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Abstract7

The process of learning good features to discriminate among numerous and different bird8

phrases is computationally expensive. Moreover, it might be impossible to achieve acceptable9

performance in cases where training data is scarce and classes are unbalanced. To address10

this issue, we propose a few-shot learning task in which an algorithm must make predictions11

given only a few instances of each class. We compared the performance of different Siamese12

Neural Networks at metric learning over the set of Cassini’s Vireo syllables. Then, the network13

features were reused for the few-shot classification task. With this approach we overcame the14

limitations of data scarcity and class imbalance while achieving state-of-the-art performance.15

Keywords— Bioacoustics, Machine Learning, Birdsong phrase classification16

1 Introduction17

Current evolutionary studies of bird vocalizations require automatic unit segmentation and classification18

methods capable of generalizing not only across species but also dealing with noisy environments. By19

extracting patterns from large-scale recordings new hypotheses regarding birdsong structure could be20

tested while at the same time reduce human bias and increase research reproducibility. Previous work in21

this area has been done with different species using a wide range of techniques such as Hidden Markov22

Models (Kaewtip, Taylor, & Alwan, 2016; Koumura & Okanoya, 2016), Support Vector Machines (Arriaga,23

Kossan, Cody, Vallejo, & Taylor, 2013), Dynamic Time Warping (Tan, Alwan, Kossan, Cody, & Taylor,24

2015) and Deep Learning (Koops, van Balen, & Wiering, 2015). Within these lines in this work we focus on25

automatic unit classification by comparing different Siamese Neural Networks, a few-shot machine learning26

technique capable of discriminating syllable classes from scarce data.27

∗santiagorenteria25@gmail.com

1

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.16.435625doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435625


Our main objective is to find a classifier capable of dealing with data sparsity and class imbalance in28

Vireo cassinii syllable repertoires. These are common issues in birdsong research given limited recordings29

and the existence of rare syllables. In the long run, we expect our results to have a significant impact30

in ecology and evolutionary biology, where new analysis tools will overcome the limitations of manual31

(human) recognition (Kershenbaum et al., 2016). We propose a few-shot machine learning approach to32

classify Vireo cassinii syllables using a family of siamese neural networks with different encoders, including33

convolutional, LSTM, Bidirectional LSTM fully-connected and ”encoderless” siamese networks. The latter34

is equivalent to k-nearest neighbor classifier with euclidean metric.35

The main contribution to biology is providing a tool to increase our knowledge about sophisticated36

signaling strategies and syntactic structures in non-human species as birds. By the other side, the model37

is computationally interesting since few-shot classification approaches constrain the algorithm to learn to38

discriminate among instances by only observing a few samples from each class. This is similar to the kind39

of learning observed in children, which develop sophisticated rules about new word categories from very few40

or even no examples at all (Yip & Sussman, 1997; Furbee, 1992). In contrast, most Deep Learning models41

rely on large data sets to achieve acceptable performance. As far as we know, few-shot deep learning has42

not been applied to birdsong, although in principle the general approach can be replicated for almost any43

modality or domain.44

1.1 Birdsong structure45

Acoustic sequences are ubiquitous, from bird songs to human speech and music. More often than not46

they convey meaning, and have an important role in evolution as individuals can take advantage of the47

information contained in them (Kershenbaum et al., 2016). But when a bird sings how do we know whether48

communication has occurred? It is generally held by biologists that if the signal modifies the behavior of49

the receiving animal, then we can infer that communication has taken place. Similarly, we might say an50

acoustic sequence carries information when it has the potential to reduce uncertainty on the part of the51

receiver.52

Bird acoustic sequences, also known as vocalizations, can be divided into songs and calls. In general53

songs tend to be long, complex vocalizations mostly produced by males during the breeding season for54

maintenance of territories and mate attraction. To these features there are innumerable exceptions covered55

by (Kershenbaum et al., 2016). By the other side, calls tend to be shorter, simpler in structure and produced56

by both sexes throughout the year. They are less spontaneous than songs and are usually related to specific57

functions such as flight, threat and alarm. One of the great questions of ornithology is why Passerines58

have evolved such complex songs and a special neural pathway to learn them. A question that can be59

tackled through algorithmic segmentation and classification methods (Catchpole & Slater, 2008).60

