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Abstract  24 

Improved understanding of genetic regulation of proteome can facilitate the identification of 25 

causal mechanisms for complex traits. We analyzed data on 4,657 plasma proteins from 7,213 26 

European American (EA) and 1,871 African American individuals from the ARIC study, and further 27 

replicated findings on 467 AA individuals from the AASK study. We identified 2,004 plasma 28 

proteins in EA and 1,618 in AA, with majority overlapping, which showed significant genetic 29 

associations with common variants in cis-regions. Availability of AA sample led to smaller credible 30 

sets and identification of a significant number of population-specific cis-pQTLs. Estimates of cis-31 

heritability for proteins were similar across EA and AA (median cis-h2=0.09 for EA and 0.10 for 32 

AA) and tended to be lower than those of gene expressions. Elastic-net-based algorithms 33 

produced high accuracy for protein prediction in each population, but models developed in AA 34 

were more transportable to EA than conversely. An illustrative application of proteome-wide 35 

association studies (PWAS) to serum urate and gout, implicated several proteins, including IL1RN, 36 

revealing the promise of the drug anakinra to treat acute gout flares. Our study demonstrates 37 

the value of large and diverse ancestry study for understanding genetic mechanisms of molecular 38 

phenotypes and their relationship with complex traits. 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 
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Introduction 47 

Genome-wide association studies (GWAS) to date have cumulatively mapped tens of thousands 48 

of loci containing common genetic variants associated with complex traits 1, 2. As the majority of 49 

the variants are in non-coding regions 3, 4, researchers have focused on understanding the role of 50 

gene-expression regulation as a mechanism for complex trait genetic association 5-9. There is 51 

known to be substantial overlap between genetic variations regulating gene expression and 52 

those influencing complex traits 7-9, but only a small fraction of GWAS heritability of complex 53 

traits can be explained by mediating effects through bulk gene-expression 10, 11. While it is likely 54 

that future studies with more extensive cell-type specific gene expression measurements will 55 

lead to additional insights, comprehensive understanding of causal mechanisms for complex 56 

traits will ultimately require the integration of data from various types of genomic and molecular 57 

traits 11. Proteins, the ultimate product of the transcripts, are subject to post-translational 58 

modifications and processing, and contain additional information that cannot be detected at the 59 

level of the transcriptome. 60 

 61 

Recently, major opportunities have arisen to substantially increase our understanding of the 62 

causal role of proteins in complex traits due to availability of an accurate high throughput 63 

technology for measuring proteins in different types of samples 12, 13. The plasma proteome has 64 

received particular attention as it can capture a wide variety of proteins that are active in 65 

different biological processes, including but not limited to circulation 14. The proteome is often 66 

dysregulated by diseases, and it is highly amenable for drug targeting 15, 16. A number of genetic 67 

studies have identified protein quantitative trait loci (pQTL), for plasma 15-20 as well as some other 68 

tissues 21-23, and noted that pQTLs are enriched for GWAS associations across an array of complex 69 
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traits 15-23. Studies have used pQTLs as instruments in conducting Mendelian randomization (MR) 70 

analysis to identify causative proteins, and hence potential therapeutic targets, across diverse 71 

phenotypes 24-26, including COVID-19 related outcomes 19, 20.  72 

 73 

In spite of substantial progress, understanding of the genetic architecture of the proteome and 74 

its overlap with those of gene expressions and complex traits remains limited. While the sample 75 

size for some studies 16-19 of the plasma proteome has involved thousands of individuals, it is 76 

likely that identification of pQTLs remains incomplete, both due to inadequate sample size or/and 77 

lack of comprehensive protein measurements. Further, existing proteomic studies have been 78 

mostly restricted to samples of European ancestry, and thus cannot inform potential 79 

heterogeneity by ancestry. Additionally, advanced tools for incorporating pQTL information for 80 

exploring causal effects of proteins, such as those available for analysis of gene-expression 27, 28, 81 

are lacking.  82 

 83 

In this article, we report results from a comprehensive set of analyses of cis-genetic regulation of 84 

the plasma proteome in the large European and African American cohorts of the Atherosclerosis 85 

Risk in Communities (ARIC) study 29. We focus on the identification of cis- associations, which 86 

compared to trans-, have been shown to more replicable across different proteomic platforms 30 87 

and are less likely to be affected by horizontal pleiotropy that could pose additional challenge for 88 

downstream Mendelian-randomization analyses 31. We carry out a set of association and fine-89 

mapping analyses to identify common (minor allele frequency (MAF) > 1%) cis-pQTLs and 90 

compare results across ethnic groups to explore shared and unique genetic architecture. For each 91 

ethnic group, we characterize cis-heritability of the proteome due to common variants and build 92 
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models for genetically predicting levels of plasma proteins. Using these models, we then conduct 93 

a proteome-wide association studies (PWAS) of serum urate 32, an important biomarker of purine 94 

metabolism with high heritability and large available large GWAS summary statistics, and the 95 

complex disease gout, which can result from high urate levels 32. We create several data 96 

resources for using our results to inform future studies (http://nilanjanchatterjeelab.org/pwas). 97 

 98 

Results 99 

Identification of cis-pQTLs Across European and African American Populations 100 

We performed separate cis-pQTL analyses for the African American (AA) and European American 101 

(EA) populations in the ARIC study, with total sample sizes of N=1,871 and N=7,213, respectively 102 

(see Methods). We performed analyses based on plasma samples collected during the third visit 103 

of the cohort 29 (see Supplementary Table 1 for sample characteristics). Relative concentrations 104 

of plasma proteins or protein complexes were measured by modified aptamers (‘SOMAmer 105 

reagents’, hereafter referred to as SOMAmers) 12, 13.  106 

 107 

We defined cis-regions to be +/- 500Kb of the transcription start site (TSS) in the cis-pQTL analysis. 108 

After quality control (see Methods), we analyzed 4,657 SOMAmers, which tagged proteins or 109 

protein complexes encoded by 4,435 genes, and 204 of them were tagged by more than one 110 

SOMAmer. In the cis-regions, we analyzed 10,961,088 common (MAF>1%) single-nucleotide 111 

polymorphisms (SNPs) for AA and 6,181,856 for EA with imputed or genotyped data after quality 112 

filtering (see Methods). For identification of cis-pQTLs, we performed regression analyses of 113 

protein levels after residualizing by a number of potential confounders, including sex, age, 10 114 

genetic principal components (PCs) and the study sites at v3. In addition, similar to eQTL analyses 115 
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8, we adjusted for Probabilistic Estimation of Expression Residuals (PEER) factors 33, 34 to account 116 

for hidden confounders that may influence clusters of proteins. We observed that the inclusion 117 

of PEER factors substantially improved power for cis-pQTL studies due to reduced residual 118 

variance (Fig. 1a, Supplementary Table 2). In all subsequent analyses, protein levels measured 119 

by SOMAmers were residualized with respect to these sets of PEER factors and then normalized 120 

by quantile-quantile transformation (see Methods).  121 

  122 

In the ARIC study, we identified a total of 2,004 and 1,618 significant SOMAmers, i.e. SOMAmer 123 

with a significant (at false discovery rate (FDR)<5%)9 cis-pQTLs near the putative protein’s gene, 124 

in the EA and AA populations, respectively, with 1,447 of these overlapping across the 125 

populations (Fig. 1b, Supplementary Tables 3.1 and 3.2). Compared to plasma pQTL studies 126 

conducted in the past in European ancestry sample16, 17, we almost tripled the number of 127 

significant SOMAmers with known cis-pQTLs 17, 18 (1,465 v.s. 508 using the same Bonferroni 128 

corrected genome-wide threshold for significance) (Supplementary Table 3.1) and we 129 

successfully replicated 99% (504/508) of previously identified cis-pQLTs (Supplementary Table 130 

4). 131 

 132 

We found 10% of the sentinel cis-pQTLs identified in EA were non-existent or rare, defined as 133 

two or less individuals carrying the variant, in the 1000Genome AA sample. In contrast, nearly 134 

one third of the variants identified in the AA population were non-existent or rare in the 135 

1000Genome EA population, signifying the value of diverse ancestry data to identify population-136 

specific cis-pQTLs (Supplementary Tables 3.1 and 3.2). cis-pQTLs which were identified through 137 

either of the two populations, but were common in (MAF>1%) in both, the effect-sizes showed 138 
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high degree of concordance across the populations with a correlation coefficient above 0.9 139 

(Supplementary Fig. 1). We further carried out a replication study using data available on 140 

additional 467 individuals from the African American Study of Kidney Disease and Hypertension 141 

