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ABSTRACT

Animals are born with extensive innate behavioral capabilities, which arise from neural circuits
encoded in the genome. However, the information capacity of the genome is orders of magnitude
smaller than that needed to specify the connectivity of an arbitrary brain circuit, indicating that the
rules encoding circuit formation must fit through a "genomic bottleneck" as they pass from one
generation to the next. Here we formulate the problem of innate behavioral capacity in the context of
artificial neural networks in terms of lossy compression of the weight matrix. We find that several
standard network architectures can be compressed by several orders of magnitude, yielding pre-
training performance that can approach that of the fully-trained network. Interestingly, for complex
but not for simple test problems, the genomic bottleneck algorithm also captures essential features
of the circuit, leading to enhanced transfer learning to novel tasks and datasets. Our results suggest
that compressing a neural circuit through the genomic bottleneck serves as a regularizer, enabling
evolution to select simple circuits that can be readily adapted to important real-world tasks. The
genomic bottleneck also suggests how innate priors can complement conventional approaches to
learning in designing algorithms for artificial intelligence.

Introduction

Many animals are born with impressive and elaborate behavioral capacities. Soon after birth, a spider can build a web, a
whale can swim, and a monkey fears snakes. From an evolutionary perspective, it is easy to see why such innate abilities
would be selected for: Those individuals that can survive beyond their most vulnerable early hours, days, or weeks are
more likely to survive until reproductive age and hence produce progeny at a higher rate. Of course, in practice there is
no crisp distinction between innate and learned abilities; innate abilities form a foundation for learning, and animal
behavior arises from an interaction between these two processes. Although learning has been studied extensively in
the context of artificial intelligence, there has been much less theoretical attention devoted to the structure of innate
behaviors.

Innate behaviors are encoded in the genome and can be expressed in the neural circuits already present at birth. However,
this poses a challenge: How can a complex neuronal connectivity diagram be encoded into a genome? The size of the
genome provides an approximate upper bound on the amount of information transmitted from generation to generation.
The genome of the simple worm C. elegans is about 108 base pairs (Bargmann, 1998), so it could transmit up to about
2× 108 bits. This in principle would be more than adequate to explicitly encode the highly stereotyped connectivity
among the 302 neurons in the C. elegans brain, since even a dense 3022 connection matrix would take at most 9× 104

bits to store, times a small factor associated with the number of bits per synaptic weight. On the other hand, the human
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genome is only about an order of magnitude larger than that of C. elegans (∼ 109 bits), whereas the human cortex
has about 1010 neurons, so even the (sparse) cortical connectivity matrix might require at least 1015 bits to specify.
This implies that the human cortex would require about 5–6 orders of magnitude more information to specify than is
available in the genome, if every connection were specified explicitly (Zador, 2019). Since the genome encodes the
rules for wiring up the nervous system, a natural question is how the small amount of information contained in the
genome can instruct the creation of the large capacity cortex. We refer to the long recognized (Tessier-Lavigne and
Goodman, 1996; Sperry, 1963; Stanley et al., 2019) mismatch between the information capacity of the genome and the
complexity of the resulting neural circuit as a "genomic bottleneck" (Zador, 2019).

The mismatch described by genomic bottleneck implies that the connectivity of most neuronal circuits, including the
mammalian cortex, is not explicitly specified, neuron-by-neuron, in the genome. Rather, the genome specifies rules for
connectivity. It has long been recognized that simple rules can give rise to surprisingly complex structures (Turing,
1952; Von Neumann et al., 1951), and it is straightforward to formulate simple, low-complexity rules that specify
the connectivity in arbitrarily large networks. For example, the simple rule "connect to your four nearest neighbors"
specifies a grid of potentially unlimited size (Fig. 1A). Another class of rules specifies connections between cells based
on the surface markers they express (Sperry, 1963; Zipursky and Sanes, 2010; Wei et al., 2013) (Fig. 1B); axons can
exploit these markers to find their destinations (Goodhill and Baier, 1998). The columnar organization that is observed
in many brain regions allows for the replication of similar connectivity modules throughout the brain, thus limiting
the number of parameters needed to wire the circuit (Itzkovitz et al., 2008). Complex structures such as orientation
columns in the visual cortex can be induced to self-organize from simple use-dependent rules (Von der Malsburg, 1973).
Developmental rules such as these can dramatically reduce the amount of information needed to specify the connectivity
of a neural circuit, prior to extensive experience.

In spite of this extensive literature on modeling development, these simple developmental rules do not typically specify
networks with the capacity to perform complex general computations. Thus, although such rules can readily specify the
formation of repeated modules that enable the emergence of receptive fields in the retina or the visual cortex (Linsker,
1986), such stereotyped modules cannot directly encode more specialized knowledge like a spider’s capacity to build a
web or a rat’s innate fear of fox odor (LeDoux, 2012). We therefore set out to explore how low-complexity rules can give
rise to networks that perform complex well-defined computations. Within the framework of artificial neural networks
(ANNs), we seek to compress the complex connectivity (weight matrix) into a much smaller "genome." The decoding
of this genome into the initial weights of the network enables the network to perform well upon initialization, without
additional training. This decoding is analogous to the neurodevelopmental processes by which the genome provides a
blueprint for circuits that enable animals to perform essential tasks at or soon after birth. We hypothesized that under
some conditions, compressing the weight matrix through a "genomic bottleneck" would extract the most useful and
important features of the connectivity; the genome would act as an "information bottleneck" (Tishby et al., 2000; Saxe
et al., 2019; Tishby and Zaslavsky, 2015). In this way, a physical constraint—the limited size of the genome—might
actually be an algorithmic advantage, serving as a regularizer and thereby turning a potential "bug" into a feature.