Songs are subdivided in phrases, syllables and elements. Each phrase consists of a series of units (syl-61

lables) which occur together in a particular pattern. Similarly, syllables when complex, can be constructed62

from several of the smallest building blocks of all, known as elements. Regarding songs, each bird can have63

more than one version, making up a repertoire of song types. It is important to mention in the literature64

phrases and syllables are used interchangeably but ultimately they refer to medium-sized fragments of bird65

vocalizations.66
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1.2 Birdsong analysis techniques67

Accurate analysis of bird vocalizations depends on appropriately characterizing their constituent units.68

Nevertheless, there is no single definition of unit, these vary widely across researchers. This is by no means69

whimsical as the characterization of units depends on the question being addressed.70

Often the details of acoustic production and perception are hidden from the researcher, in consequence71

definition of acoustic units has to be carried out on the basis of observed acoustic properties. The first step72

is defining what possible functions a sound has, then formulating appropriate hypotheses after a period73

of observation and field study, which relates the singing bird to its habitat, general life and evolutionary74

history. Having observed and listened to birds in their habitat, the next step is to make audio recordings75

of their song and analyze them (Catchpole & Slater, 2008). Most analytic methods for unit classification76

assume they can be divided into discrete, distinct categories (Clark, Marler, & Beeman, 1987). According77

to this hypothesis, Kershenbaum et al. (2016) describe four main approaches to classify units by their78

acoustic properties:79

1. Manual classification80

Units are ”hand-scored” by humans searching for consistent patterns in spectrograms or by listening81

sound recordings without the aid of a spectrogram. Even if humans are good at pattern recognition,82

manual segmentation and classification is time consuming and prevents taking full advantage of83

large acoustic data sets generated by automated recorders. Similarly, this difficulty hinders research84

reproducibility as sample sizes studied tend to be too small to draw firm conclusions (Kershenbaum,85

2014). Furthermore, manual classification can be prone to subjective error, and inter-observer re-86

liability should be used (and reported) as a measure of the robustness of the manual assessment87

(Kershenbaum et al., 2016).88

2. Classification of manually extracted metrics89

An alternative to manual segmentation is using feature extraction, for example: duration, pulse90

repetition rate, spectral centroid, Mel Frequency Cepstral Coefficient (MFCC) among others. These91

features are then used in classification algorithms and mathematical techniques such as principal com-92

ponent analysis (PCA), discriminant function analysis or classification and regression trees (CART).93

In this category we can find semi-automatic techniques where features are extracted by standard94

algorithms and then verified by human analysts (Kershenbaum et al., 2016).95

3. Fully automatic metric extraction and segmentation96

Automatic segmentation or recognition of acoustic units is not prone to inter-observer variability of97

manual classification. However, current implementations are: not generalizable to all species (Pearre,98

Perkins, Markowitz, & Gardner, 2017), very sensitive to hyperparameters (Ranjard & Ross, 2008),99

require pre-determined syllable classes and boundaries (Koumura & Okanoya, 2016) or struggle at100

recognizing subtle features that can be detected both by humans and birds (i.e. high false positives101

rate or low accuracy in test sets) (Fukuzawa, Marsland, Pawley, & Gilman, 2017; Koops et al., 2015).102

Interestingly, manual classification has been shown to out-perform automated systems in cases where103

the meaning of acoustic signals is known a priori, possibly because the acoustic features used by104

fully automated systems may not reflect the cues used by the focal species (Kershenbaum et al.,105

2016). Although, there is motivation in developing fully automated segmentation and classification106

algorithms given they allow large scale analysis of birdsong recordings.107

The definition of a unit for a particular species depends on the question being addressed and is depen-108

dent on a large number of factors. In particular, availability of behavioral information, such as responses109

of individuals to playback experiments and morphological information. Kershenbaum et al. (2016) suggest110

the following protocol to define acoustic units:111
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1. Determine what is known about the production mechanism of the signalling individual.112