(AASK) 35 , which also ascertained proteins using the SOMAScan platform (see Methods and 142 

Supplementary Table 1). Among 1,398 sentinel cis-SNPs which were identified through the ARIC 143 

AA sample and which were genotyped or imputed in AASK, we found 93% showed effects in the 144 

same direction and 69% showed statistical significance at FDR<5% in the replication analysis 145 

(Supplementary Tables 5.1 and 5.2).  146 

 147 

Genotypic effect sizes for cis-pQTLs were inversely associated with minor allele frequencies even 148 

after accounting for bias due to power for detection 36(Fig. 1c). The cis-pQTLs appeared to be 149 

more concentrated near the TSS of corresponding pGenes in the AA than the EA population, and 150 

the genotypic effect sizes for cis-pQTLs decreased with distance from the TSS in both populations 151 

(Fig. 1d). Using stepwise regression 37, 38, we identified multiple conditional independent cis-SNPs 152 

for 1,398 (70%) and 1,021 (63%) of the significant SOMAmers in EA and AA populations, 153 

respectively (Fig. 1e, Supplementary Tables 6.1 and 6.2).  154 

 155 

Protein altering variants (PAV) may result in apparent cis-pQTLs owing to altered epitope binding 156 

effects 16. Following a procedure recommend earlier 16, we found that in the EA population while 157 

up to 65% (1,299 out of 2,004) of the sentinel pQTLs could be affected by LD with known PAVs, 158 

in the AA population the corresponding proportion drops to 47% (765 out of 1,618) (see 159 

Supplementary Tables 3.1, 3.2 and 7). However, large overlap observed between eQTL and 160 

pQTLs in colocalization analysis (see below) indicates they are driven by underlying causal 161 
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variants and reduces concerns for any large-scale effect of epitope artifacts in the detection of 162 

pQTLs. 163 

 164 

Cis-eQTL Overlap and Functional Enrichment 165 

To evaluate the extent to which the cis-pQTL variants were also involved in modulating 166 

transcriptional levels, we cross referenced the cis-pQTLs with significant cis-eQTLs (at FDR<5%) 167 

from the Genotype-Tissue Expression project (GTEx V8) 9 across 49 different tissues (See 168 

Methods). Since the GTEx cohort is primarily of European ancestry (85.3% EA), we restricted the 169 

analysis to the top cis-pQTLs identified in the EA cohort only. We found that, approximately 73.9% 170 

of the sentinel cis-pQTLs or variants in high LD (r2 > 0.8) with them, were also significant cis-eQTLs 171 

for the same gene in at least one tissue (Supplementary Fig. 2a). Further, pairwise colocalization 172 

indicated that for 49.4% of the pGenes, cis-pQTLs colocalize with cis-eQTLs, in at least one of the 173 

GTEx tissues with high posterior probability (PP.H4 ≥ 80%) (Supplementary Fig. 2b, 174 

Supplementary Tables 8.1 and 8.2). Further, cis-pQTLs tended to be reported as significant cis-175 

eQTLs across multiple tissues possibly because plasma protein level might contain signatures 176 

from multiple tissues (Supplementary Fig. 3). 177 

 178 

Results from the association analysis of molecular phenotypes, like plasma proteins, integrated 179 

with the functional and regulatory annotation of the genome offer a powerful way to understand 180 

the molecular mechanisms and consequences of genetic regulatory effects. The functional 181 

annotations were curated from several sources like variant effect predictor (VEP) 39, Loss-Of-182 

Function Transcript Effect Estimator (LOFTEE) 40 and Ensembl Regulatory Build 41. We found that 183 

cis-pQTLs were enriched for several protein altering functions which may be caused by epitope 184 
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binding effects noted earlier (Supplementary Fig. 4a-b). After adjusting for protein altering 185 

variants (PAVs), we found that independent top cis-pQTLs were enriched in a large spectrum of 186 

functional annotations including untranslated regions (5’ and 3’), promoters and transcription 187 

factor binding sites, with a pattern that was consistent across the EA and AA populations (See 188 

Methods, Supplementary Fig. 4c-d and Supplementary Table 9).  189 

 190 

Fine Mapping 191 

To identify the causal variants underlying the significant cis-pQTLs for plasma proteins, we first 192 

conducted population-specific fine-mapping for the 1,447 significant SOMAmers that had at least 193 

one cis-pQTL both in EA and AA using SuSiE 42 (Supplementary Tables 10.1 and 10.2). Comparing 194 

the 95% credible sets, we found that the average number of variants in the credible sets were 195 

significantly smaller in AA compared to that in EA (21.29 in EA vs 12.11 in AA; p-value = 8.43×10-196 

27; Fig. 2 a-b). This is possibly driven in part by the lower average LD in AA, but also could be due 197 

to the lower sample sizes in AA compared to EA, resulting in lower statistical power. To 198 

demonstrate the added value of including two ethnic populations in identifying possibly shared 199 

causal variants, we further conducted a trans-ethnic meta-analysis using MANTRA 43, which 200 

accounts for effect heterogeneity among populations and constructed a 95% credible set of 201 

shared causal variants by ranking variants according to their Bayes factor (See Methods). 202 

 203 

As an example of the fine mapping analysis, we illustrate the fine-mapped cis-region (+/-500Kb) 204 

for the HBZ pGene on chromosome 16p13.3 corresponding to the Hemoglobin subunit zeta 205 

protein (HBAZ; Uniprot ID: P02008), which is involved in oxygen transport and metal-binding 206 

mechanisms 44, 45 and has been associated with thalassemia 46. Single variant pQTL association 207 
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results show that there are several significant cis-pQTL associations both in EA and AA 208 

populations (Fig. 2c and 2e). Fine-mapping within the EA individuals identifies a 95% credible set 209 

of seven variants (Fig. 2d) while that within the AA individuals identifies a smaller credible set of 210 

two variants only (Fig. 2f). Trans-ethnic meta-analysis using MANTRA further points to a single 211 

variant rs2541645 (16:161106 G>T) as the possible shared causal variant between EA and AA. 212 

This variant was in fact the most significantly associated cis-pQTL for HBZ pGene in AA but not in 213 

EA, and had some evidence of differences in minor allele frequency across the populations (MAF 214 

= 0.32 in EA vs 0.18 in AA). This SNP is a strong eQTL for HBZ expression in GTEx V8 whole blood 215 

(p-value = 6.7x10-80), and associated with several erythrocyte related outcomes in the UK Biobank 216 

including mean corpuscular hemoglobin (p-value=1.1x10-14) and reticulocyte fraction of red cells 217 

(p-value=3.2x10-9) 47, 48. Together, these findings suggest that rs2541645 might be a regulatory 218 

variant for HBZ protein levels and possibly warrant further study on downstream phenotypic 219 

consequences especially in the context of blood related mechanisms and thalassemia.  220 

 221 

Analysis of Cis-Heritability of Proteins and Building Protein Imputation Model 222 

We estimated cis-heritability (cis-h2) of plasma proteins, i.e. the proportion of variance of protein 223 

levels that could be explained by all SNPs in cis-regions of their encoded genes, using the GCTA 224 

software 49. We found 1,350 and 1,394 SOMAmers to have significant cis-h2 (p-value < 0.01) for 225 

the EA and AA populations, respectively, and 1,109 of them overlapped (Supplementary Table 226 

11). The majority of those significant cis-heritable SOMAmers also had cis-pQTLs identified in our 227 

study (96% for AA and 99% for EA, Supplementary Table 12). The cis-h2 for significant SOMAmers 228 

(median cis-h2 = 0.10 for AA, and 0.09 for EA) tended to be substantially smaller than those 229 

reported for gene-expression 50 in two related tissues 14 in liver and whole blood in GTEx V7 (Fig. 230 
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3a) and similar patterns were also observed when in GTEx V8 (Supplementary Fig. 5). The pattern 231 

is expected given the closer relationship of genetic variation to transcripts than to the encoded 232 

proteins, which are subject to additional processing including post-translational modifications.  233 

 234 

Next, we built protein imputation models for cis-heritable SOMAmers using an elastic net 235 

machine learning method with 5-fold cross-validation as has been used for modeling gene-236 

expression 27. The median accuracy for the elastic-net models for protein predictions, evaluated 237 

as the prediction R2 standardized by cis-heritability (R2/cis-h2), was 0.79 and 0.69 for the EA and 238 