Implementation of the Genomic Bottleneck

To test these ideas, we first trained standard feedforward ANNs on well-studied supervised learning tasks. ANNs
consist of nodes ("neurons") connected by weights ("synapses"). Artificial neural networks are typically initiated
randomly—tabula rasa—and acquire their functionality through learning. When an ANN learns a task, the "knowledge"
of the task is summarized in the weights of the ANN. We use "connectivity" to describe both the specification of which
connections are non-zero, as well as the strengths or weights of those connections. We refer to the trained network as
the "phenotype network," or "p-network".

We sought to compress the p-network through a genomic bottleneck, preserving as much of the performance as possible.
The compressed network serves to initialize the network, endowing it with innate abilities prior to learning. To search
widely over the space of possible compressions, we used a separate ANN—a "genomic network" or "g-network"—to
generate the p-network (Fig. 1C). The formulation of the neurodevelopmental process as an ANN allows us to focus
on the genomic bottleneck at a conceptual level, without the need to model the complexities of neural development.
This leads to a model in which genomes, and the circuits they encode, are co-optimized in nested loops: an inner loop
corresponding to "learning" in animals, and an outer loop corresponding to "evolution." For reasons of efficiency, in our
model both the inner and outer loops are optimized by gradient descent, and are not intended as detailed models of
learning or evolution.

The inputs to the g-network are a pre- and postsynaptic pair of neurons, each represented by a unique binary vector; and
the output of the g-network is the expected strength of the connection between these neurons. For sparsely connected
networks, the strength will often be zero. This formulation is inspired by neurodevelopmental rules based on local
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Figure 1: Simple rules can specify networks. (A) A very simple nearest neighbor wiring rule. (B) A somewhat more
complex rule (only connect to nearest neighbors of opposite color) leads to a more complex network. (C) Network
specification through a genomic bottleneck. The input to the genomic network ("g-network") is a pair of neurons
(pre- and postsynaptic) specified by binary strings. Each neuron has a unique label, consisting of unique binary string.
The two binary labels are passed through the g-network, which assigns the strength of the connection between the
two neurons in the "p-network." Because the number of parameters in the g-network is smaller than the number of
parameters in the p-network, the g-network is effectively compressing the p-network. (D) G-networks seek to discover
p-networks that both solve the problem well and are compressible.
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pair-wise interactions between neurons (Sperry, 1963; Zipursky and Sanes, 2010), but it is not intended as a realistic
model of neural development (Stanley et al., 2009; Barabási and Barabási, 2020). To facilitate the efficient search for
g-networks that achieve good compression, we used stochastic gradient descent (Ha et al., 2016) rather than evolutionary
algorithms (Stanley et al., 2009, 2019) to achieve end-to-end optimization of both the g-network and the p-network.

We represented each neuron in the p-network by a unique binary vector. Each binary digit in this label can be interpreted
as an indicator of the presence of one type of a "molecular tag" in the expression profile of this neuron. Thus, for
example, if each neuron is represented by 10 binary digits, the input layer will consist of 20 units (10 each for presynaptic
and postsynaptic neurons). Connectivity is effectively guided by interactions of pairs of molecules expressed on the
pre- and postsynaptic membranes. The g-network framework can naturally accommodate the addition of new neurons,
new layers, and new connections between layers. A network with N neurons requires log2(N) binary tags to specify
each neuron uniquely, so the input to the g-network is log2(N) units (binary digits) for each neuron. Because the size
of the g-network’s input grows only logarithmically as more neurons are added to the p-network, the g-network can
implement connectivity of arbitrarily large p-networks without substantial changes in size. Thus, the small amount of
information parameterizing the g-network can be used to encode even very large p-networks.

Neuronal projections are often organized topographically. For example, nearby ganglion neurons in the retina encoding
nearby points in physical space project topographically via the thalamus to nearby points in visual area V1. However,
we did not explicitly encode geometric space into the network (Stanley et al., 2009). Instead, we adopted a more general
approach in which each neuron was labeled according to a two-dimensional Gray code (Frank, 1953), so that the binary
vectors representing nearby neurons differ by only a small number of bits (Supp Fig. 1A). The Gray code facilitates the
discovery of connectivity rules that exploit spatial structure, but also has the potential to allow the network to discover
wiring motifs associated with distinct neuronal "types" or "classes". For example, one bit of the neuronal specification
in the Gray’s code could represent the distinction between excitatory and inhibitory neurons, and another bit could
denote a particular subtype of inhibitory neuron. In this way, the characteristic connectivity patterns associated with
specific neuronal subtypes in brains (Kepecs and Fishell, 2014) could readily arise in these ANNs.

Although a sufficiently large g-network could, in principle, perfectly recapitulate the p-network by "memorizing" all of
the connections exactly, this would fail to compress the p-network, and thus would be unlikely to extract more general
wiring motifs. We therefore focused on a regime where the size (complexity) of the g-network is substantially smaller
than the size of the p-network, encouraging the g-network to discover compact wiring rules. Our goal is to discover
network architectures that are both high performance and compressible (Fig. 1D). This setting can be viewed as a lossy
compression problem, where the success of compression is measured not by, e.g., the reconstruction error as in typical
lossy image compression, but rather by the ability of the uncompressed weight matrix to perform well on the target task
without further training.

Our approach can be described as the search for a solution that balances two competing goals. First, we wish to
achieve good innate performance, i.e. we wish to minimize the error E0(G), where E0(G) is the error before training
of the p-network encoded by the corresponding g-network G. Second, we also wish to limit the complexity of the
genomic network, specifically the entropy H(G) of the genome G. We use the number of parameters used to specify
the g-networks as a surrogate for the entropy H(G). Conceptually, we can thus formulate our overall goal as a lossy
compression problem in which we seek to minimize an objective function J with respect to the genome parameters G:

J = E0(G) + γH(G), (1)

where γ is a positive parameter that specifies the tradeoff between the two goals. (In practice, we select a particular
complexity H(G) and then minimize the error for that network). In this formulation, the second term can be seen as a
regularizer, related to techniques such as weight pruning (LeCun et al., 1990; Han et al., 2015), that seek to keep the
weight matrix simple.