2. Determine what is known about the perception abilities of the receiving individual. Perceptual113

limitations may substantially alter the structure of production units.114

3. Choose a classification method, such as manual, semi-automatic, or fully automatic. Some unit115

types lend themselves more readily to certain classification techniques than others.116

Various algorithmic approaches to birdsong recognition have been made in the last years. For example,117

Potamitis used Deep learning for detecting bird vocalisations (Potamitis, Ntalampiras, Jahn, & Riede,118

2014). Ranjard and Ross achieved unsupervised bird song syllable classification using evolving neural119

networks (Ranjard & Ross, 2008). Modern fully automatic techniques rely on Hidden Markov Models and120

Convolutional Neural Networks trained on manually annotated data (Koumura & Okanoya, 2016).121

2 Materials & Methods122

We propose a few-shot machine learning approach to classify Vireo cassinii syllables using a family of123

siamese neural networks with different encoders, including convolutional, LSTM, Bidirectional LSTM fully-124

connected and ”encoderless” siamese networks. The latter is equivalent to k-nearest neighbor classifier with125

euclidean metric.126

Figure 1: Siamese Network Model Overview

We studied the generalization capabilities of this family of siamese models under 1,3,5 and 7 examples.127

In order to do so, each model was trained to carry out a verification task, which then generalized to few-shot128

classification: First, it learned to assign a low distance score to pairs of syllables of Vireo cassinii belonging129

to the same class. Then, we used the learned similarity function to evaluate syllables in a pairwise manner130

against a representative instance of each class (i.e. average of training set). The pairing with the lowest131

distance score was awarded the highest probability for the classification task. Figure 1 depicts the Siamese132

Network model in general.133
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2.1 Species: Vireo cassinii134

This species, also known as Cassin’s Vireo (abbreviated as “CAVI” in singular, or “CAVIs” in plural in135

this paper) belongs to the order of Passeriformes and to the Vireonidae family. It is commonly found in136

many coniferous and mixed-forest bird communities in far western North America. Only the males of this137

species give full songs, and their songs have been described as a jerky series of blurry phrases, separated138

by pauses of ≥ 1 second. Each phrase is made up of 2 to 4 notes (syllables), with song often alternating139

between ascending and descending phrases. The song is repeated tirelessly, particularly when the singing140

male is unpaired (Goguen & Curson, 2002).141

Songs from two males on two different territories in a conifer-oak forest in California were recorded142

at approximately 800 m elevation (38◦29′04′′N), (120◦38′04′′W), near the city of Volcano in California143

(Amador County), USA. The data collection was done between April and June 2010. Manual inspection144

was done using Praat software to identify the phrase class, and mark the start and end times of each145

song element. The recordings and annotations for this 2010 collection are freely available online at Bird-146

DB. This was the same data set used by Tan, Kossan, Cody, Taylor, and Alwan (2013) for bird phrase147

verification and classification with a sparse representation-based classifier. In this work it will be referred148

as Tan2013 data set.149

2.2 Data & Tools150

In Tan2013 dataset there are 1116 tokens in total grouped in 64 classes, with a range of 1 to 73 tokens151

each (See Figure 7). The more frequently observed 32 phrase classes have at least n = 12 tokens. These152

conform the filtered set, which amounts to 1033 tokens. Phrases depicted in Figure 8, were used as a153

support set for siamese neural network classification. Since our main interest was to test siamese neural154

networks performance in a k-shot scenario with k = [1, 3, 5, 7], n − k tokens from each of the 32 classes155

were removed at random from the filtered set (See Figure 5) to make the test set. The remainder conforms156

the training set. Infrequent classes amount to 83 tokens, and are one of the main reasons few-shot learning157

approaches are relevant to birdsong research.158

Regarding phrase duration, the longest instance is of class ’at’ with 27525 audio samples, and the159

shortest is of class ’bm’ with audio 3794 samples. With a sample rate of 22.5 Khz they are respectively160

