the Joint Institute for Computational Science, The University of Tennessee141

and Oak Ridge National Laboratory. Each node contains a 16 core Intel Xeon E5-2670 cen-142

tral processing unit (CPU) and 256 GB of random access memory (RAM). The results were143

analyzed in a desktop computer with an Intel Core i7-3770 CPU and 32 GB of RAM.144

2.4 Target product identification145

The target products are endogenous E. coli metabolites that meet the following requirements:146

i) their maximum theoretical yields are above 0.1 (mol product/mol of substrate); ii) they147

are organic; and iii) they could be produced anaerobically in a growth coupled manner with148

a yield above 50%, a property determined in a previous study.25 If a given metabolite meets149

all these conditions but appears in multiple compartments, only one location is choosen.150

Implementation of these selection criteria resulted in 161 target metabolites. Metabolites151

that did not have a secretion mechanism originally present in the model required an exchange152

pseudo-reaction that represents metabolite secretion to the growth medium or intracellular153

accumulation at steady-state. The products in the selected library have diverse molecular154

weights and are overall highly reduced (Figure S2).155
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2.5 Model configuration156

We used the iML1515 E. coli model26 for all simulations. To configure the model, glucose157

uptake was set to 15 (mmol/gCDW/h); the default ATP maintenance value in iML1515 was158

used; 20% of the maximum anaerobic growth rate was used as the minimum growth rate,159

corresponding to 0.0532 (1/h); and only commonly observed fermentation products were160

allowed for secretion. This model configuration is equivalent to the previous modular cell161

design studies4 except for the higher glucose uptake rate. This rate was increased to match162

the study of Kamp and Klamt25 which was partially used here to identify target products.163

2.6 Design characterization164

2.6.1 Compatibility165

An important qualitative feature of a designed modular (chassis) cell is module compatibility.166

The chassis is compatible with a module if the performance of the resulting production strain167

is above a defined threshold of design objective value. In this study, we used the wGCP design168

objective that corresponds to the minimum product yield at the maximum growth rate,4 and169

selected a threshold of 0.5 to establish compatibility. Under these conditions, we expect a170

module compatible with the chassis can lead to a product yield above 50% of the theoretical171

maximum during the growth phase. The compatibility of a modular cell is defined as the172

number of modules that are compatible with it.173

2.6.2 Minimal covers174

A minimal cover is the smallest group of modular cells needed to ensure all potentially175

compatible products in a library are compatible with at least one of the modular cells.176

To identify minimal (set) covers computationally, we use the classical integer programming177

formulation:178
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min
xh∈{0,1}

∑
h∈H

(γhxh) (10)

subject to:∑
h∈H

ahkxh ≥ 1 ∀ k ∈ K′ (11)

This optimization problem minimizes the number of designs in the set cover, where H is179

the set of strain designs, h, produced by ModCell-HPC (10). The binary indicator variable180

xh takes a value of 1 if design h is selected as part of the set cover and 0 otherwise. Certain181

designs can be prioritized (e.g., they contain preferable genetic manipulations) using the182

weighting parameter γh. However, we set γh = 1 in all our simulations. All compatible183

products k must be included in at least one of the selected designs (11). The parameter ahk184

takes a value of 1 if product k is compatible with design h and 0 otherwise. There must exist185

at least one h ∈ H for which ahk = 1 to ensure a feasible solution exists; therefore, K′ is the186

subset of products compatible in at least one design of H.187

To enumerate all minimal covers, we iteratively solved the minimal cover problem (10-

11) with the addition, in each iteration, of an integer cut inequality (12) that removes a

previously found solution S. ∑
h∈S

xh ≤ |S| − 1 (12)

2.7 Coverage performance indicator188

Algorithm performance is tested against several parameter configurations, each producing a

Pareto front approximation (PF). All resulting Pareto fronts are gathered into a reference

Pareto front (PF∗). Coverage, C, is defined as the fraction of solutions in PF∗ captured by

a given approximation PF :