AA populations, respectively. Compared with imputation models built only with the top cis-pQTL, 239 

the elastic net models gained, 36% and 40% of accuracy for the EA and AA populations, 240 

respectively (Fig. 3b, Supplementary Table 13). In cross-ethnic analysis, we found that models 241 

trained in the EA population performed worse in the AA population than the converse, in spite 242 

of a much smaller sample size in AA, again indicating the advantage of the latter population to 243 

identify causal pQTLs which are more likely to have robust effects across ethnic groups (Fig. 3c).  244 

 245 

Cis-regulated Genetic Correlation between Plasma Proteome and Transcriptome across a variety 246 

of tissues 247 

We then explored cis-regulated genetic correlation between plasma proteins and expression 248 

levels for the underlying genes across a variety of tissues. We used genotype data for Europeans 249 

from the Phase-3 1000 Genome Project (1000Genome) 51 to evaluate Pearson’s correlation 250 

coefficients between genotypically-imputed protein levels, and genotypically-imputed 251 

expression levels, with the latter being computed based on models that have been previously 252 

built and published by Gusev et al. 28 based on data from the GTEx (V7) consortium 253 
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(Supplementary Tables 13 and 14). We also used models based on GTEx (V8) developed by the 254 

same group (available through personal communication), but because of their preliminarily 255 

nature we present the all analyses involving imputed gene-expression using the V7 models and 256 

present preliminary results from the V8 models as supplementary data. The analysis was 257 

restricted to the European population due to the lack of gene-expression imputation models for 258 

AA population. Overall, genetically imputed plasma proteins are only moderately correlated with 259 

those for gene expression levels (Fig. 3d). Consistent with previous studies 52, we find that plasma 260 

proteins show strongest genetic correlations with genes expression levels in the liver, the organ 261 

responsible for the synthesis of many highly abundant plasma proteins. The lowest genetic 262 

correlations were seen for brain-related tissues, which may be due to the blood-brain barrier. In 263 

GTEx (V8), that included a larger number of overlapping genes with our SOMAmers, we observed 264 

a similar pattern for high-/low-rank tissues for expression-protein genetic correlations although 265 

the absolute levels of these correlations were bit lower (Supplementary Table 15.1). The 266 

correlations between direct plasma protein measurements and imputed gene expression levels 267 

in ARIC showed similar trend but have generally much lower values as they account for additional 268 

variability of protein measurements due to non-genetic factors (Supplementary Fig. 6).  269 

 270 

Proteome-wide Association Study (PWAS) of Complex Traits  271 

We illustrate an application of the protein imputation model by conducting proteome-wide 272 

association studies for two related complex traits: (1) serum urate, a highly heritable biomarker 273 

of health representing the end product of purine metabolism in humans, and (2) gout, a complex 274 

disease caused by urate crystal deposition in the setting of elevated urate levels and the resulting 275 

inflammatory response. We obtained GWAS summary-statistics data for these traits generated 276 
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by the CKDGen Consortium 32 involving a total sample size of N=288,649 and N=754,056, 277 

respectively. As this GWAS was conducted primarily in EA population, we carried out the PWAS 278 

analysis using the model generated for the EA population.  279 

 280 

We used a computational pipeline previously developed for conducting TWAS based on GWAS 281 

summary-statistics 28, 53 to carry out an analogous PWAS analysis. Simulation studies showed that 282 

type 1 error of PWAS analysis based on our protein imputation weights are well controlled 283 

(Supplementary Fig. 7). Among SOMEmers that showed significant cis-heritability, we identified 284 

10 and 4 distinct loci containing genes for which the encoded proteins or protein complexes were 285 

found to be significantly (p-value < 3.7x10-5) associated with serum urate and gout, respectively. 286 

We further examined whether the PWAS signals could be explained by cis-genetic regulation of 287 

the expression of nearby (1Mb region around) genes and vice versa by performing bivariate 288 

analysis conditioning on imputed expression values for nearby genes that are found to be 289 

significantly associated based on the TWAS analysis. Main results were based on GTEx V7 models 290 

(Fig. 4, Table 1, Supplementary Fig. 8), and further validated using GTEx V8 preliminary models 291 

(Supplementary Table 16). For the nearby TWAS analysis, we considered significance of genes 292 

based on two trait-relevant tissues available in GTEx V7, namely whole blood and liver, but also 293 

explored other tissues more broadly (see Methods).  294 

 295 

The conditional PWAS analysis of serum urate revealed several interesting patterns (Table 1a). 296 

First, there were PWAS signals that could be largely explained by nearby TWAS signals for the 297 

corresponding transcript in relevant tissues (e.g., INHBB in liver, and SNUPN in whole blood). This 298 

may be indicative of genetic loci influencing serum urate through altered gene expression and 299 
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corresponding protein levels 54. Second, there were also PWAS signals that could be largely 300 

explained by the TWAS signal of the corresponding transcript in other tissues (e.g. B3GAT3 in 301 

brain), but not in whole blood or liver. Such examples support the notion that the evaluation of 302 

diverse potential tissues of action may be important to characterize these genetic loci. However, 303 

the effects of TWAS of B3GAT3 in brain tissues are negative whereas the effect of its PWAS is 304 

positive. We found the opposite direction is consistent with their negative genetic correlation 305 

between plasma protein and gene-expression in those tissues. Future investigation for the 306 

complicated directions of effects is worthwhile.  Third, for the locus around INHBC, the plasma 307 

PWAS signal for INHBC explains the most significant nearby TWAS signal R3HDM2 in thyroid 308 

(conditional p-value of TWAS signal = 4.12x10-1) but not vice versa (conditional p-value of PWAS 309 

signal = 6.84x10-34). We also found the top TWAS gene-tissue signals detected using the V7 310 

models show similar level of significance, direction and magnitude of association when the 311 

analyses were repeated using the V8 models and the corresponding conditional PWAS-TWAS 312 

conditional analysis show qualitatively similar results (Supplementary Table 16). For the 313 

significant PWAS signals, we further examined evidence of colocalization of with gene 314 

expressions across tissues (Supplementary Tables 17.1 and 17.2) and observed that whenever 315 

there was strong genetic correlation between plasma protein and gene expression there was also 316 

strong evidence of colocalization (e.g. INHBB in liver, and B3GAT3 in brain), which gives the most 317 

confidence in those findings. 318 

 319 

Finally, the PWAS of gout revealed a finding illustrating the potential to detect potential drug 320 

targets for treating gout based on the significant association with the Interleukin 1 Receptor 321 

Antagonist protein (IL1RN, p-value = 2.22x10-5) (Table 1b). IL1RN binds to its target, the cell 322 
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surface interleukin-1 receptor (IL1R1), thereby inhibiting the pro-inflammatory effect of 323 

interleukin-1 signaling. Anakinra, an anti-inflammatory drug approved to treat rheumatoid 324 

arthritis, is a recombinant, slightly modified version of the IL1RN protein examined in our study 325 

that binds to IL1R1, blocking its actions (Supplementary Fig. 9). The observed association 326 

between higher levels of IL1RN protein and lower odds of gout are consistent with the beneficial 327 

effect of its synthetic analogue anakinra on other inflammatory diseases and suggest a 328 

repurposing opportunity for anakinra to treat acute gout flares. In fact, such evaluations are 329 

ongoing, with a recent randomized, double-blind, placebo-controlled trial of acute gout flares 330 

showing anakinra to be non-inferior to usual treatment 55. While drug delivery to plasma proteins 331 

and their cell surface receptors is easier than to other molecules such as intra-nuclear proteins, 332 

druggabilty of any implicated protein in our study depends on various factors such as protein 333 

structure and biological functions, and needs to be evaluated on a case-by-case basis. A 334 

systematic connection of all cis-heritable proteins to active drug candidates is provided as an 335 

additional resource (Supplementary Table 18).  336 

 337 

 338 

Discussion 339 

We present a comprehensive analysis of cis-genetic regulation of the plasma proteome based on 340 

a large discovery study that include both EA and AA individuals and an additional replication study 341 

based on AA individuals. Our study almost tripled the number of genes with identified cis-pQTL 342 

compared to previous reports 16, 17 and led to, for the first time, understanding of unique genetic 343 

architecture of plasma proteome in the AA population. We developed models for plasma protein 344 

imputation separately for EA and AA populations and make them publicly available to facilitate 345 
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future proteome wide association studies. Using large-scale GWAS summary-statistics from two 346 

complex traits, we illustrate how PWAS can complement TWAS for the identification of causal 347 

genes, protein products and inform potential drug targets. We have created a web resource for 348 

downloading summary-statistics data and PWAS models with searchable options for 349 

exploring/viewing various results from our analyses (http://nilanjanchatterjeelab.org/pwas).  350 

