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Abstract 

Although functional connectivity and associated graph theory measures (e.g., centrality; how 

centrally important to the network a region is) are widely used in brain research, the full extent to 

which these functional measures are related to the underlying structural connectivity is not yet 

fully understood. The most successful recent whole-brain methods have managed to account for 

36% of the variance in functional connectivity based on structural connectivity. Graph neural 

network deep learning methods have not yet been applied for this purpose, and offer an ideal 

model architecture for working with connectivity data given their ability to capture and maintain 

inherent network structure. This model applied here to predict functional connectivity and 

centrality from structural connectivity accounted for 81% of the variance in mean functional 

connectivity, 48% of the variance in individual-level functional connectivity, 99% of the 

variance in mean functional centrality, and 73% of the variance in individual-level functional 

centrality. Regions of particular importance to the model's performance as determined through 

lesioning are discussed, whereby regions with higher centrality have a higher impact on model 

performance. Future research on models of patient, demographic, or behavioural data can also 

benefit from this graph neural network method as it is ideally-suited for capturing connectivity 

and centrality in brain networks. These results have set a new benchmark for prediction of 

functional connectivity from structural connectivity and provide a novel finding that functional 

centrality can be robustly predicted from structural connectivity and centrality. Models like this 

may ultimately lead to a way to predict functional connectivity in individuals who are unable to 

do fMRI tasks (e.g., non-responsive patients). 

Keywords: functional connectivity, resting state fMRI, structural connectivity, DTI, deep 

learning, centrality  
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Structure Can Predict Function in the Human Brain: A Graph Neural Network Deep 

Learning Model of Functional Connectivity and Centrality Based on Structural Connectivity 

There is now widespread usage of functional connectivity and associated graph theory 

measures (e.g., centrality; how centrally important to the network a particular region is). 

Investigating to what extent the structural connectivity as measured by diffusion tensor imaging 

(DTI) can explain functional connectivity as measured by resting state functional magnetic 

resonance imaging (rsfMRI) is an important step towards understanding to what extent there is a 

structural basis for these functional measures (the importance of this problem has recently been 

highlighted; Suárez et al., 2020). Some of the first steps towards understanding the relationship 

between structure and function showed moderate correspondence when examining direct 

structural connections, accounting for approximately 50% of the variance (Honey et al., 2009), 

or looking at a subset of connections (62%; Hagmann et al., 2008). However, when examining 

all functional connections, structural connectivity accounts for only 9% of the variance using 

linear regression by one account (Rosenthal et al., 2018). Novel graph theory measures 

calculated using structural connectivity have accounted for 23% of the variance in functional 

connectivity (Goñi et al., 2014), a combination of vector encodings of structural connectivity and 

deep learning with a fully connected network (FCN) have accounted for 36% of the variance in 

functional connectivity (Rosenthal et al., 2018), and simulated fMRI activation using a hybrid 

approach with both DTI and electroencephalography (EEG) data has accounted for 53% of the 

variance in functional connectivity (Schirner et al., 2018). Still, there remains a large amount of 

variance unaccounted for by these models if we are to determine the extent to which functional 

connectivity and measures of centrality based on functional connectivity offer insight into the 

properties of the underlying structural network. Recently, a feed-forward FCN deep learning 
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model was able to demonstrate that mean structural connectivity as input could predict mean 

functional connectivity accounting for 81% of the variance, and that individual-level structural 

connectivity could predict individual-level functional connectivity accounting for 30% of the 

variance (Sarwar et al., 2021). These findings represent a large improvement in prediction of 

functional connectivity, and further deep learning models should be investigated to determine 

whether there is a converging upper limit on functional connectivity prediction. 