We used an iterative algorithm to find g-networks which generate p-networks that are both compressible and achieve
good ab initio performance (see Methods). First, we used standard stochastic gradient descent to find a weight matrix
W (1) of a p-network that minimizes the training error. The elements of this weight matrix are then used to train the
weights of a g-network. Specifically, the training set for the g-network consists of inputs {bi, bj} and target outputs
w

(1)
ij , where bi is the binary representation of the ith unit of the p-network, and w(1)

ij is the connection from unit i to
unit j. The g-network trained in this way thus generates an approximation Ŵ (1) of the p-network weight matrix on
which it was trained. This approximation is then used as the initialization to train the next iteration W (2) of the weight
matrix, and the process is iterated to yield Ŵ (2) . . . Ŵ (K). This procedure yields networks that are both capable of
accurate initial (innate) performance and occupy limited amounts of space in the genome (compressible).
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Supervised Learning

Solving MNIST We first tested our approach on a classic supervised learning problem: handwritten digit recognition.
In this problem, a network is trained with examples of handwritten digits (0-9) taken from the MNIST dataset (Fig. 2A;
see Methods) and learns to assign labels to new examples of these digits it has not previously encountered. For the
p-network we used a standard fully-connected network architecture with 28× 28 = 784 pixel units at the input layer
and one hidden layer with 800 units, for a total of 6× 105 parameters. With random initial weights, the performance
rose from random (10%) to about 98% (Fig. 2C) after about 20 epochs.

We then used a much smaller g-network with only 30 hidden units (GN30), or about 2× 103 parameters, to compress
the p-network. The g-network trained using the algorithm described above generated a p-network with 94% correct
performance upon initialization. Thus the g-network was able to achieve 322-fold compression, while maintaining
innate performance almost equal to that of the fully trained network. We observed a tradeoff between the degree of
compression and the innate performance (Fig. 2C, D), but good innate performance of 79% correct could even be
achieved using GN5, a network with 1038-fold compression. These results demonstrate that there exist p-networks that
are both compressible and high-performance.

To illustrate how high innate performance could provide an evolutionary advantage, we formulated a simple model in
which an organism’s survival to reproductive maturity—its fitness—was proportional to its performance on this task. In
this model, the probability p(t) that the organism is still alive at time t is given by

p(t+ 1) = p(t)[1− α(1− c(t))]. (2)

Here, c(t) is the rate of correct performance at time t and 0 < α < 1 is a parameter that determines the contribution
of this trait to survival. This model thus relates correct performance on the task to survival (Fig. 2E). Fig. 2F shows
how, over successive generations, the fraction of individuals with high innate performance increases at the expense of
individuals which rely solely on learning to acquire fitness. As expected, over several dozen generations the individuals
with higher innate fitness dominate the population, completely supplanting those initialized tabulasa, which must learn
everything from the environment. Many factors in the real world could serve to complicate this simple model, which for
example does not explain the prolonged period of posnatal helplessness of mammals. Nonetheless, the model provides
an intuition for why evolution might be expected to maximize high innate performance.

We hypothesized that passing the wiring diagram through the genomic bottleneck would extract the most useful and
important features of the connectivity and enable generalization to related tasks. To test this idea, we used the related
"fashion" MNIST, or F-MNIST dataset, which has the same format as the MNIST dataset but consists of ten different
categories of clothing (shirts, shoes, etc; Fig. 2F). Disappointingly, we observed no enhancement of F-MNIST learning
upon initializing weights using MNIST-trained g-network. Indeed, the p-network adapted from MNIST actually showed
somewhat slower learning than a naive network (Fig. 2G), as though the network first had to unlearn MNIST before
learning F-MNIST. We hypothesized that this failure to generalize across visual recognition tasks was due to overfitting
on the specifics of MNIST dataset, due to the relative simplicity of the tasks and the network used to solve them: Both
of these datasets are too simple to require learning general properties of images that can be transferred to novel visual
problems.

Solving CIFAR10 To test whether there are conditions where the genomic bottleneck might extract features that
generalize over multiple datasets, we applied the algorithm to a more complex problem that requires a deeper network.
We used the CIFAR10 dataset, which consists of 60k color images drawn from 10 categories such as airplanes, cars,
and cats (Fig. 3A). For the p-network we used a standard 9-layer convolutional neural network (CNN) architecture with
about 1.4×106 weights (see Methods). We compressed each CNN layer of the p-network with a separate g-network (Fig.
3B). Similarly to MNIST, the compressed CIFAR10 network reached high performance. GN50, a network with 92-fold
compression, achieved initial performance of 76% (vs. naive 10%), fairly close to the fully trained performance of 89%
(Fig. 3C, D). Thus, as with MNIST, the g-network achieved approximately two orders of magnitude compression while
maintaining good initial performance.

The learning dynamics (Fig. 3D) demonstrate the utility of genomic compression for achieving enhanced initial
performance. However, it was not clear whether this was also associated with faster learning. To our surprise, genomic
compression had no effect on the learning trajectory; the only speedup was due to the higher initial performance, as
though the p-network was "hot-started" by the g-network (Fig. 3E). Thus genomic compression, at least under these
conditions, did not affect the learning rate.

To assess whether the structure that g-networks extracted from the CIFAR10 dataset could be useful for other datasets,
we tested transfer from the CIFAR10-trained network to a related problem. We used the Street View House Numbers
(SVHN) dataset, which contains images of street numbers in a format similar to the CIFAR10 dataset (Fig. 3F). We first
confirmed the effectiveness of a standard algorithm for transfer learning. We trained the p-network on the CIFAR10
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Figure 2: Genomic bottleneck approach to MNIST. (A) Examples of MNIST dataset of handwritten digits. (B) We
used a two layer fully connected MNIST network created by individual g-networks for each layer (GN301 denotes
a g-network with H = 30 units in the hidden layer for the second MNIST layer). GN30 corresponds to 322-fold
compression. (C) Initial performance for several levels of compression. Performance is excellent even with 1038-fold
compression. (D) Learning dynamics for different levels of compression. (E) Fitness advantage of model organism with
high innate performance. (F) Model organism with high innate performance dominates population. (G) Example of
fashion-MNIST dataset. (H) Failure of transfer learning f-MNIST dataset. Blue, dotted and solid red lines represent
results for training a network using FMNIST dataset that is initialized by random, MNIST weights, and weights
generated using GN30 trained on MNIST data respectively
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dataset without compression, and then used the p-network’s weights as a starting point for SVHN training (CIFAR10
transfer). As expected, this procedure accelerated learning, reducing training time from about 20 training epochs (Fig.
3G, blue line, "No GN") to a single epoch (Fig. 3G, "CIFAR10 L1-9"). This implies that the CIFAR10 dataset contains
features that are similar to SVHN dataset.