 351 

Our analysis provides several important insights into the cis-genetic architecture of plasma 352 

proteome. We observe that cis-heritability of protein levels tends to be smaller compared to 353 

those of gene expression levels in related tissues (Fig. 3a), a pattern consistent with the central 354 

dogma of DNA regulating the proteome through the transcriptome and the widespread presence 355 

of post-translational modification. Further, while cis-heritability of plasma proteome is fairly 356 

comparable across EA and AA populations, we observe important heterogeneity. We found 357 

nearly 30% of the sentinel pQTLs detected in the AA population were non-existent or extremely 358 

rare in the EA population, but the converse proportion was much more modest (~10%). We 359 

further observe that the predictive performance of protein imputation model for the AA 360 

population, in spite of its much smaller sample size, is comparable to that for the EA population 361 

(Fig. 3b), and cross-population performance of such model is better from AA to EA population 362 

than the converse (Fig. 3c). Further, fine-mapping analysis using SuSiE indicated that the size of 363 

“credible set” for many genes is substantially smaller in the AA than the EA population. Taken all 364 

together, our analysis demonstrates that similar to what has been reported earlier for more 365 

complex traits 56, there are distinct advantages of including ethnically diverse samples in genetic 366 

studies of molecular phenotypes. 367 

 368 
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While we increased the number of known cis-pQTLs by large margin, some of the patterns of 369 

associations we see have been noted earlier. For example, similar to ours, a prior study 16 has 370 

reported large overlap between eQTL and pQTLs. Further, the distributions of cis-pQTLs we 371 

observe in relationship to distance from gene transcription site and across various functional 372 

annotations have also been noted earlier. A study 25 has previously shown that pQTLs identified 373 

in the EA population largely replicates in non-EA Arabic and Asian population. Similarly, we found 374 

high degree of correlations in effect sizes for cis-pQTLs which are common across both EA and 375 

AA populations. However, we also showed that discovery analysis in the AA population itself 376 

leads to the identification of many unique cis-pQTLs and further fine-mapping analysis in this 377 

population leads to better resolution for the identification of causal variants. 378 

      379 

We demonstrate applications of protein imputation models for conducting proteome-wide 380 

association studies (PWAS) for two related complex traits, resulting in the exemplary 381 

identification of the IL1RN protein which indicates potential promise for drug repurposing of 382 

anakinra to treat acute gout flares. Through multivariate analysis, we further explored 383 

relationship between plasma PWAS signals and those detected at the transcriptome level 384 

through complementary TWAS approach across various tissues. We found that while TWAS 385 

signals often exist in the same region, the underlying genes for which the strongest signals are 386 

seen can differ or/and the underlying tissue may not be closely related to plasma. As plasma 387 

proteins are easier target for drug delivery, we created an additional resource connecting all 388 

cis-heritable proteins to active drug candidates (Supplementary Table 18). In general, we 389 

believe the most promising target genes could be where there exists both PWAS and TWAS 390 

signals with underlying evidence of genetic correlation and colocalization.  391 
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 392 

Our study has several limitations. First, while the platform we used included SOMAmers for close 393 

to 5,000 proteins or protein complexes, it does not provide coverage for the entire plasma 394 

proteome. In the future, more comprehensive protein measurements across different tissues will 395 

be needed to further pinpoint target genes and tissues of actions. Second, the power of our PWAS 396 

analysis conditional on TWAS signals may be affected by small sample size of underlying eQTL 397 

datasets. Third, in this study, we have not carried out a joint analysis of the data across the two 398 

population and thus may have incurred some loss of power for the identification of shared pQTLs. 399 

Fourth, we have not explored effects of uncommon and rare variants, as well as complex trans-400 

associations, all of which could have significant impact in explaining heritability, but substantial 401 

discovery is likely to need even larger sample size.  402 

 403 

In conclusion, our study provides comprehensive and cross-population insight into cis-genetic 404 

architecture of plasma proteome. We generate several resources for utilizing our results for the 405 

mapping of causal protein-regulating variants, investigating the causal role of plasma proteins on 406 

complex traits and their drug repurposing potential. Future studies are merited to obtain more 407 

comprehensive coverage of proteome across different tissues and to comprehensively explore 408 

the role of rare variants and trans-effects on the variation of the proteome.  409 
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Genome-wide summary statistics for all single-SNP cis-pQTL analysis, irrespective of significance 454 

level, are made available at http://nilanjanchatterjeelab.org/pwas. Additional data and codes 455 

required to perform PWAS are also made available from the website.   456 

Plasma protein data availability: Pre-existing data access policies for each of the parent cohort 457 

studies (ARIC and AASK) specify that research data requests can be submitted to each steering 458 

committee; these will be promptly reviewed for confidentiality or intellectual property 459 

restrictions and will not unreasonably be refused. Please refer to the data sharing policies of 460 

these studies. Individual level patient or protein data may further be restricted by consent, 461 

confidentiality or privacy laws/considerations. These policies apply to both clinical and 462 

proteomic data. 463 

 464 

Code availability  465 

Example codes to perform PWAS are available at http://nilanjanchatterjeelab.org/pwas. All 466 

final codes in this study for data analysis of the protein data, including pQTL and PWAS analysis, 467 

will be posted through GitHub upon manuscript publication at 468 

https://github.com/nchatterjeelab/PlasmaProtein.   469 
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Methods 470 

 471 

Study population. Our study was conducted using individual-level data from the Atherosclerosis 472 

Risk in Communities (ARIC) study 29. The ARIC study is an ongoing community-based cohort study 473 

of individuals that initially enrolled 15,792 participants 1987 and 1989 from four communities 474 

across the US: Washington County, Maryland; suburbs of Minneapolis, Minnesota; Forsyth 475 

County, North Carolina; and Jackson, Mississippi. The third visit (v3) occurred in 1993-1995, when 476 

blood samples used for the measurement of the proteome were collected. A total of 9,084 477 

participants with cleaned plasma protein data (1,871 African Americans (AA), 7,213 European 478 

Americans (EA)) after the exclusions of participants without genotype data (see below) were 479 

retained in the current study. 480 

 481 

Plasma protein data and genetic data. The relative concentrations of plasma proteins or protein 482 

complexes from the blood samples were measured by SomaLogic Inc. (Boulder, Colorado, US) 483 

using an aptamer (SOMAmer)-based approach 12, 13. Details for this approach and the SomaLogic 484 

normalization pipeline can be found in a technical white paper on the manufacturer’s website, 485 

http://somalogic.com/wp-content/uploads/2017/06/SSM-002-Technical-White-486 

Paper_010916_LSM1.pdf, and https://somalogic.com/wp-content/uploads/2017/06/SSM-071-487 

Rev-0-Technical-Note-SOMAscan-Data-Standardization.pdf. Of the 4,877 SOMAmers measuring 488 

4,697 unique proteins or protein complexes, we excluded 43 SOMAmers that mapped to multiple 489 

gene targets, 9 SOMAmers whose target proteins’ encoding genes do not have position record in 490 

the biomaRt database 57, and 8 SOMAmers without any SNPs in cis region. By restricting analysis 491 

to plasma proteins or protein complexes encoded by autosomal genes, we further excluded 158 492 
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genes on the X chromosome, and 2 genes on the Y chromosome. In total, 4,657 SOMAmers 493 

measuring 4,483 unique proteins or protein complexes encoded by 4,435 autosomal genes 494 

passed quality control, and were retained in the current study. 495 

Genotyping of ARIC samples was performed on the Affymetrix 6.0 DNA microarray and 496 

imputed to the TOPMed reference panel (Freeze 5b) 58, 59. The SNPs with imputation quality R2 < 497 

0.8, call rates <90%, Hardy-Weinberg equilibrium p-values < 10-6, or minor allele frequencies <1% 498 

were excluded. Genetic principal components show that the two self-reported ethnic subgroups, 499 

European Americans (EA) and African Americans (AA) are well distinguished in terms of genetic 500 

ancestry (Supplementary Fig. 10) 60.  501 

 502 

Plasma protein data processing. Additional variation in high-throughput gene expression data 503 

which is not due to genetic variants has been found to impact the power of eQTL discoveries 8, 9. 504 

The fluctuations of internal environment, experimental deviations, and batch effects can all have 505 

large influence on high throughput measurements 33. To study whether this type of variance 506 

exists in our high-throughput plasma protein data measured by the SOMAmers, we performed 507 

analysis of variance (ANOVA) test for non-genetic factors to the first 10 principal components 508 