There is a general consensus in the neuroscience community that rsfMRI functional 

connectivity measures represent the effective connectivity between regions in the brain. Effective 

connectivity describes the meaningful result of communication between regions that are sparsely 

connected by direct and indirect structural connections (white matter tracts). To support this view 

researchers have noted that patterns of connectivity seem to occur between regions that are 

expected to function together based on previous research and neuroanatomy (see van den Heuvel 

and Hulshoff Pol, 2010 for a review). To the extent that modern methods allow the effects of 

physiological factors (e.g., respiration and cardiac function) to be accounted for, the neuronal 

basis of the BOLD signal can be increased relative to noise (e.g., Birn et al., 2008; Chang et al., 

2009; Falahpour et al., 2013; Golestani et al., 2015; Kassinopoulos and Mitsis, 2019; Salas et al., 

2021), but co-occurring increases and decreases of this signal have yet to be robustly linked to 

the organization of the underlying structural network. Searching for the upper limit in predicting 

functional connectivity from structure remains an important goal for investigating to what extent 

the rsfMRI functional connectivity represents the ‘effective’ connectivity of the structural 

network. 

One issue with structural connectivity is that DTI tractography data is sparse, meaning 

the majority of values are zeros. On the other hand, functional connectivity data has many more 
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non-zero values, even when thresholded. This difference occurs in part because many routes of 

communication between brain regions are indirect rather than direct, and is one reason functional 

connectivity has been widely used. Measures of indirect (‘effective’) connectivity are available 

using graph theory, including shortest path length, communicability (Estrada and Hatano, 2008), 

and novel measures designed for brain research (e.g., search information and path transitivity; 

Goñi et al., 2014), but research is still investigating the extent to which these measures represent 

how information is communicated between brain regions. 

Research employing graph theory measures have become an important focus of recent 

network neuroscience research involving structural and functional connectivity (see Fornito et 

al., 2013), including measures of centrality, which describe a region’s importance to the network. 

Some common centrality measures include degree centrality (number of connections to a 

region), eigenvector centrality (number of connections to a region weighted by the centrality of 

its neighbours), and PageRank centrality (a variant of eigenvector centrality developed for use in 

ranking web pages, with the advantage that it addresses the issue of eigenvector centrality 

sometimes being excessively high when a low degree node is connected to a high centrality 

node; Page et al., 1999). Figure 1A depicts an example graph with labels showing which node 

has the highest centrality for each of these measures. This example graph more closely resembles 

the sparse (few connections) structural connectivity network than the highly connected 

functional connectivity network. The interpretation of centrality for structural connectivity is 

more straightforward than for functional connectivity, as functional connectivity is already 

loosely interpreted as ‘effective’ connectivity (taking indirect structural connections into 

account). Functional connectivity centrality has been used to demonstrate age and sex related 

differences (Zuo et al., 2012), differences between patient and control groups (for patients with 
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schizophrenia, Chen et al., 2015; bipolar disorder, Deng et al., 2019, Zhou et al., 2017; retinitus 

pigmentosa, Lin et al., 2021; and diabetic optic neuropathy, Xu et al., 2020), and differences 

related to genotype (Wink et al., 2018). Structural connectivity centrality has also been used to 

demonstrate differences between patient and control groups (for patients with prenatal alcohol 

exposure, Long et al., 2020; traumatic brain injury, Raizman et al., 2020; gut inflamation, 

Turkiewicz et al., 2021; and brain tumours, Yu et al., 2016), and to demonstrate a relationship 

between structural centrality and functional complexity suggesting that regions integrating 

information from many sources have more complex functional activity (Neudorf et al., 2020). An 

important question that remains to be answered is to what extent can variance in functional 

connectivity centrality measures be accounted for by structural connectivity.  