We next compared the standard transfer learning algorithm to an algorithm based on the genomic bottleneck. To achieve
transfer with the genomic bottleneck, we used g-networks to generate p-network as described above and then used this
p-network as an initial condition for SVHN training (g-network mediated transfer). Remarkably, the performance of
g-network mediated transfer was indistinguishable from the standard approach (Fig. 3F, orange solid line, "L1-9"), even
though in this case the number of transferred parameters was 92 times fewer. These results indicate that whatever is
crucial for transfer from CIFAR10 to SVHN is captured by the nearly 92-fold smaller g-network.

To further dissect the consequences of genomic compression, we examined the effect of transferring only one or a
few layers at a time. When only the first two lower layers (layers 1-2) were transferred from CIFAR to SVHN, while
randomly initializing the remaining layers, genomic transfer actually yielded faster learning than direct transfer (Fig.
3F, red arrows). For example, when layer 1 was initialized with g-network, 50% performance was reached in about
3.2 training epochs, while similar levels were only achieved in 4.8 epochs using direct CIFAR10 transfer—a 1.5-fold
difference. Thus, it appears that the lower layers of the network contain features that generalize across datasets, and
these features are extracted particularly well using the g-network based compression algorithm. On the other hand,
transferring the last two layers of the network resulted in slower training compared to the naive case, a result reminiscent
of our previous result with MNIST-to-F-MNIST transfer (Fig. 2H). This result implies that the last two layers of
CIFAR10-trained network contained features that are specific to the dataset and were not useful for the recognition of
the house numbers in SVHN data.

Taken together, these findings demonstrate that g-networks can extract structure that is generalizable across datasets.
Compression with g-networks yields performance that is comparable to—and in some cases better—than simple
uncompressed weight transfer, indicating that g-networks identify a special subclass of p-networks that are compressible
and capture essential structure of the data (Fig. 1D). This enhancement is particularly evident in the rate of transfer of
the lower layers in deep nets (Fig. 3G). Interestingly, the receptive fields of neurons in the lower visual system show
substantial similarities between different species, while higher layers are more specialized (Rodieck and Rodieck, 1998).
This parallel with our results suggests that the early visual system may have extracted a simple yet potent set of features
while subject to genomic bottleneck-like constraint.

Reinforcement learning

The results described so far demonstrate the efficacy of genomic compression in the context of supervised learning.
However, supervised learning is unlikely to play a major role in animal behavior (Zador, 2019). We therefore turned our
attention to reinforcement learning paradigms, in which an agent seeks to maximize its reward in a given environment
by taking actions based on its current state and its history of actions and rewards. The actions are determined by a
policy which maps the agent’s state to actions. Learning in this context consists of adapting the policy. Many of the
most successful modern approaches use ANNs to implement the policies (Silver et al., 2016).

We first tested the genomic compression algorithm on the ANN-based policies used for solving Beam Rider (Bellemare
et al., 2013), a video game (Fig. 4). In this task, the input is a set of 80×80 pixels and the output is one of 9 actions (e.g.
move left, fire, etc). We used the dueling deep Q learning algorithm (Wang et al., 2016) to train a standard p-network
with 3.3× 106 parameters. With training, performance typically doubled after several hundred episodes (Fig 4C). We
then compressed the p-network 492-fold using a g-network with about 104 parameters. Initial performance of the
compressed network was nearly asymptotic with little or no training, indicating that the g-network was able capture
almost all of the structure inherent in the connections of the p-net. We then tested greater levels of compression, and
found that the innate performance of the compressed network remained excellent up to about 3500-fold compression
(Fig 4D). Similar results were obtained for another video game, Space Invaders (see Supp Fig. S.5). These results
show that the genomic compression approach is not limited to supervised learning, but can be readily extended to a
reinforcement learning setting.

We next tested the genomic compression algorithm on a more challenging reinforcement learning task, the "Half
Cheetah" (Fig. 5). In this task, a simulated cheetah must learn to maximize its forward velocity in a simulated physics
environment, Mujoco (Todorov et al., 2012). Here, the state space consists of the positions, angles and velocities of
8 joints, and the continuous action space consists of the forces applied to those joints. With a random initialization,
the cheetah cannot move forward (Fig. 5A, top). After several thousand episodes of training, the cheetah sometimes
learns to move forward in a conventional way, but typically adopts unconventional solutions such as tumbling on its
head or flipping upside down and gliding along its back (Fig. 5A, middle), a phenomenon sometimes referred to as
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Figure 3: Genomic bottleneck approach to CIFAR10. (A) Examples of CIFAR10 dataset of images. (B) To classify
CIFAR10 images, we used a nine layer convolutional network. Each layer was created by individual g-networks. (C)
The p-network achieves excellent tabula rasa performance even greater than 100-fold compression. (D) Dynamics of
learning for different levels of compression. (E) The learning rate of the compressed networks is the same as tabula
rasa networks. For each level of compression, the curve in D is shifted to the tabula rasa curve. (F) Example of SVHN
dataset. (G) Transfer learning to SVHN dataset. Results are shown as training curves on SVHN dataset for networks
initialized using different sets of layers transferred from CIFAR10 dataset as indicated. For example, green solid curve
(GN L1-2) shows results for layers 1 and 2 initialized using g-nets trained on CIFAR10 data, while the remaining
layers are initialized randomly (shaded regions show standard deviation of the mean). For CIFAR L1-2 curve, layers 1
and 2 were initialized by direct transfer from CIFAR10 dataset. That GN L1-2 is shifted compared CIFAR L1-2 (red
arrow) indicates the advantage of our approach. The similar feature is observed for layer one transfer curves (orange).
Stars indicate statistical significance (p<0.05). GN L8-9 curve shows worse performance than naive training (No GN),
similarly to Fig. 2H.
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Figure 4: Genomic bottleneck approach to reinforcement learning. (A) Application to the video game Beam Rider, in
which the goal is to shoot down enemy ships. (B) Network architecture of p-net, which consisted of 5 layers, each of
which was compressed by a corresponding g-net. (C) Dynamics of learning for uncompressed network (blue) is slower
than for a 492-fold compressed network (red), which achieves nearly perfect performance on episode 0. Shaded regions
show standard deviation of the data. (D) Performance over first 5 episodes as a function of compression. Nearly perfect
initial performance is achieved by the x3570-fold compression.