(PCs) of log-transformed relative abundance of SOMAmers. Non-genetic factors include common 509 

covariates (age, sex, and study sites at v3), as well as batch effects (plate run date, scanner ID, 510 

plate position, and subarray). (Supplementary Table 19).  511 

    To account for those non-genetic variances, which may obscure genetic association signals, we 512 

used the Probabilistic Estimation of Expression Residuals (PEER) method to estimate a set of 513 

latent covariates, and put them linearly in the model 34. The number of PEER factors for each 514 
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ancestry was selected to maximize the number of significant SOMAmers, i.e. SOMAmers with a 515 

significant cis-pQTL near the putative protein’s gene. 516 

The log-transformed relative abundance of SOMAmers were adjusted in a linear regression 517 

model including PEER factors and the covariates sex, age, study site, and 10 genetic principal 518 

components (PCs). The residuals from this linear regression were then rank-inverse normalized 519 

to avoid the influence of extreme values, and were used as the corrected-protein quantification 520 

in the analysis. By analyzing up to 200 PEER factors in increments of 10, the maximum of number 521 

of significant SOMAmers were achieved at 90 and 80 PEER factors for EA and AA respectively (Fig. 522 

1a). Thus, the corrected-protein quantifications adjusted for 90 and 80 PEER factors were used 523 

as phenotypes in the analysis of the EA and AA populations, respectively. 524 

 525 

Significant SOMAmers discovery. Significant SOMAmer is defined as SOMAmer with a significant 526 

cis-pQTL near the putative protein’s gene. For all primary analyses, we defined the mapping 527 

window as 500-kb upstream and downstream of the target protein-coding genes’ transcription 528 

start site (TSS). In a secondary analysis, we found that cis-heritability of SNPs within +/- 500Kb 529 

and +/- 1Mb of the TSS to be quite similar, indicating that vast majority of cis-pQTLs for the larger 530 

region to be concentrated within +/- 500Kb window (Supplementary Table 20). Gene position of 531 

GRCh38 reference genome was obtained from Ensembl BioMart database 57. Common linear 532 

regression procedures for association tests using the Bonferroni correction to p-values usually 533 

proves to be overly stringent and results in many false negatives 38. To overcome this issue, 534 

adaptive permutation approach implemented in QTLtools were applied 37. We used one hundred 535 

permutations to empirically characterize the null distribution of the strongest signal which is 536 

fitted by a Beta distribution. The p-values of association adjusted for the number of variants 537 
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tested in cis given by the fitted beta distribution were used to calculate gene-level q-values. By 538 

controlling the false discovery rate (FDR) threshold < 5%, significant SOMAmers were identified.  539 

 540 

Comparison with previous identified cis-pQTL. A list of existing pQTL studies were summarized 541 

by Karsten Suhre (http://www.metabolomix.com/a-table-of-all-published-gwas-with-542 

proteomics/) 25. We focus on two recent European-ancestry pQTL studies with large sample size 543 

and proteins assayed by SOMAscan. The first was performed in the INTERVAL study with UK blood 544 

donors 16. The other was performed in the AGES-RS cohort 17. To make fair comparison, we 545 

compared identified cis-pQTLs across the two analyses using the same standard -- sentinel cis-546 

associations (+/-500Kb) for common SNPs (MAF>0.01) and Bonferroni corrected genome-wide 547 

threshold for significance. Using these criteria, the two previous studies identified a total of 508 548 

unique significant SOMAmers (304 and 422 respectively) and we identified 1,465 significant 549 

SOMAmers. We then tested replication of their sentinel SNPs in our ARIC EA sample (Bonferroni 550 

corrected p-value < 0.05/726 = 6.89x10-5, where 726 = 218x2 + 204 + 86. There were 218 551 

SOMAmers discovered in both studies, 204 discovered only in AGES-RS and 86 discovered only in 552 

INTERVAL). If a significant SOMAmer’s sentinel SNPs was not available in ARIC, we used their LD 553 

proxies and the r2 was calculated from the 1000Genome European individuals.  554 

 555 

Replication of cis-pQTL identified in AA. We replicated cis-pQTLs discovered in the ARIC AA in 556 

the African American Study of Kidney Disease and Hypertension (AASK), a clinical trial of alternate 557 

blood pressure lowering regimen and goals 35. Enrollment occurred from 1995 to 1998, with the 558 

original trial population consisting of 1094 African American participants with chronic kidney 559 

disease. Blood samples used for the measurement of the proteome were collected at baseline. 560 
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A total of 467 participants with serum protein data and genotype data were retained in the 561 

current study. Proteomic profiling was performed using the SomaScan technology using the V4.1 562 

platform. Genotyping was conducted using the Infinium Muti-Ethnic Global BeadChip array 563 

(Illumina, GenomeStudio) and imputed to the TOPMed reference panel (Freeze 5 on GRCh38).  564 

 565 

Independent cis-pQTL mapping. It is likely that the significant SOMAmers have multiple proximal 566 

cis-SNPs which have independent effects. To identify independent signals for them, we 567 

performed independent cis-pQTL mapping using the conditional pass implemented in QTLtools 568 

37.The algorithm first uses permutations to derive a nominal p-value per SOMAmer, then it uses 569 

a forward-backward stepwise regression to select the conditional independent signals. In this 570 

process, it automatically learns the number of independent signals per SOMAmer using forward 571 

selection, and then determines the best candidate SNP per signal using backward selection 572 

controlling for the remaining signals. If no SNP is significant at the previous nominal p-value 573 

threshold, the candidate signal will be dropped; otherwise, the SNP with smallest backward-p-574 

value will be chosen as the lead SNP for this candidate signal. In some cases, the same SNP during 575 

the backward selection can explain multiple independent signals that were detected during the 576 

forward selection. In the reporting our results (Supplementary Table 6.1 and 6.2), we show the 577 

rank of all the SNPs selected by the forward selection step that is explained by a given lead SNP 578 

selected during the final backward selection step.  579 

    To account for power for detection in Fig. 1c, we adjusted the SNP effect sizes by assigning a 580 

weight of the inverse of statistical power. The statistical power can be derived as following. 581 

The SNP effect is chi-square distributed with one degree of freedom (df). It is a central chi-582 

square distribution under the null, and a non-central chi-square distribution under the alternative 583 
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hypothesis. The non-centrality parameter (NCP), 𝜆, is 
𝑁(1−2𝑓(1−𝑓)𝛽2)

2𝑓(1−𝑓)𝛽2 , where 𝑁 is the number of 584 

samples in study, 𝑓 is the MAF of the SNP, and 𝛽 is the SNP effect 61, 62. The significance threshold 585 

for the test statistic under the central chi-square distribution of df 1 and the SOMAmer’s nominal 586 

p-value cut-off, 𝑝0, is 𝑡0 = 𝐹−1(1 − 𝑝0, 1), where 𝐹(⋅, 1) is the cumulative distribution function 587 

(CDF) of a central chi-square distribution of df 1. The statistical power can be computed by 588 

𝑃𝑟(𝑇 > 𝑡0 | 𝐻𝑎) = 1 − 𝐺(𝑡0, 𝜆, 1), where 𝑇 is the test statistics and 𝐺(⋅, 𝜆, 1) is the CDF of the 589 

non-central chi-square distribution with NCP of 𝜆 and df 1. The weight assigned to SNP effect is 590 

(1 − 𝐺(𝑡0, 𝜆, 1))
−1

.   591 

 592 

Investigation of epitope-binding effects. SOMAscan assay relies on aptamer binding which may 593 

be influenced by the change of protein structure. Protein altering variants (PAV) may result in 594 

cis-pQTLs by altering binding affinity, instead of protein abundance. Following a procedure 595 

recommend earlier 16, we cataloged all cis-pQTLs that were not in LD (r2<0.1) with any PAV in 596 

the cis region or those in LD (0.1≤r2≤0.9) but remain significant in a conditional analysis after 597 

adjusting for PAVs. We annotated variants with variant effect predictor (VEP) 39, Loss-Of-598 

Function Transcript Effect Estimator (LOFTEE) 40 and Ensembl Regulatory Build 41. Variants were 599 

considered to be PAV if annotated as coding sequence, frameshift, in-frame deletion, in-frame 600 

insertion, missense, splice acceptor, splice donor, splice region, start lost, stop gained, or stop 601 

lost variants. LD-pruned (r2>0.9) PAVs were included as covariates for association testing. 602 