1.24 s and 0.172 s long. In the filtered set the shortest is the same but the longest is of class ’ac’ with a161

duration of 1.06 s and 21352 audio samples (See Figure 6).162

2.3 Database: Bird-DB163

Projects on the acoustic monitoring of animals in natural habitats generally face the problem of manag-164

ing extensive amounts of data produced for experimentation. While there are many publicly accessible165

databases for birdsong recordings, such as Xenocanto (Planqué & Vellinga, 2005) and Macaulay Library166

from Cornell University, most of them lack annotated song sequences.167

Bird-DB provides an interface and annotated database for studying the syntax of bird song. Users168

are capable of selecting attributes relating to several general aspects of the stored recordings, for instance:169

recording hardware, location and environment. Queries can be narrowed down to specific species and170

individuals. The database returns a list of records meeting those criteria, with links to the appropriate171

audio and annotation files in TextGrid format (Arriaga, Cody, Vallejo, & Taylor, 2015).172
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2.4 Pre-processing173

Phonological analysis of animal vocalizations requires specialized software providing visualization, anno-174

tation and measurement tools for analyzing audio recordings of any length. Raven Pro (Bioacoustics175

Research Program & Program, 2014), a software maintained by The Cornell Lab of Ornithology, is widely176

used in bioacoustic research. Nevertheless, since the recordings from Bird-DB were annotated in Praat177

software (Boersma & Weenink, 2011), we stick to this option. Both have similar specifications, despite178

Praat was designed for human phonetics analysis, whereas Raven Pro emerged from the broader field of179

bioacoustics.180

Birdsong phrase annotations in Praat are processed and stored using the Textgrid format. Audio and181

annotation files are stored separately. A TextGrid object consists of a number of tiers of two kinds:182

1. Interval tier: A connected sequence of labelled intervals, with boundaries in between.183

2. Point tier: A point tier is a sequence of labelled points.184

Through Praat ’s interface users can store and label sequences of intervals, which later are employed185

to segment recordings. It is important to note birdsong phrase identifiers, like bm or bp, have no intrinsic186

meaning, they only provide a notation system to label classes of sounds.187

Recordings were annotated by humans and segmented using a Python library (praatIO) by taking as188

an input the corresponding pairs of (Textgrid, audio file). The output of this procedure are a set of labeled189

audio (.wav) segments at a sample rate of 22,050 Hz and 32 bit resolution each. Since the meaningful190

information of Tan2013 CAVI database is within the range of 1 kHz and 8 kHz, the rest of the frequencies191

can be safely removed using a bandpass filter. For this reason we applied a Butterworth Bandpass filter192

with 1 kHz and 8 kHz cut-off frequencies.193

The sampling rate was first reduced to 20 kHz because energies of interest are below 10 kHz. Since194

every phrase instance has a variable duration, to generate a feature vector of the same dimension for each195

token, a file-duration-dependent frame shift was used to compute its spectrogram. The frame-shift was196

calculated by Tan (Tan, Kaewtip, Cody, Taylor, & Alwan, 2012) as follows for t = [0, N − 1], with N as197

the number of frames per token:198

St = round(
D −W

N − 1
t)

D and W denote respectively file duration and frame length in number of samples, whereas the starting199

sample index for frame t is denoted by St. We used the parameters suggested by Tan (Tan et al., 2012),200

64 frames per token and a frame length W of 20 ms, which amounts to 400 samples at a 20 kHz sampling201

frequency.202

A 512-point Fast Fourier Transform is computed at each frame, and values are converted to decibels203

(dBFS) units. Given most of the bird phrase energy content falls within 1 and 8 kHz, only frequency bins204

corresponding to this range are retained. Finally, the sequence of spectrogram vectors is normalized per205

phrase.206
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2.5 Syllable Classification Models207

We evaluated and implemented in Keras framework, four siamese networks with the following feature208

extractors: convolutional (CNN), fully-connected (FCN), LSTM, bidirectional-LSTM networks for k =209

[1, 3, 5, 7], these values were chosen for benchmarking purposes, as they were the ones reported by Tan et210

al. (2012). In addition to Tan2013 nearest subspace approach, we compare the performance of siamese211

k-shot learners to a zero neural network (Zero). This is a siamese neural network with no feature extractor212

mimicking the behavior of a k-nearest neighbor classifier with euclidean metric. As previously mentioned,213

the remaining n− k examples, where n is the number of items in each class, were used as a test set.214