"reward hacking". Such solutions often yield rewards comparable to those obtained by conventional solutions, and can
be viewed as a form of overfitting.

The genomic bottleneck algorithm was able to achieve excellent compression on this task. After 4.9-fold compression,
performance on episode 0 is excellent, approaching asymptotic performance (Fig. 5B). Initial performance on episode 0
declined only modestly with increasing compression (Fig. 5C). Thus, the genomic compression algorithm could be
effectively applied even in the more challenging setting of the Half Cheetah.

Interestingly, solutions obtained from p-nets initialized by g-nets did not appear to engage in reward hacking, unlike
those obtained following random initialization; following compression, only conventional strategies without tumbling
and flipping were learned (Fig. 5A, bottom). This suggested that compression was acting as a regularizer, discouraging
overfitting by reward hacking. To further explore this, we tested performance in a modified environment in which gravity
has been increased by 50%. (In the Mujoco simulation environment, gravity can be conveniently modified with a single
parameter, which can be viewed as a surrogate for changes in body size that would occur over an animal’s lifetime).
In this modified environment, initial performance at episode 0 even for the p-network initialized by a g-network is
poor, but performance improved relatively quickly after several hundred trials (Fig. 5C, red). By contrast, conventional
transfer learning, in which the fully trained uncompressed network is used in the new environment, learned much
more slowly (Fig. 5D, green; Fig. 5E). The superior transfer learning observed with the genomic bottleneck approach
arises because the reward-hacked strategies observed in networks trained without compression do not generalize well
to the new environment, so the agent must first unlearn these unconventional strategies. Taken together, our results
suggest that the genomic bottleneck approach can be effectively applied to both supervised and reinforcement learning
problems.

Discussion

We have proposed that a genomic bottleneck arises inevitably because of the need for a relatively low-capacity genome
to specify the complex neural circuits required for innate behaviors. We argue that under a wide range of conditions,
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Figure 5: Genomic bottleneck applied to Half Cheetah. (A) Snapshots of sample episodes. (top, middle) Upon
initialization without compression, the Half Cheetah typically flails about, largely in place. (top, right) After 3000
episodes of training, the agent finds an effective but often unconventional strategy for moving forward. In this example,
the strategy involves intermittent sliding on its chin. (bottom) The agent trained with the genomic bottleneck approach
adopts an effective and conventional strategy even on episode 0. (B) Learning time course for x4.9-fold compressed
(red) vs. randomly initialized (blue) networks. Shaded region shows standard deviation of the data for four independent
training runs. (C) Initial performance of the Half Cheetah network averaged over the first 5 episodes as a function
of compression. Performance is shown for individual genomic networks (dots) and the average (solid line). (D) The
results of weight transfer to the environment with higher gravity. Learning time course for x4.9-fold compressed (red)
vs. uncompressed (1x, direct transfer) (green) networks. (E) Performance averaged over the first 400 training episodes
as a function of gravity scale. Dots/lines show results for individual networks and their average. Colors are the same as
in (D). (F,G) Skeleton diagrams showing subsequent time steps for networks initialized by direct transfer (F) and 4.9x
compressed g-net (G) in the increased gravity environment.
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there is evolutionary pressure for organisms to be born with as much innate ability as possible, and thereby to maximize
their fitness at birth (Fig. 2E). This leads to a model in which genomes, and the circuits they encode, are co-optimized in
nested loops: an inner loop corresponding to "learning" in animals, and an outer loop corresponding to "evolution." Our
results suggest that dividing the usual machine learning problem into such nested loops linked by a low-information
bottleneck serves as a regularizer on the resulting neural circuit, guiding it to find simple circuit motifs that can be
reused and can adapt with changes in the environment.

The genomic bottleneck can be viewed as a constraint forcing lossy compression of the weight matrix (Eq. 1). The
idea of minimizing the description length, or Kolmogorov Complexity, of the weights has a long history (Hinton and
Van Camp, 1993; Schmidhuber, 1997). Although the genomic bottleneck algorithm was motivated by considerations of
the relative size of the genome and the connectome, it has close parallels with the "information bottleneck" method
(Tishby et al., 2000). We hypothesize that, by squeezing the neural circuit diagram through a much smaller genome,
evolution has extracted the most useful and important network motifs.

To perform tasks, the compressed (genomic) representation must be uncompressed into a functional network through a
process analogous to neural development. For reasons of efficiency, we have used gradients to optimize both the inner
and outer loops. Evolution, which can be viewed as a form of optimization that does not exploit a gradient, is in general
a relatively slow and inefficient algorithm, successful because it operates on massive numbers of individuals in parallel
over hundreds of millions of years. The feedback in our algorithm that guides the gradient from each generation—the
fact that the trained weight matrix in the kth generation is used to modify the genome in the (k + 1)st generation—can
be viewed as a form of Lamarckian evolution, and is, as such, biologically unrealistic. The net effect of our approach,
however, is similar to Darwinian evolution. Our algorithm can also be seen as an implementation of the Baldwin effect
(Baldwin, 1896; Hinton and Nowlan, 1987), according to which, if the ability to learn a particular behavior rapidly
conferred a selective advantage, that ability would, over the course of evolution, be "genetically assimilated" and might
appear to have arisen through a Lamarckian process.