 

Figure 1 Graph neural network deep learning architecture. (A) An example graph 
illustrating degree centrality, eigenvector centrality, and PageRank centrality. (B) Depiction of 
Graph Nets update functions, where e�

�  refers to the updated edge value, and where v�  and v
�

�  
refer to the node being updated and then its updated value. Adapted from Battaglia et al. (2018). 
(C and D) Depiction of the steps in the edge prediction model (C), and centrality prediction 
model (D), where �� represents the FCN update function for edges taking an edge and 2 
connected nodes as input, �� represents the FCN update function for nodes taking a node and the 
aggregated value of connected edges as input, and ���� represents the aggregation of edge 
values. Adapted from Battaglia et al. (2018). 
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The problem of developing a deep learning model approach to using brain connectivity 

for prediction has been a focus of recent research. In a graph neural network model for deep 

learning, the structure of the connectivity data as a network (graph) is maintained, making this 

model ideal for prediction problems related to connectivity data. One implementation of this 

model architecture (not using additional global values in this case), Graph Nets (Battaglia et al., 

2018), trains a small fully connected network (FCN) update function to update the value of each 

edge based on the value of the edge and the values of the two connected nodes, and another 

trainable FCN that updates the value of each node using the value of the node and the aggregated 

value of connected edges (see Figure 1B). These two FCN functions are effective even at a very 

constrained scale, given only two layers with 16 nodes each (many fewer parameters to train than 

previous deep learning models predicting functional connectivity from structural connectivity; 

e.g., 4 layers with 350 nodes each in Rosenthal et al., 2018; 8 layers with 1024 nodes each in 

Sarwar et al., 2021), owing to the ability of the model to preserve the network structure of the 

data. Any number of updates can be performed, each using the updated values from the last step, 

before calculating the loss function and training the update functions (message passing). Graph 

neural network approaches to deep learning have been consistently outperforming other models 

of deep learning in prediction with brain connectivity data. Some applications of a graph neural 

network model to brain connectivity data include demonstrations of sex prediction from 

functional connectivity (88% accuracy; Arslan et al., 2018), a similarity metric learning model 

for predicting the similarity between two functional connectivity networks (63% accuracy; Ktena 

et al., 2017), prediction of Alzheimer’s disease from functional connectivity that outperformed 

previous methods (81% accuracy; Bi et al., 2020; Parisot et al., 2018), and prediction of Autism 
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Spectrum Disorder outperforming previous methods (61% to 71%; Arya et al., 2020; Parisot et 

al., 2018; Wang et al., 2021; Zhang and Wang, 2020).  

Considering the ultimate goal of relating DTI structural connectivity to resting state 

functional connectivity, a graph neural network deep learning approach has not yet been 

established, but based on past successes predicting other measures using brain connectivity this 

type of model is a promising candidate. This research uses a Graph Nets (Battaglia et al., 2018) 

deep learning model to determine to what extent structural connectivity can predict functional 

connectivity, as well as functional connectivity derived centrality measures. 

Methods 

Dataset 

High quality DTI and resting state fMRI data for 998 subjects were obtained from the 

Human Connectome Project (HCP) database (Van Essen et al., 2013; please see this paper for 

ethics statements). The HCP preprocessed rsfMRI data was used, which has been FSL FIX 

(Salimi-Khorshidi et al., 2014) preprocessed, along with the DTI preprocessed data (see HCP 

preprocessing pipelines for more information on preprocessing steps, Glasser et al., 2013). The 

mean activation at each timepoint was calculated for each region of the AAL 90 region atlas 

(Tzourio-Mazoyer et al., 2002). Each of the 4 rsfMRI sessions was then z-score standardized for 

each region independently from each other session. Each region was then bandpass filtered for 

each session separately to keep frequencies between 0.01 Hz and 0.1 Hz (see Hallquist et al., 

2013).  
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Connectivity Measures 

The Pearson correlation coefficient was then calculated for each pair of regions using the 

4800 total time points (all 4 sessions concatenated), as a measure of functional connectivity. DSI 

Studio’s (http://dsi-studio.labsolver.org) deterministic tracking algorithm that uses quantitative 

anisotropy (Yeh et al., 2013) as the termination index was used to produce structural connectivity 

matrices of streamline count for the AAL 90 region atlas. For reconstruction in DSI Studio the 

Generalized Q-sampling (Yeh et al., 2010) method was used, and tracking was performed using 

a fiber count of 1 million fibers, maximum angular deviation of 75 degrees, and a minimum and 

maximum fiber length of 20 mm and 500 mm respectively. A whole brain seed was used to 

calculate the structural connectivity matrix as the count of streamlines between each combination 

of the 90 AAL atlas regions. 