 603 

Cis-eQTL overlap. We cross referenced the identified cis-pQTLs against cis-eQTLs identified in the 604 

overall analysis of GTEx (V8) data across different tissues. For each SOMAmer, we first extracted 605 

the sentinel cis-pQTLs, meaning the variants having most significant association for a pGene along 606 
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with all the variants in high LD (r2 > 0.8). Using this list of variants across 2,004 SOMAmers which 607 

had at least one cis-pQTL in EA, we calculated the percentage overlap with the set of significant 608 

cis-eQTLs (at FDR<5%, as defined by GTEx consortium) for the same gene identified in each tissue 609 

of GTEx V8 9. Since the GTEx cohort is primarily of European ancestry, we restricted this analysis 610 

to EA only.  611 

 612 

Colocalization. Colocalization analysis was performed to investigate whether the same variants 613 

were likely to be causal for variation in protein levels and gene expression levels. We used 614 

publicly available overall cis-eQTL summary statistics from GTEx consortium (V8). For testing 615 

whether cis-eQTL and cis-pQTL associations for the same gene colocalize, we used coloc package 616 

in R with the default setting 63. Evidence for colocalization was assessed using the posterior 617 

probability (PP) for the hypothesis that there is an association for both protein levels and gene 618 

expression levels, and they are driven by the same causal variant (PP.H4). Since we tested across 619 

a large number of tissues, we chose a stringent cut-off of 0.8 and pGenes with PP.H4 > 0.8 were 620 

identified as likely to have a shared causal variant for the cis-eQTL and cis-pQTL associations. As 621 

before, we restricted our analysis to the 2,004 pGenes identified in EA. 622 

 623 

Function annotations enrichment. We performed an enrichment analysis of the cis-pQTLs for 624 

known regulatory elements in the genome to identify the broad functions of the cis-pQTLs. The 625 

functional annotations were curated from variant effect predictor (VEP) 39, Loss-Of-Function 626 

Transcript Effect Estimator (LOFTEE) 40 and Ensembl Regulatory Build as was reported in the 627 

recent GTEx analysis. For each SOMAmer, we used sentinel cis-pQTLs, meaning the variants 628 

having the most significant association and variants in high LD (r2 > 0.8) for evaluating functional 629 
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enrichment. With these annotations, we used torus 64 to perform functional enrichment for each 630 

functional category. To remove effect of potential epitope binding effects associated with the 631 

PAVs, we also investigated functional enrichment among sentinel cis-pQTLs (and variants in high 632 

LD) that showed significant effects independent of the PAVs (See previous section for details). 633 

 634 

Fine-mapping analysis. To identify the set of possibly causal variants regulating plasma protein 635 

levels we performed fine-mapping 65 using the cis-variants for each of the 1,447 SOMAmers that 636 

had at least one cis-pQTL in both EA and AA using SuSiE 42. For a given SOMAmer and 637 

corresponding variants in the cis-regulatory region, SuSiE outputs a number of single effect 638 

components or credible sets that have 95% probability to contain a variant with non-zero causal 639 

effect. We set the maximum number of such singlet effect components to be 10, meaning broadly 640 

we allow for the possibility that a SOMAmer can be regulated by 10 causal variants at best. 641 

Further, SuSiE also outputs the posterior inclusion probability for each variant. This corresponds 642 

to the probability of the variant to be included in one of the credible sets. 643 

    To perform trans-ethnic meta-analysis, we used MANTRA 43 which is based on a 644 

computationally intensive Bayesian partition accounting for the shared similarity in closely 645 

related populations assuming the same underlying allelic effect. It models the effect 646 

heterogeneity among distant populations by clustering according to the shared ancestry and 647 

allelic effects. MANTRA outputs the Bayes factor for association of a variant across ancestries. 648 

Using this, we constructed the posterior probability 66 of the kth variant (𝜋𝑘) as: 649 

𝜋𝑘  =  
𝛿𝑘

∑ 𝛿𝑘
 650 

where 𝛿𝑘 is the Bayes factor for association of the kth variant obtained using trans-ethnic meta-651 

analysis in MANTRA and the sum in the denominator is across all the variants in the cis-region. 652 
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We performed MANTRA using the variants common to EA and AA and subsequently calculated 653 

the posterior probabilities. 654 

 655 

Cis-SNP heritability estimation. Cis-SNP heritability (cis-h2) of SOMAmers were estimated using 656 

the REML algorithm implemented in GCTA 49. Genotypes of SNPs in a cis-window around the 657 

encoding gene of the corresponding target protein of a SOMAmer were used to estimate genetic 658 

relatedness matrix (GRM). Corrected-protein quantifications and the estimated GRM were input 659 

to the GCTA to estimate cis-h2 using the REML algorithm (option --reml --reml-no-constrain). A 660 

maximum number of 100 iterations was set to determine the convergence of the estimation 661 

algorithm. The nonzero cis-heritability was tested using a likelihood-ratio test for the first genetic 662 

variance component (option --reml-lrt 1) with significance level of 0.01. Plasma protein 663 

SOMAmers with negative estimate cis-h2 estimates were excluded. Cis window size of +/- 500Kb 664 

and 1Mb were examined, and there were no significant differences between the heritability 665 

estimations (Supplementary Table 20). Therefore, throughout the paper, we defined +/- 500Kb 666 

window size which is same as those used for TWAS models we used. 667 

 668 

Imputation models trained jointly with cis-SNPs. Using the TWAS / FUSION software 28, we built 669 

imputation models for 1,394 (AA) and 1,350 (EA) SOMAmers with significant non-zero cis-h2. 670 

Imputation model for a SOMAmer was trained jointly by elastic net using cis-SNPs in +/-500Kb 671 

around the TSS of the encoding gene of the target protein. The performance of models was 672 

evaluated by adjusted prediction accuracy which was defined as the 5-fold cross-validated R2 673 

between predicted and true values standardized by cis-h2. The imputation models built only with 674 

the top cis-pQTL was used as a baseline comparison. 675 
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 676 

Trans-ethnic prediction capacity. To study the trans-ethnic prediction performance, we applied 677 

the genetic imputation models to the genotypes of individuals from their opposite races in ARIC. 678 

The cross-ethnic prediction performance is evaluated by the R2 between predicted and true 679 

values standardized by cis-h2.  680 

 681 

Cis-regulated genetic correlation between plasma proteome and transcriptome across a variety 682 

of tissues. To study the cis-regulated genetic correlation between plasma protein and expression 683 

levels for underlying genes across a variety of tissues, we computed the Pearson’s correlation 684 

coefficients between genotypically-imputed plasma proteins and genotypically-imputed gene 685 

expressions for the same gene for individuals from Phase-3 1000 Genome Project (1000Genome) 686 

51 by applying weights of their imputation models to the genotype data. For primary analyses, we 687 

used established gene expression imputation models available based on GTex V7 dataset across 688 

different tissues (http://gusevlab.org/projects/fusion/#reference-functional-data (see 689 

Supplementary Table 13 for the full list, Supplementary Table 14 for their prediction accuracies). 690 

Here we only studied for genes significant cis-heritable (p-value of cis-h2 from GCTA < 0.01) for 691 

both gene expression levels and plasma protein levels (Supplementary Tables 15.1 and 15.2). 692 

Since the gene expression imputation models were derived using participants predominantly 693 

from European ancestry from GTEx V7, the plasma protein imputation models here were 694 

restricted to EA-derived only. If multiple transcripts or SOMAmers were measured for the same 695 

gene, the sum of their imputed levels was used to represent "the total level of the gene" in terms 696 

of gene expression or plasma protein level. We also obtained preliminary gene-expression 697 

imputation models trained based on GTEx V8 dataset (obtained based personal communication 698 
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with Gusev lab) and used them to conduct several secondary/validation analyses for comparison 699 

of results with V7.  700 

 701 

Proteome-wide association studies (PWAS). As an analog of TWAS, weights in the imputation 702 

models of SOMAmers can be applied to summary level data using the test statistics derived in 703 

TWAS / FUSION. The mathematical derivation can be found in the original paper 28. The type 1 704 

error of PWAS is well-controlled in simulation using null phenotypes simulated from UK Biobank 705 

using 337,484 unrelated European ancestry individuals 67. Note that the enet model coefficients 706 

for 9 proteins in AA and 2 proteins in EA were all zero. These proteins were excluded in PWAS 707 

analysis, and therefore, 1,385 (AA) and 1,348 (EA) imputation models were available in PWAS. 708 

The significance level for PWAS loci identification is adjusted by of the total number of imputation 709 

models for significant cis-heritable plasma proteins or protein complexes (p-value < 710 