We developed a genomic bottleneck algorithm that could achieve several orders of magnitude compression on standard
supervised and reinforcement learning benchmarks. Although it might seem surprising that these networks could be so
highly compressed with relatively little loss of performance, our results are consistent with a considerable literature on
network compression (Choudhary et al., 2020). For example, a standard technique—weight pruning—can eliminate
90% of parameters with minimal loss of accuracy (LeCun et al., 1990; Han et al., 2015). Network pruning can be
viewed as a method of network compression, complementary to the genomic bottleneck mechanism considered here.
Convolutional neural networks (LeCun and Bengio, 1995) represent an example of network pruning whereby each
neuron only connects to a small fraction of other neurons in lower layers. Another example is provided by the lottery
ticket hypothesis, according to which the number of weights in a well-performing network can be substantially reduced
by discovering "winning ticket" sparse subnetworks (Frankle and Carbin, 2018). Cortical networks are inherently
sparse, with each neuron connecting to only a minute fraction of other cortical cells. Evolution selects sparse and
functionally important connections due to physical constraints, such as a space and time limitations (Chklovskii et al.,
2002). Even after sparsification, the organization of cortical connections cannot be encoded in the genome with the
single neuron precision. Thus, pruned connectivity is a default solution to the evolution of cortical fitness, and does not
by itself resolve the discrepancy between cortical and genomic information capacities; even sparse connectivity must be
further compressed through the genomic bottleneck. Here we study the additional rules that can encode both fully and
sparsely connected networks.

Our results contribute to a growing literature highlighting the importance of inductive biases in machine learning.
Much of this literature is focused on achieving faster learning. Perhaps the most successful examples are convolutional
neural networks (LeCun and Bengio, 1995), which exploit the translational invariance of images with an architecture
inspired by the structure of receptive fields in early sensory cortex (Hubel and Wiesel, 1962). However, the present
work—inspired by evolutionary constraints (Fig. 2D)—is focused not on faster learning but rather enhanced initial
performance, a goal that has received comparatively less attention (but see (Gaier and Ha, 2019)). Indeed, in our
experiments we find that genome-initialized networks start off at a higher level of performance but then follow the same
trajectory as randomly-initialized networks (Fig. 3D). Although these results highlight the potential dissociation of
two distinct process—better initial performance and faster learning through inductive biases—there is likely strong
evolutionary pressure to maximize both.

The relative importance of genomically-encoded innate structures in determining specific human abilities such as
language has been hotly debated, but the importance of innate factors to the behavior of other animals is less controversial.
For both humans and other animals, the better question is usually not whether a behavior is innate, but rather how innate
and learned factors interact. For example, the propensity to form "place fields" in the hippocampus is innate—a map of
space emerges when young rat pups explore an open environment outside the nest for the very first time (Langston
et al., 2010)—but the content of place fields is learned, as new place fields form whenever the animal enters a new
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environment. In this example it appears that, as suggested by our experiments, innate performance has been maximized
by providing a scaffolding for place fields to appear.

The genomic bottleneck takes its inspiration from fundamental considerations about the evolution and development of
brain circuits. Although the genomic bottleneck algorithm builds on existing machine learning techniques, and yields
surprisingly effective performance, we have not attempted to optimize this approach to compete with state-of-the-art
benchmarks. The bottleneck framework is potentially quite rich, and could be extended in several directions. For
example, we have not explored variations in the structure of the genomic network, e.g. by imposing a sparseness
constraint. Such a constraint would have the physical interpretation of limiting interactions among surface neuronal
markers. Similarly, at present, each layer is compressed with its own genome, but it would be natural to attempt to
extract regularities among layers by encoding them with a single genome. Furthermore, in the current formulation the
decoding of the genomic network is deterministic, whereas developmental rules are often stochastic, so the decoding
framework might be generalized to include rules like "let each neuron connect on average to 10% of nearby neighbors"
or a more complex stochastic rule (Stöckl et al., 2021). Finally, the framework could be extended to co-optimize the
learning rules and the wiring.
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Methods

MNIST/F-MNIST dataset

For MNIST and F-MNIST datasets, we used a fully connected 2-layer network that included 800 hidden layer ReLU
units (Simard et al., 2003). We did not use data augmentation for simplicity and our network could be trained to 98%
performance on testing data. The number of parameters in the MNIST network was therefore 282 × 800 + 800× 10
weights and 800 + 10 biases amounting to the total of 636010. We used three g-networks to encoded two weight
matrices and one bias vector for the hidden layer. The ten biases for the output layer were not compressed since the
corresponding g-network would include more than ten parameters. The structures for various configurations of the three
g-networks are listed in Table 1. The schematic of the structure of g-network for MNIST dataset is shown in Fig. S.1A.

Each neuron was described by a binary label of length 10. For the neurons in the input image, the label encoded
two coordinates of the neuron’s position in the image, 5 bits for the "X" and "Y" coordinates. Both coordinates were
represented by the Gray code. The neurons in the hidden layer were represented by simple binary codes ranging from 1
to 800, since their order is of no particular importance. The ten neurons in the output layer were encoded by the one-hot
vector of 10 bits. Each neuron in the networks was therefore described by a ten-bit label. The inputs into each of the
two g-networks that generated weight matrices represented pairs of neurons and had the length of 20 bits. The output of
g-network is the value of the corresponding weight between two input neurons and was a single real number (Table
1). For the network generating biases for the hidden layer, the input contained the binary label for the neuron and was
therefore 10 bits long.