C =
|PF ∩ PF∗|
|PF∗|

(13)
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In our analysis, we only used unique non-dominated points in both PF and PF∗ to avoid189

many alternative solutions from biasing the coverage indicator.190

3 Results191

3.1 Tuning of ModCell-HPC method parameters192

A known challenge of heuristic optimization approaches is their reliance on parameter tun-193

ing for rapid convergence towards optimal solutions. To identify sensible default parameters194

for ModCell-HPC, we first scanned parameter combinations with a previous 20-objectives195

problem4 that is fast to solve, then focused on the most relevant parameters for a large-scale196

problem with 161 objectives corresponding to the current product library. In both cases,197

we used two performance metrics to identify the best algorithm parameters: i) Coverage,198

that indicates the fraction of Pareto optimal solutions identified by a given parameter con-199

figuration (Section 2.7). ii) minimal cover size, i.e., the smallest number of modular cells200

needed to ensure all compatible products in the library that are compatible in at least one201

(Section 2.6.2). Coverage is a general and unbiased quantitative measure which is preferred202

over other similar metrics based on a previous study,5 while minimal cover size is based on203

practical goals.204

In our initial benchmark study with the 20-objectives problem, we screened different to-205

tal run times, migration interval, migration types, and population sizes (Table 1) for best206

achieving modular cell designs. The design parameters were set to α = 6 and β = 1, which207

are sufficient to find highly compatible designs.6 For 1-hour run time, we observed the small-208

est population size (100) reached more generations (Figure S3 e,f) and hence achieved better209

results in both metrics (Figure S3 a,b). However, for a 2-hours run time, both population210

sizes of 100 and 500 attained similar cover sizes (Figure S3 g), indicating that a minimum of211

approximately 150 generations (Figure S3 e,f,k,l) is necessary for convergence of this prob-212

lem, irrespective of the population size. Taken together, the different performance between213
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100 and 500 population sizes in relation to run time indicates that under limited run times214

an optimal population size could be found to attain sufficient generations for convergence.215

The migration interval only appeared detrimental at the highest value of 50 with the smallest216

population size of 100 at 1 hour (Figure S3 a,b,g,h); otherwise this parameter was consid-217

ered secondary, and hence an intermediate value of 25 was selected for further simulations.218

Similarly, migration policy also appeared to be a secondary parameter; nonetheless, the “Re-219

placeBottom” migration policy was selected for further simulations since it is better or equal220

to the “Random” policy in all cases (Figure S3 c,d,i,j).221

For the large-scale benchmark with 161 products, we investigated the importance of run222

time, population size, and the number of computational cores (Table 1). For this benchmark,223

the design parameters were set to α = 10 and β = 2 to enable successful designs without224

a large number of genetic modifications that can lead to unrealistic model predictions and225

implementation requirements. We evaluated 5 and 10 hour run times. For 5-hours run226

time, a population size of 200 was better in all metrics (Figure 2 a,b,c,e,f,g) and reached227

50-100 generations (Figure 2 d). For a 10-hours run time, the population sizes of 200 and228

300 had equivalent performance (Figure 2 e-g), despite the population size of 200 reaching229

approximately 50 generations more than the 300 population size. The population size of230

100 underperformed at both run-times (Figure 2 a,b,e,f). Taken together, this large-scale231

benchmark study indicates that after a given number of generations, larger population sizes232

are comparable as long as they are above a minimum size. Hence, a population size of 200 is233

the minimum required for proper convergence and should be used under limited run times.234

Increasing the number of cores leads to more solutions (Figure 2 c,g), due to a larger meta-235

population (the total population of all islands). However, additional cores do not necessary236

find better solutions in terms of minimal cover size and individual product compatibility237

(Figure 2 b,f). These indicators plateaued at around 48 cores in both cases so this value was238

used for further simulations. Alternative communication topologies among islands27 may239

provide better scaling with cores but were not explored here.240
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In summary, the benchmark performed here aims to provide a general guideline to use the241