Graph theory centrality measures of degree centrality, eigenvector centrality, and 

PageRank centrality were calculated using the NetworkX python library (Hagberg et al., 2008;  

using functions degree, eigenvector_centrality, and pagerank). These measures were calculated 

using a thresholded functional connectivity matrix, with the lower threshold set to the critical 

correlation coefficient for R with p = .0001 (see Zuo et al., 2012). Likewise, the DTI structural 

connectivity matrix was used to calculate degree, eigenvector, and PageRank centrality for each 

atlas region. The structural and functional centrality measures were then z-score standardized 

and rescaled to have values between -1 and 1. 

Model Architecture 

 The Graph Nets (Battaglia et al., 2018) python library, which relies on Tensorflow 

(Abadi et al., 2015), was used with a message passing design, using 10 message passing steps (as 
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in the default model defined by Battaglia et al., 2018; accessible at 

https://github.com/albertotono/graph_nets). Following Battaglia et al., (2018) two latent layers 

were used with 16 nodes in each layer for the update functions. Seventy percent of the data was 

used as a training set, with 10 percent used for validation during training and 20 percent saved 

for testing (as done previously; e.g., Wang et al., 2020). The Adam (Kingma and Ba, 2017) 

optimizer was used with default values (learning rate = .001, β1 = .9, β2 = .999, and ε = 1 * 10-7). 

Training was performed using batch gradient descent, with a batch size of 32 used for training 

the models. The loss function used was the mean squared error (MSE) of the functional measures 

compared to the predicted values. One epoch was completed when enough batches were 

completed to randomly sample as much unique test data as possible (21 batches for batch size of 

32). For the edge prediction models, structural connectivity values were given as the input edges, 

all input nodes were initialized with a value of 1.0, and functional connectivity measures were 

compared to the output edges to calculate loss (see Figure 1C). For the centrality prediction 

models, structural connectivity values were given as the input edges, structural centrality 

measures were given as the input nodes, and functional centrality measures were compared to the 

output nodes to calculate loss (see Figure 1D). In order to encourage the model to find an 

effective solution in as few steps as possible, the loss was calculated as the mean MSE for all 10 

message passing steps. A Nvidia GTX 3080 graphical processing unit (GPU) was used to train 

the models and required approximately 11 hours to run 3000 epochs for the centrality prediction 

models and approximately 83 hours to run 5000 epochs for the edge prediction model. 
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Results 

Edges 

The edge prediction model was trained for 5000 epochs, and there was no evidence for 

overfitting of the model to the training set, as the validation set decreased its loss along with the 

training set (Figure 2A). Figure 2B depicts the empirical versus the mean predicted values of 

functional connectivity, accounting for 81.3% of the variance in the 201 subject test group. 

Furthermore, functional connectivity was predicted at the individual-level accounting for 47.8% 

of the variance (see Supplementary Figure 1). The structural connectivity of each individual atlas 

region was iteratively lesioned, and this lesioned network was given to the previously trained 

model as input. The MSE loss was then calculated to determine the importance of each region to 

model performance (see Figure 2C). The top 10 regions that impacted the model performance the 

most included the bilateral middle occipital gyrus, RH angular gyrus, LH precentral gyrus, RH 

superior frontal lobe, RH middle cingulum, RH olfactory cortex, LH insula, LH middle temporal 

pole, and RH lingual gyrus. In order to gain a better understanding of what features of the 

regions make them important for model performance, we tested a hypothesis that higher 

structural degree centrality (more centrally important to the network as a whole because of the 

high number of connections) may be related to higher impact on model performance. This was 

the case, as it was observed that the centrality of a region was positively related to lesion loss 

