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Summary 

Patterns of diurnal activity differ substantially between individuals, with early risers and late 
sleepers being examples of extreme chronotypes. Growing evidence suggests that the late 
chronotype significantly impacts the risk of developing mood disorders, obesity, diabetes, and 
other chronic diseases. Despite the vast potential of utilizing chronotype information for precision 
medicine, the factors that shape chronotypes remain poorly understood. Here, we assessed 
whether chronotypes are associated with different gut microbiome composition. Using 
metagenomic sequencing, we established a distinct signature associated with chronotype that 
involves two bacterial genera Alistipes (elevated in “larks”) and Lachnospira (elevated in “owls”). 
We have identified four metabolic pathways (e.g. gluconegonesis) that were associated with early 
chronotype. 
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Results and Discussion 
 
Numerous biological, mental, and behavioral functions exhibit circadian oscillations that are 
orchestrated by a central pacemaker in the brain. While the periodicity of these rhythms under 
natural conditions is uniform (24 hr), the phase of these oscillations shows considerable inter-
individual variability. Phase variation is often manifested as the tendency of individuals to be 
active during specific times of the day and is referred to as their chronotype. There is a genetic 
predisposition for chronotype 1, which changes over the course of development and determines 
individual variation in diurnal timing of various functions, such as sleep, cognitive and physical 
activities 2.  
 
The gut microbiome has been shown to regulate metabolic processes and to modulate brain 
functions and behavior via immune, endocrine and neural pathways along the gut-brain axis 3. 
Diurnal oscillations in the function and composition of the gut microbiome have been reported  4,5, 
and in turn, metabolites of gut microbes have been shown to mediate gene expression of the 
circadian clock 5. Furthermore, circadian misalignment with external light conditions induced by 
simulating jet lag in mice was associated with the disruption of feeding patterns, loss of diurnal 
microbiota rhythmicity and dysbiosis, and exacerbated metabolic imbalance including weight gain 
and glucose intolerance 4. Travel-induced jetlag in humans was also associated with microbial 
dysbiosis, and fecal transfer from jet lagged mice and humans to germ free mice created similar 
metabolic impairments 4. Overall, these findings allude to the bidirectional associations between 
gut microbiota and the circadian clock and begs the question as to whether variation in 
chronotype is also linked to distinct microbiota composition. Here, we sought to explore this link 
using metagenomic sequencing. 
 
 
To investigate changes in the gut microbiome compositions of different chronotypes, we collected 
fecal samples from 133 individuals from across Israel (65 females, mean ± SD age, 32.1± 10.2 
years, body mass index (BMI): 23.6 ± 3.5). The distribution of chronotypes is shown in Figure 1A. 
The mid sleep time on free-days (MSF) distribution centered on 4:33 (±SD :34 hr) and did not 
differ significantly between males and females (Watson-Williams, F test, p =0.2). For the analysis 
of microbiome composition, participants were divided into three groups based on their MSF: 
“Early” (n = 18), “Intermediate” (n = 29) and “Late” (n = 42) chronotypes. 
 
DNA from the fecal samples was extracted in order to conduct shotgun metagenomics 
sequencing. The mean library size was 3,091,458 reads (range, 174,934 – 19,829,176). Samples 
were filtered to include the taxa with a minimum relative abundance of >0.01% and were 
identified in 20% of the samples. The identified taxa in the filtered dataset were distributed into 7 
phyla, 14 classes, 17 orders, 28 families, 46 genera, and 87 species. The most ubiquitous genera 
were the Bacteroides, Faecalibacterium, Parabacteroides, and Eubacterium (all detected in more 
than 96% of the samples). The ten most abundant genera are presented in Figure 1B. 

We observed a higher α-diversity (Shannon index) in participants from the early compared to the 
late chronotype (p < 0.05, Kruskal-Wallis rank sum test) indicating a less complex microbiota 
community in the latter. There were no significant differences between early and intermediate or 
between intermediate and late chronotypes (Figure 1C). Chao1 indices, measuring the richness 
of the samples, were not significantly different between the chronotypes (Figure 1D).  