ModCell-HPC. Furthermore, this parameter meta-optimization procedure can be repeated242

to fine-tune the algorithm to specific problem features (e.g., number of objectives) and243

computational resources available (e.g., run time and computing cores).244

3.2 Design of E. coli modular cells for large product library245

A small number of genetic manipulations are sufficient for highly compatible246

modular cell After tuning ModCell-HPC, we used it to design E. coli modular cells for our247

library of 161 products. First, we scanned a broad range of design parameter combinations248

(α-β: 5-1, 10-2, 20-4, and 40-8) to identify the required genetic manipulations for highly249

compatible designs (Figure S4 a). Increasing the number of genetic manipulations led to250

an average increase in design compatibility. However, the maximum compatibility remained251

around 50% of the library (80 products) for all cases. This result indicates that highly252

compatible modular cells can be built with a small number of genetic manipulations. We253

selected the designs with α = 5, β = 1 (Supplementary Material 2) for further analysis,254

since designs with few genetic manipulations are more accurately simulated and also better255

to implement in practice.256

A few reaction deletions in central metabolism targeting byproducts and branch-257

points are key to build modular cells We sorted reaction deletions according to how258

often they appear across designs (Table 2). The top 7 reactions are used ≥10% of the de-259

signs and belong to central metabolism, indicating their importance to accomplish growth-260

coupled-to-product-formation phenotypes. Overall, the role of these deletions can be classi-261

fied into two functions: i) to eliminate major byproducts and ii) to alter key branch-points262

in metabolism that influence the pools of precursor metabolites, including carbon, redox,263

and energy precursors. The first type of manipulations is generally intuitive and often used264

in metabolic engineering strategies.28 The second type of manipulations are not commonly265
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identified unless metabolic model simulations are used,29–31 even though the importance of266

targeting metabolic branch-points was noted early.32 An example of this second type observed267

in our designs is TPI deletion, that activates the methylglyoxal bypass,33 reducing the overall268

ATP yield resulting from glucose conversion into pyruvate. Lower ATP yield limits biomass269

formation hence redirecting carbon flow towards products of interest. While such strategies270

are not common, TPI deletion predicted by model simulations was successfully used for en-271

hanced 3-hydroxypropionic acid production,29 and ATP wasting has recently been proposed272

to enhance production of certain molecules.34 Another example of branch-point manipulation273

is PPC deletion, that has been shown to lower flux from lower glycolysis towards the TCA274

cycle,35,36 resulting in lower succinate production, and an increased pool of pep, pyruvate275

and acetyl-CoA. Additionally, PPC deletion to increase the nadph pool for production of276

flavonoids was predicted by model simulation and experimentally validated.31 In summary,277

design of highly compatible modular cells requires not only major byproduct removal, but278

also manipulation of key branch points in central metabolism.279

Module reaction usage reveals pathway interfaces and unbiased module definition280

The modular cell optimization formulation (Section 2.1) not only identifies genetic manipu-281

lations in the modular cell, but also in the production modules. Module reactions correspond282

to reactions deleted in the chassis but inserted back in specific production modules to enable283

compatibility. We examined the module reactions used by all designs (Figure 3). As ex-284

pected, ALCD2x, ACKr, and LDH D, are used by ethanol, acetate, and lactate production285

networks, respectively. More notably, we also observed several reaction modules are used for286

specific products, for example, MDH and FUM 3-methyl-2-oxobutanotae and 2,3-dihydroxy-287

3-methylbutanoate, resepectively, that are naturally precursors of valine and artificially of288

isobutanol37,38. These module reactions likely play a role in both the synthesis of relevant289

TCA precursors and the secretion of succinate as an electron sink. Interestingly, fatty acids290

tend to use TPI, which as mentioned earlier, its deletion activates the methylglyoxal bypass291
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lowering the overall ATP yield. The first step in fatty acid biosynthesis, acetyl-CoA carboxy-292

lase, requires one ATP per mol of malonyl-CoA, explaining the usage of TPI as a module293

reaction for this family of products. Overall, module reactions enhance the compatibility294

of a modular cell, leading to more efficient strategies and revealing potential metabolic flux295

bottlenecks that are not always directly upstream of the target product.296

Three modular cells is the smallest set needed to cover all compatible products297