These five models were chosen for they are representative of the most used neural network architectures215

(Goodfellow et al., 2016). Furthermore, they embody different computational principles regarding temporal216

processing, parameter sharing, sparse interaction and connectivity. We summarize neural network details217

in Table 7 in the Appendix.218

Given the stochastic nature of the sampling and optimization procedures in siamese neural networks,219

we ran each model 30 times and provide a 95% confidence interval for each value of k. In this way we can220

assess model sensitivity to training set size under normality assumptions. Hypothesis testing results are221

reported in the following chapter. The support set was generated by averaging per class the spectrograms222

in training set. Thus, the shape of input data is an array of shape (64, 128). The support set is used during223

classification as a set of exemplars to which distances are measured.224

Even if it is desirable, we did not carry out cross-validation nor hyperparameter optimization due the225

high computational cost involved in training multiple deep neural networks. Experiments were performed226

on a laptop with a NVIDIA GeForce GTX 1050 GPU.227

All pairs used to train siamese networks were sampled at random from the pre-processed filtered set,228

which amounts to 1033 instances across 32 classes. During each training round we sampled a total of 64000229

pairs of instances, 2000 per class consisting of half same and half contrasting pairs. The test set contained230

6400 pairs sampled at random, 200 per class. Finally, the output of siamese networks is interpreted as a231

metric between the input spectrograms of shape (64, 128). With this metric we carry out classification by232

assigning to each query the class of the closest instance in the support set.233

3 Results234

Does increasing the value of k (shots) improve the performance of few-shot models? To what extent235

computationally expensive models, such as Siamese Bidirectional LSTM benefit from having more training236

data (larger values of k)? To answer these questions we analyzed the average accuracy of different siamese237

models at four values of k. Average accuracy was computed over the most frequent 32 phrase classes.238

Significance across performance for each model was evaluated using pairwise z-tests for the difference239

between average classification test accuracy with different values of k.240

Tables 1 to 5 provide data on the average classification accuracy of each model at the test set for241

different values of k. Since training sets were small (k = 1, 3, 5, 7), and models’ training phase relied on242

stochastic optimization techniques, we trained each model 30 times with different training set samples243

and random seeds. This decision was taken on the grounds of computational resources availability (i.e.244

experiments were performed on a mid-end personal computer) and the central limit theorem. For more245

details on the implementation please contact the author to obtain the scripts.246
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Fully-connected siamese network (FCN) did not benefit significantly from increasing values of k. FCN247

shows accuracy distributions with high variance, indicating high sensitivity to the selection of training248

instances per class. Highest classification accuracy obtained by this model was 12.81% with 7 shots.249

Convolutional siamese network greatly improved with respect to FCN, but p-values show diminishing250

returns after k = 3. Highest classification accuracy was 77.03% with 7 shots. LSTM siamese network251

had a similar performance (∼ 73%) to its convolutional counterpart for k = 3, but overcame it at k =252

5, 7, indicating greater learning capacity of LSTM siamese network. Highest accuracy for LSTM siamese253

network was 82.03% with 5 shots. Bidirectional LSTM siamese network beat all of the previous models254

with a mean accuracy of 85.14% using 3 shots. Highest accuracy was 91.31% with 7 shots. Finally, the255

Zero neural network beat all of the previous models excepting bidirectional LSTM with a mean accuracy256

of 83.17% using 3 shots. Highest accuracy of the Zero neural network was 90.10% with 7 shots, 1.21%257

below the bidirectional siamese network highest accuracy.258

LSTM mean accuracy improves less significantly as k increases, as opposed to the bidirectional version.259