(R(88) = .322, p = .002), indicating that high centrality regions were more important for model 

performance (see Figure 2D). 
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Figure 2 Edge prediction model performance. (A) Edge prediction model MSE loss for 
training and validation sets as a function of the number of training epochs. (B) Predicted rsfMRI 
functional connectivity as a function of empirical rsfMRI functional connectivity (R2 = .813). (C) 
Functional connectivity loss (MSE) related to lesioning structural connectivity to each atlas 
region, where dark blue indicates a lesser effect on the model performance and dark red indicates 
a greater effect. Larger sphere size also indicates a greater effect of lesion on model 
performance. Figure produced using BrainNet Viewer (Xia et al., 2013). (D) Lesioned functional 
connectivity loss as a function of structural connectivity degree centrality (R(88) = .322, p = 
.002). 

 Using the predicted functional connectivity, measures of centrality for degree, 

eigenvector, and PageRank were calculated by unstandardizing first before following the same 

thresholding and centrality calculation as described in the Methods. The mean predicted values 

for degree centrality accounted for 80.8% of the variance in the empirical data (see Figure 3A), 

for eigenvector centrality accounted for 84.0% of the variance in the empirical data (see Figure 

3B), and for PageRank centrality accounted for 80.0% of the variance in the empirical data (see 

Figure 3C). The individual-level predicted values for degree centrality accounted for 73.1% of 
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the variance in the empirical data (see Supplementary Figure 2), for eigenvector centrality 

accounted for 53.0% of the variance in the empirical data (see Supplementary Figure 3), and for 

PageRank centrality accounted for 50.8% of the variance in the empirical data (see 

Supplementary Figure 4). These results demonstrate that the model has accounted for a large 

amount of variance in connectivity as well as centrality, but in order to determine if even better 

performance could be produced, the model designed to directly predict centrality was utilized. 

 

Figure 3. Edge prediction model derived centrality measure performance. (A) Degree 
centrality measures calculated from the predicted functional connectivity values as a function of 
empirical degree centrality (R2 = .808). (B) Eigenvector centrality measures calculated from the 
predicted functional connectivity values as a function of empirical eigenvector centrality (R2 = 
.840). (C) PageRank centrality measures calculated from the predicted functional connectivity 
values as a function of empirical PageRank centrality (R2 = .800). 

Degree Centrality 

The degree prediction model was trained for 3000 epochs, and there was no evidence for 

overfitting of the model to the training set, as the validation set decreased its loss along with the 
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training set (Figure 4A). Figure 4B depicts the empirical versus the predicted mean values of 

functional degree centrality, accounting for 99.0% of the variance in the 201 subject test group. 

The individual-level functional degree centrality was predicted accounting for 64.7% of the 

variance (Supplementary Figure 5). This alternative model performed better than the previous 

model predicting the mean centrality, which accounted for 80.8% of the variance, but performed 

worse than the previous model predicting the individual-level centrality, which accounted for 

73.1% of the variance. 

 

Figure 4. Centrality prediction model performance. (A) Degree centrality model MSE loss 
for training and validation sets as a function of the number of training epochs. (B) Predicted 
rsfMRI functional connectivity degree centrality as a function of empirical rsfMRI functional 
connectivity degree centrality (R2 = .990). (C) Eigenvector centrality model MSE loss for 
training and validation sets as a function of the number of training epochs. (D) Predicted rsfMRI 
functional connectivity eigenvector centrality as a function of empirical rsfMRI functional 
connectivity eigenvector centrality (R2 = .981). (E) PageRank centrality model MSE loss for 
training and validation sets as a function of the number of training epochs. (F) Predicted rsfMRI 
functional connectivity PageRank centrality as a function of empirical rsfMRI functional 
connectivity PageRank centrality (R2 = .990). 