There are several options to train g-networks. The simplest one is to use end-to-end backpropagation from the dataset
(MNIST) to g-network using automatic differentiation of the deep learning library (PyTorch, Fig. S.1A). We found this
implementation to be inefficient as it involves generation of the entire set of weight matrices for each mini-batch of
MNIST images. Instead, we developed the intermittent training paradigm. Before the first iteration, the g-networks are
initialized randomly. On each iteration of this method, we start with the g-networks generating weights of the MNIST
network (p-net). We then train the p-network using a subset of images. For the MNIST network, this training used
10,000 images from the training set or 1/6th of the epoch. This yielded a higher performance p-network with the set
of weights described by matrix Wn. We then train g-networks to approximate this weight matrix by backpropagating
the difference between the g-network output (W̃n) and Wn. We used different number of weights to train each of the
three g-networks on each iteration (105, 104, and 104 for hidden layer, output layer, and hidden layer biases g-networks,
respectively). This amounted to about 1/6th of all weights and further accelerated training in each generation. We then
used the adjusted g-networks to generate the complete set of p-network weights W̃n+1 that served as initial conditions
for the next generation (Fig. S.1B). This set of iteration mimicked real biological evolution as it alternated the generation
of p-nets from g-networks, analogous to the neural development, and improvement of p-nets similar to the natural
selection. We repeated these iterations 500 times to achieve the asymptotic performance.

CIFAR10/SVHN datasets

In this example we used all convolutional 9-layer implementation of network (Springenberg et al., 2015) (Fig. S.1B).
Between layers 3 and 4, we included the dropout layer with 50% dropout probability. The network could be trained
to 89% correct rate without data augmentation. Each layer in this 9-layer CNN was generated via two g-networks,
one for the weight matrix and one for the biases. To provide inputs into the g-networks for weights, we described
positions in the weigh matrix by a 20-bit binary number. For the lowest 8 layers, the binary number was composed of
2+2 bits containing Gray code representation for the input coordinates within the CNN kernel, 8 bits representing the
input filter type, and 8 bits representing the output filter type. The latter two components were formed as consecutive
binary numbers, since input/output filter identity is not expected to form a continuous topographic space. In this
representation, the input neurons were identified by a 12-bit binary label (2 + 2 Gray + 8 binary) while the output
neurons are identified by the 8-bit label. The binary labels for the last CNN layer were composed of 1+1 binary Gray
(dummy) bits representing two coordinates within the kernel, a 8-bit binary number representing the input filter, and

Table 1: The structure of g-network for MNIST dataset

g-network name g-network Bias net g-network MNIST Compressionstructure structure parameters parameters
GN5 (20− 10− 5− 1)× 2

10− 5− 1
613

636,010
1038x

GN20 (20− 20− 10− 1)× 2 1,353 470x
GN30 (20− 30− 10− 1)× 2 1,973 322x
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Table 2: The structure of g-network for CIFAR10 dataset

g-network name g-network Bias net g-network CIFAR10 Compressionstructure structure parameters parameters
GN10 (20− 10− 10− 1)× 9

8− 10− 1
3,798

1,369,738
361x

GN30 (20− 30− 10− 1)× 9 9,378 146x
GN50 (20− 50− 10− 1)× 9 14,958 92x

a 10-bit one-hot vector encoding the output class. The bias networks for the first eight layers received an 8-bit label
encoding the output filter. The bias network for the last layer received the one-hot vector encoding one of the ten output
classes. The structures of different g-networks used are summarized in Table 2.

To train the 18 g-networks described above, we used the intermittent training strategy described for the MNIST network.
We used minibatch sizes of 10, 100, and 1000 for bias g-networks for layers 1-3, 9, bias g-networks 4-8, and all weight
matrix g-networks, respectively. We used the minibatch size of 128 to train the CIFAR10 network. We used SGD
optimizer for CIFAR network with the learning rate of 0.05 and momentum of 0.9 for stability. We used Adam optimizer
for all g-networks. In each iteration, we first trained CIFAR10 network using 10 complete epochs, i.e. 10 complete
sweeps through the entire training set of images. In the second step, we trained weight and bias g-networks using 2 and
10 epochs respectively (we trained g-network weight networks for layer 1 and 9 using 12 epochs in each iteration) to
match the CIFAR network adjusted weights resulting from the first step. This sequence of two steps was repeated 500
times.

Because our network was relatively deep (9 layers), we encountered a problem with initialization of g-networks. Indeed,
if g-networks are initialized randomly, they produce p-nets that are far from the optimal fixed point. We found that such
p-nets are impossible to train. This problem is exacerbated in moderately deep p-nets due to the exponential divergence
of initialization errors from layer to layer. In practice, such p-nets return zero activations, which yield no gradients
of weights. To solve this problem, we implemented the weight annealing strategy. In each iteration of our algorithm
(out of 500), before the p-network was trained, the weight matrices and biases of the p-network were combined from
the results of CIFAR training in the previous iteration, Wn−1, and the weights generated by g-network in the previous
iteration, W̃n−1(G):

Wn = ε(n)Wn−1 + W̃n−1(G)[1− ε(n)] (3)

The coefficient ε(n) determined the degree to which the inputs from g-networks affect the p-net’s weight matrix. If
ε(n) = 1, the weight matrix of p-network is entirely determined by the result of previous iteration of CIFAR training
and is not sensitive to the inputs from g-net. In the other extreme, when ε(n) = 0, the values of p-network weights
and biases are entirely generated by the g-networks. We therefore assumed that ε(n) ≈ 1 in the beginning of training,
when g-networks are naive, and ε(n)→ 0 in the end of training. We adopted an exponential annealing schedule with
ε(n) = exp(−n/λ), where parameter λ = 20 determined the number of iterations in the intermittent training over
which the g-networks are assumed to be naive and irrelevant, and initialization using g-networks is assumed to be
detrimental. Since, in our approach, the total number of iterations is 500, the initialization period is negligibly short
compared to the whole training (λ� 500).

RL Methods

We performed experiments on two reinforcement learning tasks from the OpenAI environment (Brockman et al., 2016):
BeamRider and Half Cheetah. The details of the experiments follows.