Differences in individuals’ gut bacteria relative abundances were tested using a feature-wise 
association approach, controlling for age, BMI, and gender. Two genera were significantly 
different between the early and late chronotypes, Alistipes (pFDR = 0.2, Figure 2A) and 
Lachnospira (pFDR = 0.2, Figure 2B). Within those genera, two species were significantly 
different between groups. Alistipes finegoldii were more abundant in early compared to both 
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intermediate and late chronotypes (pFDR = 0.2, Figure 2C).  Lachnospira pectinoschiza were 
more abundant in the late compared to early chronotypes (pFDR = 0.2, Figure 2D).  
 
Reads were also assigned to microbial metabolic pathways and differences in relative 
abundances were tested. In total, 15 pathways were significantly different between the groups 
(pFDR < 0.2), 11 of which showed a difference between intermediate to either early or late 
chronotypes. The four pathways that were different between early and late chronotypes (Figure 3) 
included the super-pathway of histidine, purine, and pyrimidine biosynthesis (pathway ID PRPP-
PWY), anaerobic energy metabolism (PWY-7383), super-pathway of pyrimidine 
deoxyribonucleotides de novo biosynthesis (PWY-7211), and gluconegonesis (PWY66-399). All 
four pathways were more abundant in early compared to late chronotypes (Figure 3). 
 
Since a substantial factor shaping the gut microbiome composition is the diet 6, we sought to 
analyze food consumption by the participants. The participants were asked to complete a 
questionnaire that assessed their food eating frequency. Participants reported the weekly 
consumption frequency of 13 types of food (e.g., beef, chicken, pastry, fruits, and vegetables) and 
drinks (water, sugary or diet drinks). The counts of the food items were analyzed using principal 
component analysis (PCA) (Figure 4A). The first principal component (PC1, 17.7%) revealed a 
major dietary difference between participants, where a healthy diet was found in some 
participants (fruits, vegetables, water), while a non-healthy diet (high-sugar, high fat, sugary 
drinks) was found in others. A small but highly significant correlation was found between 
chronotype and PC1 scores (p < 0.01, Figure 4B). As was reported in previous studies 7,  early 
chronotype individuals exhibited a higher adherence towards a healthy diet.  
 
 
Overall, our analysis reveals modest but consistent differences between chronotypes. The finding 
that lower α-diversity, a marker of dysbiosis, was observed in late chronotypes, is consistent with 
growing evidence of increased cardio-metabolic morbidity and mortality risk in this group 8. 
Indeed, previous studies showed that jet-lag in both humans and mice is associated with 
dysbiosis 4, and since late chronotype individuals are predisposed to social jet-lag (i.e., 
misalignment between social and endogenous circadian clocks), the decreased microbial 
diversity that we observed is expected.        
 
We identified two bacterial genera that differed between early and late chronotypes. Interestingly, 
Alistipes, which was enriched in early chronotypes, has previously been reported as being 
overrepresented in older mice 9, and humans 10. This may explain the well-known observation 
that chronotype becomes earlier with age, with MSF advancing by nearly two hours between 
ages 20 to 70 years 11. Furthermore, Lachnospira was more abundant in late chronotypes. In a 
recent human study on microbiota and eating behavior during the day 12, a higher abundance of 
Lachnospira was found when a greater percentage of energy was consumed after 2pm.  This 
finding aligns with our data portraying Lachnospira as a biomarker for the late chronotype, as 
energy consumption is expected to be delayed in these individuals 13.  
 
Finally, our study underscores the role of several metabolic pathways that differ between 
chronotypes, particularly gluconeogenesis (Figure 3). In fact, Gluconeogenesis gluconeogenesis 
is known to be under tight circadian regulation of the host, where expression of gluconeogenesis 
associated genes is stimulated upon anticipation of nightly fasting 14. This suggests an interaction 
between the host and the microbiome metabolic pathways that is likely to be chronotype-
dependent. 
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Materials and Methods 
This study was approved by the local ethics committees at the University of Haifa (#283/18). 
Participants provided written informed consent prior to participation. 
 