Eigenvector Centrality 

The eigenvector prediction model was trained for 3000 epochs, and there was no 

evidence for overfitting of the model to the training set, as the validation set decreased its loss 
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along with the training set (Figure 4C). Figure 4D depicts the empirical versus the predicted 

mean values of functional eigenvector centrality, accounting for 98.1% of the variance in the 201 

subject test group. The individual-level functional eigenvector centrality was predicted 

accounting for 61.2% of the variance (Supplementary Figure 6). This alternative model 

performed better than the previous model, which accounted for 84.0% of the mean variance and 

53.0% of the individual-level variance. 

PageRank Centrality 

The eigenvector prediction model was trained for 3000 epochs, and there was no 

evidence for overfitting of the model to the training set, as the validation set decreased its loss 

along with the training set (Figure 4E). Figure 4F depicts the empirical versus the predicted mean 

values of functional PageRank centrality, accounting for 99.0% of the variance in the 201 subject 

test group. The individual-level functional PageRank centrality was predicted accounting for 

64.9% of the variance (Supplementary Figure 7). This alternative model performed better than 

the previous model, which accounted for 80.0% of the mean variance and 50.8% of the 

individual-level variance. 

Discussion 

Resting state fMRI has been used to calculate functional connectivity networks in brain 

research for many years, and graph theory measures such as centrality have been calculated for 

these functional networks, yet a clear relationship between the physical structural connectivity 

derived values and what is assumed to be the ‘effective’ functional connectivity has been elusive. 

The most successful previous effort to predict mean functional connectivity from mean structural 

connectivity at the whole-brain level was able to account for 81% of the variance in functional 
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connectivity, and individual-level functional connectivity was predicted from individual-level 

structural connectivity accounting for 30% of the variance. The importance of continuing efforts 

to improve model prediction performance has been recently highlighted (Suárez et al., 2020). By 

using the Graph Nets (Battaglia et al., 2018) deep learning model architecture, which is well 

suited to modeling network datasets, mean functional connectivity was predicted from 

individual-level structural connectivity accounting for 81% of the variance (matching the 

previous attempt, without relying on mean structural connectivity as input), and individual-level 

functional connectivity was predicted from individual-level structural connectivity accounting 

for 48% of the variance (far surpassing the previous attempt). In addition, mean functional 

centrality was predicted from individual-level structural connectivity and centrality data 

accounting for up to 99% of the variance, and up to 73% of individual-level functional centrality 

variance was accounted for from individual-level structural connectivity, demonstrating that 

these functional centrality measures can be robustly derived from the underlying structural 

connectivity and structural centrality measures. These results demonstrate that it is possible to 

account for nearly all of the variance in functional centrality with structural connectivity and 

centrality measures, and should encourage further research to explicitly define the nature of this 

relationship using graph theory and simulation modelling. These results set an important 

benchmark in what should be a continuing effort in the network neuroscience community to 

determine the extent to which functional connectivity and graph theory measures such as 

centrality can be derived from structural connectivity, and therefore to what extent we can infer 

functional connectivity from structural connectivity. 

The regions of the brain that are particularly important for the performance of the edge 

prediction model were highlighted by iteratively lesioning each region. In order to test whether 
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the centrality may affect how important a region is to model performance, degree centrality was 

compared to lesion loss. Indeed, higher centrality was associated with greater importance for 

model performance, indicating that part of what makes a region more important to the model is 

the extent to which the region is centrally important to the network, connected to many other 

regions. 

Future Directions 

The graph neural network deep learning model architecture is one that is designed with 

networks in mind, and maintains the structure of the brain connectivity data, whereas other 

commonly used deep learning approaches do not. We have demonstrated that this is an effective 

deep learning model for use with structural and functional connectivity data. Future research 

predicting patient, demographic, or behavioural data should also make use of this method in 

order to improve on past deep learning attempts. Prediction of task activation from structural 

connectivity has also been explored in recent research (e.g., Ekstrand et al., 2020; Osher et al., 

2016; Wu et al., 2020), and this model could also lead to improvements in task activation 

prediction. 