We next aimed to identify the smallest set of modular cells that include all compatible prod-298

ucts in the library (Section 2.6.2). For the Pareto set of designs α = 5, β = 1, we enumerated299

a total of 12 minimal covers of size 3. These covers are spanned by combinations of 8 unique300

designs (Figure S5). We selected the cover k that contains designs 82, 121, and 124, which301

use few deletions and have similar genetic manipulations among them. All designs in this302

cover have in common the deletion of ALCD2x and LDH D, disabling production of ethanol303

and lactate, the major reduced products of anaerobic growth in E. coli. Designs 121 and304

124 have 57 compatible products in common, while design 121 is uniquely compatible with305

ethanol, formate, and 2,3-dihydroxymethylbutanoate, and design 124 is uniquely compatible306

with succinate (Figure 4 a). These two designs only differ in that design 121 uses FUM307

deletion while design 124 uses MDH deletion (Figure 4 b). Different from designs 121 and308

124, design 82 is the only design that features the deletion of FLDR2 and PPC and is309

uniquely compatible with 24 modules, all for fatty acids synthesis. FLDR2 is coupled with310

POR5 to form a pathway for the reduction of pyruvate into acetyl-CoA consuming nadph311

(Figure 4 c), a key redox cofactor in fatty acid biosynthesis. PPC deletion is a metabolic312

engineering strategy to increase nadph available that has been experimentally validated.31313

Overall, these designs can be efficiently built due to their similarity, and are mainly composed314

of strategies that have been demonstrated in isolation and cover large product families.315
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3.3 Design of E. coli modular cells for conversion of hexoses and316

pentoses317

Non-glucose carbon sources require more genetic manipulations for high compat-318

ibility designs We designed modular cells to consume other relevant fermentable sugars319

besides glucose also present in biomass feedstocks, including pentoses (i.e., xylose and arabi-320

nose) and hexoses (i.e., galactose and mannose) (Figure 5 a). For this case study, everything321

remained the same except for the substrate uptake reaction in the model which was changed322

to reflect the sole carbon source in each case. We first scanned the distribution of design com-323

patibilities resulting from various combinations of α and β for each carbon source (Figure S4324

b-e). All cases plateaued at maximum compatibilities around 50%; however, galactose, ara-325

binose and xylose required at least α = 10, β = 2 to reach this level, while glucose and326

mannose reached it with only α = 5, β = 1. Hence, we selected α = 10, β = 2 for further327

analysis. Overall, this simulation reveals the possibility of highly compatible modular cells328

for various hexose and pentose carbon sources, at the expense of an increased number of329

genetic manipulations for some of the carbon sources.330

The effect of pentose uptake in redox metabolism leads to lower compatibility331

than hexoses For the set of designs in each carbon source, we examined the total com-332

patible products, i.e., the number of unique products compatible in at least one design from333

the Pareto front. This analysis revealed a group of 26 products (27% of the total 96 compat-334

ible products and 16% of the original library size) that are only compatible in designs with335

hexose carbon sources (Figure 5 b). The incompatibility of these 26 products is likely due336

to the lower reduction potential and different uptake pathways of pentoses with respect to337

hexoses (Figure 5 a). More specifically, analysis of the most deleted reactions in each carbon338

source revealed several differences in deletions between pentoses and hexoses (Figure 5 c).339