0.05/1,348=3.7x10-5 in EA which was used in our PWAS of serum urate and gout). As discussed in 711 

a recent TWAS paper 50, multiple SOMAmers, whose encoding genes of their target proteins or 712 

protein complexes locate closely in a locus, were sometimes identified at the same time. To 713 

identify distinct loci, a 1Mb region (+/- 500Kb of TSS) was defined around each encoding gene of 714 

the target protein of significant SOMAmers, and overlapping regions were merged. The sentinel 715 

association in each locus was selected to be the top PWAS candidate hit for this region 716 

(Supplementary Tables 21.1 and 21.2).  717 

We obtained standardized estimate for the causal effect (𝛾̂𝑃) and standard error (𝑠𝑒(𝛾̂𝑃)), and 718 

thereby confidence intervals, of the underlying proteins on the complex traits (𝑌) by slightly 719 

extending S-PrediXcan 68. We derived these as 720 

𝛾̂𝑃 =
𝐶𝑜𝑣(𝑃̂, 𝑌)

𝑉𝑎𝑟(𝑃̂)
=

𝐶𝑜𝑣(∑ 𝑤𝑃𝑙𝑋𝑙
𝑀
𝑙=1 , 𝑌)

𝜎̂𝑃
2 =

∑ 𝑤𝑃𝑙𝐶𝑜𝑣(𝑋𝑙 , 𝑌)𝑀
𝑙=1

𝑉𝑎𝑟(∑ 𝑤𝑃𝑙𝑙 𝑋𝑙)
=

∑ 𝑤𝑃𝑙𝛽𝑙̂𝜎𝑙
2𝑀

𝑙=1

𝑾𝑷
𝑻 𝜞𝑾𝑷

 721 
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𝑠𝑒(𝛾̂𝑃)2 =
𝜎̂𝑌

2

𝑁

1 − 𝑅𝑃
2

𝜎̂𝑃
2 ≈

1

𝑀
∑ (

𝑠𝑒(𝛽𝑙̂)
2

𝜎𝑙
2

1 − 𝑅𝑙
2 )

𝑀

𝑙=1

1 − 𝑅𝑃
2

𝜎̂𝑃
2 ≈

∑ 𝑠𝑒(𝛽𝑙̂)
2

𝜎𝑙
2𝑀

𝑙=1

𝑀

1

𝑾𝑷
𝑻𝜞𝑾𝑷

 722 

where 𝛽𝑙̂  is SNP 𝑙 ’s summary statistics for the complex trait, 𝑤𝑃𝑙  is SNP 𝑙 ’s weight in the 723 

imputation model for protein 𝑃, 𝜎𝑙
2 is the variance of SNP 𝑙 which can be computed from allele 724 

frequency, and 𝜞 is the LD (correlation) matrix for all 𝑀 SNPs in the imputation model. We used 725 

the same formulae to derive corresponding causal effects, standard errors and confidence 726 

intervals for results from TWAS analyses. 727 

 728 

Druggability of PWAS genes. PWAS genes were annotated based on the therapeutic target 729 

database 69. Only drugs that were actively pursued were retained in the database and 730 

discontinued, terminated or withdrawn drugs were excluded. Additionally, druggability tiers from 731 

Finan et al. 70 were mapped via gene symbols (Supplementary Table 18). 732 

 733 

Bivariate conditional analysis for PWAS and TWAS. For each significant PWAS loci, we searched 734 

all TWAS genes nearby (+/-500Kb around) whose TSS locate within 500Kb of the TSS of its sentinel 735 

PWAS gene, and selected the one with the smallest TWAS p-value. The position of genes in TWAS 736 

(based on GTEx V7 based on genome build GRCh37) and PWAS (based on genome build GRCh38) 737 

were matched using the UCSC genome browser webtool (https://genome.ucsc.edu/cgi-738 

bin/hgLiftOver) 71. 739 

    We first performed the nearby TWAS in two trait-relevant tissues, whole blood and liver, for 740 

serum urate and gout. Note that kidney is also a trait-relevant tissue, but there is no imputation 741 

model trained with GTEx V7 data available on TWAS / FUSION for kidney. The significance of the 742 
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nearby TWAS hit was determined by significance level after Bonferroni Correction ( 0.05/743 

∑ #transcripts with imputation models𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑡𝑖𝑠𝑠𝑢𝑒𝑠 ).  744 

Using z-scores ( 𝑧𝑃  for PWAS gene and 𝑧𝑇  for TWAS gene) and the cis-regulated genetic 745 

correlation (𝜌) of each PWAS gene and the most significant TWAS gene nearby, we performed 746 

conditional analysis 72 to study the potential underlying mechanism of gene expressions in tissue 747 

or proteins in plasma. The cis-regulated genetic correlation was computed from the Pearson’s 748 

correlation coefficients between genotypically-imputed plasma proteins and genotypically-749 

imputed gene expressions for individuals from 1000Genome by applying weights of their 750 

imputation models to the genotype data. The least-squares estimate of the PWAS z-score 751 

conditional on TWAS z-score is  752 

𝑧𝑃|𝑧𝑇 = 𝑧𝑃 − 𝜌𝑧𝑇 754 

and its variance is 753 

var(𝑧𝑃|𝑧𝑇) = var(𝑧𝑃) − var(𝜌𝑧𝑇) = 1 − 𝜌2 755 

So the conditional z-score of the PWAS gene is  756 

𝑧𝑃|𝑇 =
𝑧𝑃 − 𝜌𝑧𝑇

√1 − 𝜌2
 758 

Similarly, the conditional z-score of the nearby TWAS gene is  757 

𝑧𝑇|𝑃 =
𝑧𝑇 − 𝜌𝑧𝑃

√1 − 𝜌2
 759 

We then performed the same procedure for all nearby TWAS genes in all GTEx V7 tissues. Using 760 

Bonferroni Correction for the total number of transcripts with imputation models ( 0.05/761 

∑ #transcripts with imputation models𝑎𝑙𝑙 𝐺𝑇𝑒𝑥 𝑡𝑖𝑠𝑠𝑢𝑒𝑠 ), we identified the tissues which have at 762 

least one significant TWAS gene in the PWAS significant loci. The most significant TWAS gene in 763 

this region and its corresponding tissue were recorded, and then used to perform conditional 764 
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analysis (Supplementary Tables 22.1 and 22.2). We further validated the top gene-tissue 765 

combination identified through TWAS models in V7 using preliminary models that were available 766 

to us based on V8.  767 
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Fig. 1: Cis-pQTL analysis 928 

 929 

(a) Number of SOMAmers detected to have significant cis-pQTLs versus number of PEER factors 930 

used in models. Diamonds mark the numbers of PEER factors used in the following analysis which 931 

identify maximal number of significant SOMAmers. (b) Venn diagram of significant SOMAmers in 932 

EA and AA. (c) Effect sizes of sentinel cis-SNPs of pQTLs vs. minor allele frequencies (MAF(1-933 

MAF)). Lines are fitted with (red) and without inverse-power weighting  (black). (d) Effect sizes of 934 

sentinel cis- SNPs of pQTLs v.s. distance to TSS. (e) Number of conditional independent cis-pQTLs 935 

per significant SOMAmer.   936 
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Fig. 2: Fine-mapping analysis 937 

 938 

 939 

(a) Distribution of size of credible sets and (b) that of number of independent SuSIE clusters 940 

across 1,447 proteins that had at least one significant cis-pQTL both in European American and 941 

African American populations. The power of fine-mapping using data from two populations is 942 

further illustrated using the example of HBZ. Regional Manhattan plots based on single SNP p-943 

value and SuSIE posterior probabilities are shown for EA (Panel c and d) and AA (Panel e and f). 944 

The SNP rs2541645 (chr16: 161106; marked in diamond shape throughout) is detected as the 945 

shared causal cis-pQTL across the two ancestries by MANTRA. This variant has been used as the 946 

LD reference variant throughout.   947 
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Fig. 3: Cis-heritability and evaluation of models for genetic prediction of proteins  948 

 949 

(a) Estimated cis-h2 for gene expression levels and plasma protein levels with significant 950 

heritability (p-value < 0.01). (b) Prediction R2 standardized by estimated cis-h2 (R2/cis-h2) using 951 

prediction models trained by: the most significant cis-SNP; and Elastic Net using all cis-SNPs. (c) 952 