We can confirm a similar situation for the convolutional siamese network. Additionally, accuracy figures260

from the Appendix show higher overfitting for the convolutional model compared to LSTM and Bi-LSTM261

models for k = 7, as the gap between test and training conditions is larger. This might be explained by262

the fact LSTM models account for the sequential structure of spectrograms. We are faced with a low263

complexity model (Zero Network) performing as good as our most complex one (bidirectional LSTM). We264

will try to explain this in the Discussion section alluding to the manifold hypothesis and the structure of265

data after applying dimensionality reduction techniques.266

Lower limit Mean Upper limit

1-shot 0.0797 0.0887 0.0976

3-shot 0.0980 0.1133 0.1286

5-shot 0.1202 0.1381 0.1561

7-shot 0.1085 0.1281 0.1281

Table 1: 95 % confidence intervals for siamese FCN test classification accuracy

Lower limit Mean Upper limit

1-shot 0.5140 0.5396 0.5652

3-shot 0.7113 0.7324 0.7536

5-shot 0.7382 0.7570 0.7759

7-shot 0.7522 0.7703 0.7884

Table 2: 95 % confidence intervals for siamese CNN test classification accuracy

Lower limit Mean Upper limit

1-shot 0.3864 0.4123 0.4382

3-shot 0.6886 0.7328 0.7769

5-shot 0.7834 0.8203 0.8572

7-shot 0.7745 0.8149 0.8554

Table 3: 95 % confidence intervals for siamese LSTM test classification accuracy
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Lower limit Mean Upper limit

1-shot 0.4710 0.4996 0.5282

3-shot 0.8414 0.8514 0.8613

5-shot 0.8930 0.9024 0.9118

7-shot 0.9073 0.9131 0.9189

Table 4: 95 % confidence intervals for siamese bidirectional LSTM test classification accuracy

Lower limit Mean Upper limit

1-shot 0.6266 0.6463 0.6661

3-shot 0.8233 0.8317 0.8402

5-shot 0.8762 0.8812 0.8861

7-shot 0.8970 0.9010 0.9050

Table 5: 95 % confidence intervals for siamese Zero neural network test classification accuracy

4 Data Visualization267

Figure 2 shows the behavior of the same data after applying Principal Component Analysis (PCA), a linear268

dimensionality reduction technique. We projected the filtered set on the first two principal components,269

those with the greatest accumulated variance.270

Figure 3 shows the behavior of the full dataset (i. e. filtered set) after applying t-Distributed Stochas-271

tic Neighbor Embedding (t-SNE), a dimensionality reduction technique minimizing the Kullback-Leibler272

divergence between the joint probabilities of the low-dimensional embedding and the high-dimensional273

data (Van Der Maaten & Hinton, 2008). The parameters we used were Perplexity: 25; Learning rate: 200;274

Metric: Euclidean; Dimension: 2.275

Figure 4 shows t-SNE projected data along with the centroids computed from an arbitrarily selected276

support set with k = 7. Centroids might be interpreted as class prototypes around which most instances277

cluster. In all cases, before applying dimensionality reduction, spectrograms were flattened to obtain278

vectors of shape 1 × 8192. Then, these vectors were projected on a 2D plane.279

5 Discussion280

The closest study to ours, by Tan et al. (2013), measured the performance of a sparse representation (SR)281

classifier for bird phrase verification and classification in the same dataset we used (referred as Tan2013 ).282

They found that when evaluated against nearest subspace (NS) and support vector machine (SVM) clas-283

sifiers, the SR classifier had the highest test classification accuracy after dimensionality reduction with284

PCA: 89.6% using 7 shots. See Table 6.285

In our study the Zero siamese network reached a similar test classification accuracy with 7 shots286

(90.10%), while the bidirectional LSTM reached it with 5 shots (90.24%). To date, for Tan2013 dataset287

this has been the highest accuracy (see Tables 4 and 5). Therefore, our best models can be considered288

state of the art.289
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Figure 2: Phrases projected using the first two principal components
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Figure 3: Phrases projected using t-SNE
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Figure 4: Test set and class centroids computed from support set
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Despite Tan et al. (2013) performance results are slightly below (∼ 2%) those of our best models, we290

consider the difference statistically and practically insignificant. Unfortunately, proper statistical hypoth-291

esis testing between our models and those of Tan et al. paper could not be carried out because confidence292