The study population consisted of 133 individuals (51% males), evaluated for body mass index 
(BMI) and medication intake. Chronotype was assessed by computing mid sleep time on free-
days (MSF) (2). Stool samples were collected by the participants using the DNA/RNA Shield 
Fecal Collection tubes (Zymo research). DNA extraction of the samples was performed using the 
PureLink™ Microbiome DNA Purification Kit (Invitrogen) according to the manufacturer’s 
instructions. The genomic DNA was sheared to an average size of 300�bp with an M220 
ultrasonicator (Covaris, Woburn, MA, USA). Sheared DNA samples were used for paired-end 
indexed library construction using Ovation Ultralow library systems V2 (NuGEN, San Carlos, CA, 
USA), according to the manufacturer instructions.  
 
Next generation sequencing (Paired end, 2X150bp) was performed by the University of Illinois at 
Chicago, Core for Research, using the Illumina NextSeq500. Metagenomic sequencing data was 
processed with bioBakery workflows utilizing the bioBakery 3 tools 15. Briefly, sequence data 
quality control, including removal of human reads, was conducted using KneadData. Taxonomic 
profiles were generated using MetaPhlAn v3.0 and functional profiles were generated with 
HUMAnN v3.0 using MetaCyc pathway definitions 16. Relative proportions data was transformed 
by centered-log ratio. Microbial communities were compared between different chronotypes. The 
primary analysis was performed using MicrobiomeAnalyst 17 followed by comprehensive analysis 
using the R packages Phyloseq 18, Vegan, and MaAsLin2 v1.06. Alpha diversity indices (Chao1 
and Shannon) were compared using the Wilcoxon rank sum test. Beta diversity distance matrices 
(Aitchison) were compared using the Vegan package’s function ADONIS, a multivariate analysis 
of variance based on dissimilarity tests. Differences in microbial taxa and functional modules 
were assessed using differential abundance analyses with MaAsLin2. Results were visualized 
using the ggplot2 R package. The matrices were visualized using principal coordinate analysis 
(PCA).  
 
Raw metagenomic data are deposited in the National Center for Biotechnology Information 
sequence read archive: BioProject accession is PRJNA714678.  
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Figures 
 

 

 
Figure 1. (A) Chronotype distribution. Chronotype were divided into 7 categories, Extremely early 
(EE): <01:29, Moderately early (ME) 1:30-2:30, SE 2:30-3:30, Intermediate (IM) 3:30-4:30, 
Slightly late (SL) 4:30-5:30, Moderately late (ML) 5:30-6:30, Extremely late (EL) > 6:30. (B) 
Microbiome composition (genus level) in the different chronotype.  The relative abundance of 
main taxa in early (E) intermediate (IM) and late (L) chronotype is shown. (C)+(D) Alpha diversity 
was measured via Chao1 index (C) and Shannon index (D) in early (E) intermediate (IM) and late 
(L) chronotype. Data represent the median (line in box), IQR (box), and minimum/maximum 
(whiskers). Statistical comparisons shown for separate matched-pairs tests with the Kruskal-
Wallis rank sum test corrected using the Benjamini–Hochberg FDR method. 
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Figure 2. Relative abundances of significantly different taxa in early (E) intermediate (IM) and late 
(L) chronotype. Data represent the median (line in box), IQR (box), and minimum/maximum 
(whiskers). 
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Figure 3. Relative abundances of significantly different metabolic pathways in in early (E) 
intermediate (IM) and late (L) chronotype. Data represent the median (line in box), IQR (box), and 
minimum/maximum (whiskers). 
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Figure 4. Principal component analysis (PCA) of food and drink items consumed by the 
participants.  B. Correlation between chronotype (MSF) with scores of PC1 from the PCA analysis 
showing a significant trend (p < 0.01). Fruits, vegetables (and water as a drink) are prominent in 
early chronotypes, while meat, pastry and sugary drinks are associated with late chronotypes.  
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