For the first experiment, we tested the genomic bottleneck on solving the BeamRider task, which is part of the Atari
benchmark (Bellemare et al., 2013). The task in the beam rider is to traverse a series of sectors where each sector
contains 15 enemies and a boss at the end. Additionally, the agent needs to avoid or destroy the debris coming its way.
The agent is equipped with three torpedoes that can be used to kill the enemies or destroy the debris.

We used the pixel images of Atari frames as our state space. Atari frames are 210 x 160-pixel images with a 128 color
palette. This makes it computationally expensive to use it directly as input to the network. In order to reduce the
dimension of the input, we performed the following preprocessing steps on the images: conversion of the RGB image
to gray scale, cropping it to get an image of size 190 x 144 and finally resizing it to the size 84 x 84. The action space is
of size 9 with various possible actions: fire up, fire, up, left, right, left fire, right fire, up left, up right, and do nothing.
The score obtained while playing the game was used as the reward signal.
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Figure S.1: Networks’ structure for MNIST and CIFAR datasets (A) Neuron labels are assigned by a 2D Gray code, so
that neurons close in image space have similar (Hamming distance = 1) labels. The structure of g-networks for MNIST
(B) and CIFAR10 (C) datasets.
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Figure S.2: Training strategies of g-networks. (A) End-to-end backpropagation of errors from the output of the
p-network to g-networks. This implementation is slow since it involves generating a complete set of p-network weights
and biases for each p-network minibatch. (B) The intermittent training strategy. G-network of generation n-1 is used
to generate the p-network (down arrow, generation n). The p-network is trained using several minibatches without
backpropagation of the gradients into g-network. Then, the g-network is trained to match the adjusted p-network (up
arrow in generation n). The resulting g-network in generation n is used to generate the p-networks in the next step (n+1).
(C) The dynamics of training of g-network for the MNIST dataset. (D) The dynamics of training for CIFAR10 dataset.
The small bump in performance at generations 2-7 is due to the annealing strategy used to initialize g-networks in this
case [Eq. (3)].
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Figure S.3: The results of weight transfer between MNIST and FMNIST datasets compared to training networks based
on random initialization (blue). Weight transfers using the entire set of weight matrices (dotted red lines) are contrasted
to the transfer using g-nets (solid red). Two types of g-nets are used, with low (A, B) and high (C, D) compression.
Transfers from MNIST to FMNIST (A, C) and from FMINST to MNIST (B, D) show qualitatively the same results –
training from scratch is better for this pair of datasets, even if the transfer occurs using the entire weight matrix (dotted,
no compression).

Figure S.4: The results of reverse transfer experiments from SVHN to CIFAR10 dataset. Training of a naïve weight
matrix from scratch (blue) is contrasted with direct weight transfer (dotted lines) and transfer using the g-net (solid
lines, GN30). Different sets of layers were transferred as indicated by the color map. Overall, these results show that,
although different scenarios of weight transfer yield faster training than training from scratch (blue), the difference
between uncompressed (dotted) and g-net compressed (solid) cases is not significant.
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For the p-network, we used Dueling Deep Q Network (DDQN) (Wang et al., 2016) to train the on this task. Dueling
DQN breaks the calculation of Q value into two parts. Q(s, a) = V (s) +A(s, a), where V (s) represents the Value of
state "s" and A represents the Advantage of performing action "a" while in state "s." The value of a state is independent
of action. This aids us in avoiding the overshoot of the Q-value that occurs in vanilla deep Q networks (Mnih et al.,
2015). Since the states are independent of action, action would not have a high Q-value to train on and thus Q-value
would not overshoot. This makes the training smooth and less time-intensive

The p-network architecture includes three 2-D convolutional layers and three fully-connected layers with a total size
of ~3M parameters. The input to the DDQN is our pre-processed image of size 84 x 84 and the output is the Q value
associated with each action.

For the second task, we moved to a more challenging task i.e. ‘Half Cheetah’ (Todorov et al., 2012). One challenging
aspect of this task is that the Half Cheetah uses continuous action spaces rather than discrete unlike most of the Atari
games. This leads to a performance deficit in value approximation-based methods like DDQN.

The state-space of the Half Cheetah is of size 17 which contains the position, angles, and velocities of 8 joints (6 hinge
+ 2 slider joints). The action space is a 6-dimensional continuous space consisting of the torques applied to each hinge
joint respectively. Since we want to maximize the velocity with minimum force generation, the reward function needs a
combination of two components. The first component provides a reward for velocity and the second component gives a
penalty for using more force.

For training the p-network for this task, we need a training method that can deal with continuous action spaces. The
class of methods that addresses this domain includes policy gradient methods because they can directly approximate
the policy of the agent from the state. Proximal policy optimization (PPO) (Schulman et al., 2017) is one of the most
popular policy gradient methods and is heavily used for such continuous action spaces tasks. One of the main reasons
behind this is that policy gradient methods have a convergence problem which is usually addressed by the natural policy
gradient. However, in practice, natural policy gradient involves a second-order derivative matrix which makes it not
scalable for large-scale problems. PPO uses a slightly different approach. Instead of imposing a hard constraint, it
formalizes the constraint as a penalty in the objective function. By not avoiding the constraint at all costs, PPP was able
to use a first-order optimizer like the Gradient Descent method to optimize the objective resulting in faster convergence.
The p-network architecture of the Half Cheetah consists of three fully connected layers with 6092 trainable parameters.
The input to our p-network is the state vector of the environment and the output is the action the agent should take given
that state.
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Figure S.5: Application of genomic bottleneck to the Atari video game Space Invaders. (A) Screen shot of the game.
We used the same architecture as in the Beam Rider case. (B) Dynamics of learning for uncompressed network (blue) is
slower than for a 784-fold compressed network (red), which achieves nearly perfect performance on episode 0. Shaded
regions show standard deviation of the data. (C) Performance over first 5 episodes as a function of compression.
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