intervals were not reported, only average performance.293

Furthermore, the variance of accuracy as a function of the number of shots (k) is reduced both in the294

bidirectional LSTM and Zero siamese network, as compared to the rest of models. This can be explained295

in terms of the sample complexity of few-shot learning models. In other words, the number of training296

samples that we need to provide (so that the learned function is within a small error range most of the297

time) is a function of model complexity (i.e. VC dimension) (Vapnik, 2000; Ma & Fu, 2012). Thus,298

relatively simple models such as fully connected networks have high bias and variance issues given they299

ignore the sequential aspects of birdsong phrases.300

Figure 4 provides support to the manifold hypothesis, which states that sample complexity of the task301

depends only on the intrinsic dimension, but not the ambient dimension of the data manifold (Fefferman,302

Mitter, & Narayanan, 2016; Ma & Fu, 2012). In other words, phrase classes cluster in sub-spaces of lower303

dimension within the 8192-dimensional (ambient) feature space. Which means the first two principal304

components of the full data set may not be able to tell apart 32 phrase classes, but a larger set (<< 8192)305

could do. This may explain why the visualization in Figure 2 shows poor grouping. Maaten and Hinton306

argue that linear dimensionality reduction techniques such as Principal Component Analysis and classical307

multidimensional scaling focus on keeping the low-dimensional representations of dissimilar data points308

far apart. Thus, for high-dimensional data that lies on or near a low-dimensional non-linear manifold it309

is usually more important to keep the low-dimensional representations of very similar data points close310

together. (Van Der Maaten & Hinton, 2008).311

In contrast, t-SNE was particularly useful at revealing cluster structure because it relied on minimizing312

Kullback-Leibler divergence between distributions at high and low dimension. This is unsurprising if we313

consider Tan et al. (2013) obtained a similar classification performance using only 128 features, which314

means the intrinsic dimension is low compared to that of the ambient space. Nevertheless, since t-SNE315

makes use of the manifold hypothesis by preserving local neighborhoods, in data sets with a high intrinsic316

dimensionality and an underlying manifold that is highly varying, the local linearity assumption on the317

manifold that t-SNE implicitly makes (by employing Euclidean distances between close neighbors) may be318

violated.319

We believe the fact Zero siamese neural network, a model without non-linear transformations, per-320

formed as good as the bidirectional siamese network is best explained by the Manifold hypothesis in the321

following way: Zero network computed euclidean distances between the average of the support set per class322

(centroid) and each query. Then, it assigned the label of the closest centroid. Since differential features of323

each class were embedded in low-dimensional sub-manifolds, as shown by Figure 4 and confirmed by Tan et324

al. (2013) results, to classify correctly it sufficed to take the closest centroid in a non-linearly transformed325

8192-dimensional feature (ambient) space.326

By the other side, even if the Zero network is almost as good as the bidirectional LSTM, the bi-LSTM327

has a slight advantage of ∼ 2% which may be greater for datasets with a different manifold structure328

and more classes. Moreover, since we did not carry out hyperparameter optimization for each few-shot329

model, it is premature to generalize any performance gain beyond Tan2013 dataset. This is to say that our330

conclusions are limited to the region of the parameter space we explored, and we cannot say our models331

are better overall.332

Finally, it is important to mention that as opposed to Tan et al. (2013), in this work we were not333

concerned with the effect of dimensionality reduction in linear classifiers, but only with the impact of k334
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(shots) across different end-to-end siamese neural network few-shot classifiers. Overall, our results show335

varying degrees of sensitivity to k as a function of neural architectures and confirm few-shot linear models336

can obtain similar performance to siamese neural networks provided classes are nicely embedded in low-337

dimensional sub-spaces (as shown by t-SNE projection).338

k Classifier d = 32 d = 50 d = 128

SR 81.8 83.6 N.A.

3 SVM 73.5 74.8 72.4

NS 79.8 79.6 82.3

SR 83.9 87.0 88.6

5 SVM 75.3 76.8 77.3

NS 82.0 84.7 84.7

SR 85.5 88.2 89.6

7 SVM 78.7 80.8 81.6

NS 84.5 86.4 86.4

Table 6: Tan et al. (2013) Average accuracy table (%) for different values of k (shots) and d

(number of features). The highest value for each case is boldfaced.