As this model is further developed to account for more variance in individual-level 

functional connectivity, this approach may also lead to predictive functional mapping for patients 

who are unable to follow fMRI instructions. Alternatively, there may be an upper limit on the 

amount of information about functional connectivity that is contained in structural connectivity 

measures. This upper limit may exist due to a number of factors. Neuromodulation selectively 

inhibits and excites neurons throughout the brain network, leading to dynamic patterns of 

functional connectivity, so although the underlying structure does not change during MRI 

imaging, the functional connectivity is in constant flux (Bell and Shine, 2016; Shine, 2019). The 
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low spatial resolution of the atlas used also means that the precise structural connectivity patterns 

between neurons cannot be measured. In addition, functional boundaries can vary across 

individuals and between sessions (Gordon et al., 2017; Laumann et al., 2015; Mueller et al., 

2013; Salehi et al., 2020; Suárez et al., 2020; Wang et al., 2015), so the use of atlases is a source 

of error for this reason as well. The temporal dynamics also differ from one region to the next, 

affecting the calculation of functional connectivity (Gollo et al., 2015; Keitel and Gross, 2016; 

Murray et al., 2014; Shafiei et al., 2019; Suárez et al., 2020). Depending on how unimodal or 

transmodal a region is, there may be a higher (unimodal) or lower (transmodal) degree of 

coupling between structure and function (Margulies et al., 2016; Preti and Van De Ville, 2019; 

Suárez et al., 2020). Additional atlases should be used to predict function from structure in order 

to determine whether there is consistency (or lack thereof) across them (Bryce et al., 2021). 

Based on our deep learning model results, there is clearly much more variance in functional 

connectivity that can be accounted for by structural connectivity using a graph neural network 

approach, and future research should continue to develop further graph theory and simulation 

methods able to explicitly define the nature of the relationship between the two. 

Conclusion 

 Our graph neural network deep learning model provides a new benchmark for prediction 

of rsfMRI functional connectivity (81% of mean variance; 48% of individual-level variance) and 

functional centrality (99% of mean variance; 73% of individual-level variance) from DTI 

structural connectivity, which far exceeds the individual-level performance of the non graph 

neural network models previously reported by others (81% of mean variance; 30% of individual-

level variance). This research has not only brought us closer to finding the upper limit on 
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prediction of connectivity and centrality of function from structural connectivity, it has opened 

new doors for understanding the structure-function network relationships in the human brain. 
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Supplementary Material 

 

 

Supplementary Figure 1. Non-aggregated predicted rsfMRI functional connectivity as a function 

of empirical rsfMRI functional connectivity (R2 = .478). 

 

Supplementary Figure 2. Non-aggregated degree centrality measures calculated from the 

predicted rsfMRI functional connectivity values as a function of empirical rsfMRI functional 

degree centrality (R2 = .731). 
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Supplementary Figure 3. Non-aggregated rsfMRI functional eigenvector centrality measures 

calculated from the predicted functional connectivity values as a function of empirical rsfMRI 

functional eigenvector centrality (R2 = .530). 

 

Supplementary Figure 4. Non-aggregated rsfMRI functional PageRank centrality measures 

calculated from the predicted functional connectivity values as a function of empirical rsfMRI 

functional PageRank centrality (R2 = .508). 
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Supplementary Figure 5. Non-aggregated predicted rsfMRI functional connectivity degree 
centrality as a function of empirical rsfMRI functional degree centrality (R2 = .647). 

 

Supplementary Figure 6. Non-aggregated predicted rsfMRI functional connectivity eigenvector 
centrality as a function of empirical rsfMRI functional eigenvector centrality (R2 = .612). 
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Supplementary Figure 7. Non-aggregated predicted rsfMRI functional connectivity PageRank 
centrality as a function of empirical rsfMRI functional PageRank centrality (R2 = .649). 
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