Notably, pentoses do not use TKT2 and MDH reaction deletions, while hexoses make highly340

frequent use of them. TKT2 is a key component of incorporating pentoses into glycolysis,341
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and hence cannot be deleted by pentose consuming designs. MDH has been observed to be342

up-regulated under anaerobic conditions when the sole carbon source is pyruvate, galactose,343

or xylose with respect to glucose.39 Hence, MDH could be an important source of nadh for344

substrates with less reduction potential. Alternatively, MDH could also be important for345

nadph generation as part of a pathway involving NADP-dependent malic enzyme (ME2)346

that converts malate to pyruvate and generates one mol of nadph. Overall, pentose uptake347

does not use the oxidative branch of the pentose phosphate pathway, the most important348

source of nadph in E. coli,40 hence limiting the products that can be growth-coupled to349

these carbon sources. Further study of the reactions that limit pentose compatibility could350

enable strategies to overcome it in certain cases (e.g., generation of alternative sources of351

nadph41,42).352

3.4 Compatibility towards modules unknown at the time of chas-353

sis design354

Highly compatible designs are better suited to be re-purposed towards unknown355

products. To rapidly explore the large space of potential production modules, existing356

strains could be re-purposed for production of molecules not considered as part of the orig-357

inal design. To examine this scenario, we randomly partitioned the product library into358

two evenly sized groups, and independently used each partition as input for ModCell-HPC.359

This was done in triplicates, each corresponding correspond to a different random product360

partition. Hence, in each replicate there is a group of known products at the time of design361

and a group of unknown products. For the designs produced by ModCell-HPC, we computed362

their objective value and then compatibility towards unknown products, which we refer to as363

unknown compatibility of a design, a useful metric to understand the potential to re-purpose364

a given design. In contrast, known compatibility is the compatibility towards known prod-365

ucts at the time of design, simply referred to as compatibility in previous cases study. The366

analysis of unknown compatibility of a new production module with an existing modular367
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cell design is similar to the concept of degree of coupling that was previously introduced in368

MODCELL based on a different computation framework.3 The total number of designs for369

each product group and the unknown compatibility distributions noticeably changed across370

replicates (Figure 6 a). This result reveals the important effect of known products in the371

resulting designs, which could be further explored to identify “representative products” that372

can capture the necessary metabolic phenotypes required for certain product families. Re-373

markably, there was a high correlation between known and unknown compatibility of a given374

design (Figure 6 b-d). Hence, highly compatible designs are better suited to be re-purposed375

towards unknown products.376

Deletion reactions that remove major fermentation byproducts and alter redox

metabolism have the highest contribution towards unknown compatibility To

identify the specific genetic intervention strategies that contribute to the unknown compat-

ibility of a design, we defined the unknown compatibility contribution of deletion reaction j

(uccj) as follows:

uccj =

∑
h∈Hj

uh

|H|
(14)

where Hj is the subset of designs from a ModCell-HPC solution (Pareto set H) containing377

deletion reaction j, and uh is the unknown compatibility of design h. We computed ucc for378

all 3 replicates and examined the top 10 sorted by mean value (Table 3). The main contrib-379

utors towards unknown compatibility were removal of major fermentative byproducts (lac-380

tate, ethanol, and acetate) followed by manipulation of redox pathways (THD2pp, FLDR2,381

MDH) and metabolic branch points (TKT2, PPC). Indeed byproduct removal strategies are382

the most common across the metabolic engineering literature.28 Strain re-purposing could383

be further explored with algorithms specialized for this task, e.g., by identifying module384

reactions in the unknown modules or using the existing strain as a starting point to iden-385

tify genetic manipulations instead of a wild-type strain. In our analysis, we have identified386

that high modular cell compatibility and certain reaction deletions are positive indicators of387
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compatibility towards unknown products.388

4 Conclusions389

In this study, we developed ModCell-HPC, a computational method to design modular cells390

compatible with hundredths of product synthesis modules. We applied ModCell-HPC to391

design E. coli modular cells with a product library of 161 endogenous metabolites. This392

resulted in many Pareto optimal designs for the production of these molecules, from which393

we identified three modular cells that include all compatible products. The designs feature394

strategies consistent with previous experimental studies aimed at optimizing production of395

a single product, reinforcing our confidence in the value of our simulations. Remarkably,396

the strategies not only include removal of major byproducts, but also modification of key397

metabolic branch-points. The modular cells were designed for growth-coupled production,398

which not only is expected to result in high product yields but also enables high-throughput399

pathway engineering approaches. Specifically, the modular cell can be simultaneously trans-400

formed with a module library to rapidly identify good candidates through adaptive laboratory401

evolution.13,43 We also used ModCell-HPC to design modular cells that utilize different hex-402

oses and pentoses carbon sources. This revealed the limitations of pentoses towards coupling403

with certain products which might be addressed by redox cofactor engineering. Finally, we404

identified that high compatibility and certain reaction deletion are important features to405

re-purpose an existing modular cell towards new modules. Overall, ModCell-HPC is an ef-406

fective tool towards more efficient and generalizable design of modular cells and platform407

strains that have recently captured the interest of metabolic engineers.8408
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Tables416