6 Main findings339

We carried out a study on the capabilities of few-shot siamese neural network models for bird phrase340

verification and classification. From a biological perspective, our results shed light on the manifold structure341

and morphological distribution of Vireo cassinii. It known that auditory stimuli of syllables of the same342

class produce similar activation patterns in auditory brain areas (Koumura & Okanoya, 2016). Which343

means phrases that are close according to the metric learned by siamese networks, might share neural344

activation patterns during sensorimotor control.345

Variations in the acoustic properties of birdsong are related to sound production mechanisms and346

features of the habitat (Derryberry, 2009). Thus, monitoring these changes across time and space can347

uncover causal factors of birdsong evolution and habitat selection. For instance, phrases that are close348

in the feature space may share a biological function or physical constraints. Further studies have to be349

carried out in this direction to confirm phonological similarities are meaningful at the biological level.350

More broadly, this work provides a methodology for training machine learning models in class imbalance351

and data sparsity conditions. These are common and challenging problems in biological data (Xu &352

Jackson, 2019). Since they can dramatically skew the performance of classifiers by introducing a prediction353

bias for the majority class, addressing them is of paramount importance, specially in situations where the354

occurrence of false negatives is costlier than false positives (Leevy, Khoshgoftaar, Bauder, & Seliya, 2018)355

(Johnson & Khoshgoftaar, 2019). In our particular situation, LSTM siamese neural networks achieved356

state of the art performance, but we also found that computationally cheaper, and not deep-learning357

based models such as the Zero Network (which is essentially a k−Nearest Neighbors classifier) can achieve358

similar results. Nevertheless, since we did not carry out a thorough evaluation of the hyperparameter space359

of siamese models, it is premature to generalize any performance gain beyond Tan2013 dataset.360

By the other side, the unexpected result of Zero network performing as good as bi-LSTM siamese neural361
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network raised questions about the adequacy of deep learning models. The fact that deep neural networks362

have been effective at more domains than simple linear classifiers does not imply complex models are always363

better. We think it is important to understand how deep learning models process data manifolds before364

drawing any conclusions in this respect. There is ongoing research leveraging methods from statistical365

mechanics to tackle foundational questions in this area, particularly generalization and the effects of366

random initialization (Bahri et al., 2020).367

Furthermore, deep learning models are cognitively cheap to implement, as they are capable of learning368

representations without direct human input, but their computational cost is high. These computational369

factors, as well as those inherent to the nature of data and its distribution should be considered during370

the development phase of machine learning models in computational science.371

Avenues not explored in this work but worth pursuing include: evaluating models beyond Tan2013372

dataset to see if learned features are universally useful across Passeriformes species, measuring the effect of373

transfer learning in classification performance, extending the model to perform segmentation and alignment374

of new phrases as well as classification and evaluating the stability and performance of few-shot learning375

models with different class groupings. Since there is little agreement as to how birdsong elements should376

be defined, this might be relevant from both a computational and bioacoustics point of view.377
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8 Appendix463

Figure 5: CAVI phrases with at least 12 instances

Encoder # Parameters Trainable Layers

Zero 0 0

CNN 68, 672 4

LSTM 444, 288 6

Bi-LSTM 855, 424 6

FCN 1, 131, 264 6

Table 7: Siamese networks summary

18

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.16.435625doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435625


F
ig

u
re

6:
L

en
gt

h
of

C
A

V
I

p
h
ra

se
s

w
it

h
at

le
as

t
12

in
st

an
ce

s

19

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.16.435625doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435625


F
ig

u
re

7:
64

C
A

V
I

p
h

ra
se

s
fo

u
n

d
in

T
a
n

2
0
1
3

d
at

a
se

t

20

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.16.435625doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435625


F
ig

u
re

8:
S

p
ec

tr
og

ra
m

s
of

C
A

V
I

p
h

ra
se

cl
as

se
s

w
it

h
at

le
as

t
12

to
ke

n
s

21

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.16.435625doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435625