Cross-ethnic prediction accuracy by applying prediction models to individuals from their opposite 953 

races (d) Cis-regulated genetic correlation between plasma proteins and expression levels for 954 

underlying genes across all GTEx (V7) tissues. All results involving gene-expression levels are 955 

reported based on established models developed using data from GTEx V7, and additional results 956 

using preliminary models available from GTEx V8 can be found in Supplementary Table 16.  957 
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Fig. 4: Miami plot for PWAS and TWAS analyses for serum urate level and gout 958 

959 

 960 

Miami plot for PWAS (upper) and TWAS (lower) of (a) urate and (b) gout. Each point represents 961 

a test of association between the phenotypes and the cis-genetic regulated plasma protein or 962 

expression level of a gene, ordered by genomic position on the x axis and the -log10(p-value) 963 

for the association strength on the y axis. The black horizontal dash lines are the significance 964 

threshold after Bonferroni correction for the total number of imputation models (p-value = 965 

3.7x10-5 for PWAS and 1.3x10-6 for TWAS). Figure is truncated in the y-axis at -log10(p-value) = 966 

30 for PWAS and -log10(p-value) = 150 for TWAS. Nearby TWAS genes (+/- 500Kb) for significant 967 

PWAS hits are colored by GTEx tissues. The most significant nearby-TWAS hit is labelled with its 968 

TWAS GTEx tissue 

a 

b 
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gene name and corresponding tissue. The TWAS of IL1RN does not reach TWAS significance 969 

threshold and thereby was labeled with grey.  All primary TWAS analyses were conducted 970 

based on established models developed using data from GTEx V7, and results for the identified 971 

top genes/tissue combinations were further validated using preliminary models available from 972 

GTEx V8 (Supplementary Table 16).973 
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Table 1. Proteome-wide association analysis of Serum Urate Level and and Gout. Analysis was done based on external summary statistics data from GWAS of serum urate level 974 

(N=288,649) and gout (N=754,056) and the imputation models for plasma proteome built from the ARIC study for a total of 1,348 plasma proteins with significant cis-heritability. 975 

Results are also shown for most significant genes from Transcriptome Wide Association Studies around +/- 500kb region of the TSS of sentinel protein for two specific trait-976 

relevant tissues (whole blood and liver) and across all tissues. Further result from bivariate analysis of genetically imputed level of the plasma protein and that of the expression 977 

for most significant gene from the TWAS analysis are reported in terms of conditional p-values. All TWAS analyses were performed based on models available from the GTEX V7 978 

datasets. Results for identified top genes/tissue combinations were further validated using preliminary models available from GTEx V8 (Supplementary Table 16).  979 
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Plasma PWAS Relevant-tissue TWAS*** All-tissue TWAS 

Gene P-value 
Relevant 

tissue 
Gene P-value 

cor 

(P, T) 
pval(P|T) pval(T|P) 

Most 

significant 

tissue 

Gene P-value 
cor 

(P, T) 
pval(P|T) pval(T|P) 

# of 

signifi-

cant 

tissues** 

INHBB  

(2q14.2) 
5.01x10-17 

Blood RALB 1.32x10-2 0.04 1.05x10-16 3.07x10-2 
Liver* INHBB* 3.92x10-15 0.97 1.68x10-3 2.58x10-1 2 

Liver* INHBB* 3.92x10-15 0.97 1.68x10-3 2.58x10-1 

ITIH1 

(3q21.1) 
1.53x10-5 

Blood* MUSTN1* 2.47x10-12 -0.67 6.06x10-1 3.11x10-8 Colon - 

Transverse* 
SFMBT1* 1.08x10-32 -0.48 1.18x10-1 3.86x10-29 48 

Liver* SERBP1P3* 3.21x10-9 -0.12 3.86x10-7 8.62x10-11 

BTN3A3 

(6p22.2) 
1.13x10-13 

Blood* TRIM38* 5.83x10-76 0.41 8.50x10-1 5.85x10-64 Cells - EBV-

transformed 

lymphocytes* 

TRIM38* 1.19x10-95 0.09 2.61x10-8 2.16x10-90 48 
Liver* BTN3A2* 2.74x10-14 0.74 8.40x10-3 1.81x10-3 

INHBA 

(7p14.1) 
9.93x10-6 

Blood NA NA NA NA NA 
Thyroid GLI3 1.40x10-1 -0.08 1.57x10-5 2.53x10-1 0 

Liver NA NA NA NA NA 

C11orf68 

(11q13.1) 
1.40x10-8 

Blood* MAP3K11* 1.05x10-22 0.20 1.68x10-4 9.53x10-19 Brain - Putamen 

(basal ganglia)* 
OVOL1* 5.55x10-35 0.27 1.54x10-2 3.15x10-29 45 

Liver* EFEMP2* 2.99x10-7 -0.12 3.21x10-7 7.00x10-6 

B3GAT3 

(11q12.3) 
1.56x10-5 

Blood* INTS5* 4.02x10-5 -0.94 1.76x10-1 8.78x10-1 Brain - Putamen 

(basal ganglia)* 
B3GAT3* 3.32x10-7 -0.82 7.93x10-1 6.32x10-3 1 

Liver BSCL2 7.79x10-1 0.27 1.06x10-5 3.70x10-1 

INHBC 

(12q13.3) 
7.64x10-63 

Blood* MARS* 1.4x10-19 0.52 5.18x10-45 6.82x10-1 
Thyroid* R3HDM2* 7.52x10-31 -0.72 6.84x10-34 4.12x10-1 28 

Liver METTL21B 4x10-5 -0.04 1.09x10-61 6.72x10-4 

SNUPN 

(15q24.2) 
4.25x10-8 

Blood* SNUPN* 2.67x10-10 0.74 2.26x10-1 7.58x10-4 Brain -

Amygdala* 
NRG4* 4.63x10-25 0.21 6.08x10-4 4.73x10-21 42 

Liver* UBE2Q2* 5.5x10-12 -0.19 1.92x10-5 2.26x10-9 

NEO1 

(15q24.1) 
3.29x10-5 

Blood NEO1 5.62x10-4 -0.02 4.33x10-5 7.47x10-4 Adipose-

Subcutaneous* 
NEO1* 1.71x10-7 0.49 6.92x10-2 2.53x10-4 4 

Liver NA NA NA NA NA 

FASN 

(17q25.3) 
7.73x10-6 

Blood* CCDC57* 2.71x10-5 -0.91 1.15x10-1 7.59x10-1 Heart - Left 

Ventricle 
CCDC57  1.27x10-5 -0.92 2.36x10-1 4.98x10-1 0 

Liver ARL16 5.68x10-3 -0.05 1.43x10-5 1.09x10-2 

A: Urate 
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 980 

Plasma PWAS Relevant-tissue TWAS All-tissue TWAS 

Gene P-value 
Relevant 

tissue 
Gene P-value 

cor 

(P, T) 
pval(P|T) pval(T|P) 

Most 

significant 

tissue 

Gene P-value 
cor 

(P, T) 
pval(P|T) pval(T|P) 

# of 

signif-

cant 

tissues** 

IL1RN 

(2q14.1) 
2.22x10-5 

Blood DDX11L2 2.09x10-1 -0.03 1.90x10-5 1.71x10-1 Skin - Not Sun 
Exposed 

(Suprapubic) 
IL1RN 9.30x10-5 -0.46 5.75x10-3 2.67x10-2 0 

Liver PAX8 5.91x10-2 0.03 2.86x10-5 7.91x10-2 

BTN3A3 

(6p22.2) 
1.66x10-5 

Blood* TRIM38* 2.98x10-22 0.41 7.34x10-1 3.33x10-18 Cells - EBV-
transformed 

lymphocytes* 
TRIM38* 2.13x10-30 0.09 1.04x10-3 1.07x10-28 35 

Liver* BTN3A2* 6.77x10-6 0.74 1.52x10-1 5.24x10-2 

INHBC 

(12q13.3) 
1.63x10-22 

Blood* MARS* 1.84x10-5 0.52 1.13x10-18 3.52x10-1 
Thyroid* R3HDM2* 1.54x10-16 -0.72 3.95x10-8 8.76x10-2 16 

Liver STAC3 8.69x10-2 -0.12 6.05x10-22 5.60x10-1 

*Genes and tissues that are significant in TWAS after Bonferroni correction of all GTEx V7 transcripts across all tissues (p-value < 0.05 / 37,366 = 1.34x10-6).  981 

**A tissue is defined significant if there is at least one transcript near the PWAS signal for which the TWAS is significant at p-value < 1.34x10-6. 982 

***NAs in the table means no applicable TWAS model for transcripts in the defined region 983 

B: Gout 
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