Table 1: Island-MOEA parameters evaluated in ModCell-HPC.

Name Description

Population size Number of individuals per island.

Migration type “ReplaceBottom”: After non-dominated sorting of the Pareto front16

(survivor selection), top individuals are sent and bottom individuals re-

placed. “Random”: Random individuals are sent and replaced.

Migration interval Number of generations between migration events.

Run time Wall-clock time for which the MOEA runs. It determines the total num-

ber of generations.

Cores Each island is a computing core at the hardware level.
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Table 2: Top 20 reaction deletions for design parameters α = 5, β = 1 with 162 designs.
Counts indicate the percentage of designs where the deletion is used. All reaction and
metabolite abbreviations used in this study correspond to BiGG identifiers (http://bigg.
ucsd.edu).

ID Name Formula Counts (%)

ALCD2x Alcohol dehydrogenase (ethanol) etoh c + nad c ↔ acald c + h c + nadh c 57.4

TPI Triose-phosphate isomerase dhap c ↔ g3p c 45.1

ACALD Acetaldehyde dehydrogenase (acetylating) acald c + coa c + nad c ↔ accoa c + h c + nadh c 40.7

FLDR2 Flavodoxin reductase (NADPH) 2.0 flxso c + nadph c → 2.0 flxr c + h c + nadp c 24.1

PPC Phosphoenolpyruvate carboxylase co2 c + h2o c + pep c → h c + oaa c + pi c 21.6

TKT2 Transketolase e4p c + xu5p D c ↔ f6p c + g3p c 15.4

LDH D D-lactate dehydrogenase lac D c + nad c ↔ h c + nadh c + pyr c 13

G3PD2 Glycerol-3-phosphate dehydrogenase (NADP) glyc3p c + nadp c ↔ dhap c + h c + nadph c 7.4

POR5 Pyruvate synthase coa c + 2.0 flxso c + pyr c ↔ accoa c + co2 c + 2.0 flxr c + h c 7.4

ACKr Acetate kinase ac c + atp c ↔ actp c + adp c 6.8

THD2pp NAD(P) transhydrogenase (periplasm) 2.0 h p + nadh c + nadp c → 2.0 h c + nad c + nadph c 6.2

GLUDy Glutamate dehydrogenase (NADP) glu L c + h2o c + nadp c ↔ akg c + h c + nadph c + nh4 c 5.6

ASPT L-aspartase asp L c → fum c + nh4 c 5.6

ASNS2 Asparagine synthetase asp L c + atp c + nh4 c → amp c + asn L c + h c + ppi c 4.9

CBMKr Carbamate kinase atp c + co2 c + nh4 c ↔ adp c + cbp c + 2.0 h c 4.3

RNDR4 Ribonucleoside-diphosphate reductase (UDP) trdrd c + udp c → dudp c + h2o c + trdox c 3.7

RPE Ribulose 5-phosphate 3-epimerase ru5p D c ↔ xu5p D c 3.1

SERD L L-serine deaminase ser L c → nh4 c + pyr c 3.1

LCARS Lacaldehyde reductase (S-propane-1,2-diol forming) h c + lald L c + nadh c ↔ 12ppd S c + nad c 2.5

FUM Fumarase fum c + h2o c ↔ mal L c 2.5
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Table 3: Top 10 reactions sorted by mean unknown compatibility contribution (ucc) among
replicates (i.e., R.1, R.2, and R.3).

ucc
ID Name

R. 1 R. 2 R. 3 Mean

LDH D D-lactate dehydrogenase 13.2 10.5 11.9 11.9

ALCD2x Alcohol dehydrogenase (ethanol) 11.5 10.5 11.8 11.3

PTAr Phosphotransacetylase 4.0 4.8 6.5 5.1

ACALD Acetaldehyde dehydrogenase (acetylating) 4.5 2.8 2.9 3.4

THD2pp NAD(P) transhydrogenase (periplasm) 4.7 2.4 2.2 3.1

ACKr Acetate kinase 3.8 2.2 1.7 2.6

FLDR2 Flavodoxin reductase (NADPH) 2.0 2.2 2.9 2.4

TKT2 Transketolase 2.6 2.0 2.5 2.4

PPC Phosphoenolpyruvate carboxylase 2.3 2.2 2.5 2.3

MDH Malate dehydrogenase 2.7 1.1 2.3 2.0
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Figures417

Figure 1: Parallelization schemes for multi-objective evolutionary algorithms. (a) Master-
slave approach used in the original ModCell2 implementation. (b) Island parallelization
following ring topology implemented in ModCell-HPC. (c) Key steps in the evolutionary
algorithm.
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Figure 2: ModCell-HPC benchmark with 161 products. (a) and (e) Coverage is the fraction
of Pareto optimal designs captured by a Pareto front approximation (Section 2.7). (b) and
(f) Compatible modules indicates the products that appear in at least one design with a
design objective above the compatibility threshold, while minimal cover size is the smallest
number of designs needed to capture all compatible products (Section 2.6). (c) and (g)
Total and unique number of solutions in the Pareto front approximations. (d) and (h) Total
number of generations.
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Figure 3: Module reaction usage for design parameters α = 5, β = 1. Only designs compat-
ible with the product are considered in the module usage frequency.
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Figure 4: Comparison of the designs in the selected minimal cover. (a) Venn diagram
of products compatible with each design. The products uniquely compatible with specific
designs are (see http://bigg.ucsd.edu for abbreviation descriptions): Design 121: etoh,
for, 23dhmb; Design 124: succ; Design 82: pg140, 2hdecg3p, 2odec11eg3p, 1agpg180, pe140,
pg161, pg141, 2hdec9eg3p, pgp161, 2agpg180, 1ddecg3p, pg120, pgp141, pgp140, pe141, ps140,
apg120, ps120, pgp120, pe120, lipidX, 2tdecg3p, 2odecg3p, ps141. (b) Venn diagram of reac-
tion deletions that constitute each design. (c) Metabolic map with reaction deletions colored
in red.
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Figure 5: Design of modular cells for different carbon sources with design parameters
α = 10, β = 2. (a) Sugar uptake, pentose phosphate, Entner-Doudoroff, and upper glycol-
ysis pathways. (b) Venn diagram of total products compatible with designs using pentoses
and hexoses. The 26 products uniquely compatible with hexoses are: 1agpg180, 2tdecg3p,
2agpg181, 3c3hmp, 3mob, 2hdecg3p, pe141, ps120, 1agpg160, 2agpg160, 23dhmb, ps141,
1agpe180, 2agpg180, apg120, 2agpe180, pe120, 2odec11eg3p, 4mop, lipidX, 3c2hmp, 2ippm,
2hdec9eg3p, 1agpg181, dha, 2odecg3p. (c) Top 20 reaction deletions according to deletion
frequencies average across carbon sources. The counts for each carbon source correspond to
the percentage of designs containing that reaction deletion.
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Figure 6: Compatibility towards unknown products in 3 random even partitions of the
product library. (a) Distribution of unknown compatibility, n corresponds to the number of
designs in each case. (b-d) Comparison between unknown and known compatibilities of each
design for each replicate, where r2 is the Pearson correlation coefficient.
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Supplementary Materials418

1. Supplementary Material 1 (SM1): Supplementary figures.419

2. Supplementary Material 2 (SM2): Designs for selected parameters α = 5, β = 1.420
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