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Abstract12

Background: Maize cobs are an important component of crop yield that exhibit a high di-13

versity in size, shape and color in native landraces and modern varieties. Various phenotyping14

approaches were developed to measure maize cob parameters in a high throughput fashion.15

More recently, deep learning methods like convolutional neural networks (CNN) became avail-16

able and were shown to be highly useful for high-throughput plant phenotyping. We aimed at17

comparing classical image segmentation with deep learning methods for maize cob image seg-18

mentation and phenotyping using a large image dataset of native maize landrace diversity from19

Peru.20

Results: Comparison of three image analysis methods showed that a Mask R-CNN trained21

on a diverse set of maize cob images was highly superior to classical image analysis using22

the Felzenszwalb-Huttenlocher algorithm and a Window-based CNN due to its robustness to23

image quality and object segmentation accuracy (r = 0.99). We integrated Mask R-CNN into24

a high-throughput pipeline to segment both maize cobs and rulers in images and perform an25

automated quantitative analysis of eight phenotypic traits, including diameter, length, ellipticity,26

asymmetry, aspect ratio and average RGB values for cob color. Statistical analysis identified27

key training parameters for efficient iterative model updating. We also show that a small number28

of 10-20 images is sufficient to update the initial Mask R-CNN model to process new types of29

cob images. To demonstrate an application of the pipeline we analyzed phenotypic variation in30

19,867 maize cobs extracted from 3,449 images of 2,484 accessions from the maize genebank31

of Peru to identify phenotypically homogeneous and heterogeneous genebank accessions using32

multivariate clustering.33

Conclusions: Single Mask R-CNN model and associated analysis pipeline are widely appli-34

cable tools for maize cob phenotyping in contexts like genebank phenomics or plant breeding.35

Keywords: Maize cob, Deep learning, Genebank Phenomics, Object detection, High-throughput36

plant phenotyping, Image analysis, Genetic resources37
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Background38

High-throughput precision phenotyping of plant traits is rapidly becoming an integral part of plant re-39

search, plant breeding, and crop production [1]. This development complements the rapid advances40

in genomic methods that, when combined with phenotyping, enable rapid, accurate, and efficient41

analysis of plant traits and the interaction of plants with their environment [2]. However, for many42

traits of interest, plant phenotyping is still labor intensive or technically challenging. Such a bottle-43

neck in phenotyping [3] limits progress in understanding the relationship between genotype and phe-44

notype, which is a problem for plant breeding [4]. The phenotyping bottleneck is being addressed by45

phenomics platforms that integrate high-throughput automated phenotyping with analysis software46

to obtain accurate measurements of phenotypic traits [5, 6]. Existing phenomics platforms cover47

multiple spatial and temporal scales and incorporate technologies such as RGB image analysis,48

NIRS, or NMR spectroscopy [7, 8, 9]. The rapid and large-scale generation of diverse phenotypic49

data requires automated analysis to convert the output of phenotyping platforms into meaningful50

information such as measures of biological quantities [10, 11]. Thus, high-throughput pipelines with51

accurate computational analysis will realize the potential of plant phenomics by overcoming the phe-52

notyping bottleneck.53

A widely used method for plant phenotyping is image segmentation and shape analysis using geo-54

metric morphometrics [12]. Images are captured in standardized environments and then analyzed55

either manually or automatically using image annotation methods to segment images and label ob-56

jects. The key challenge in automated image analysis is the detection and segmentation of relevant57

objects. Traditionally, object detection in computer vision (CV) has been performed using multi-58

variate algorithms that detect edges, for example. Most existing pipelines using classical image59

analysis in plant phenotyping are species-dependent and assume homogeneous plant material and60

standardized images [13, 14, 15]. Another disadvantage of classical image analysis methods is61

low accuracy and specificity when image quality is low or background noise is present. Therefore,62

the optimal parameters for image segmentation often need to be fine-tuned manually through ex-63

perimentation. In recent years, machine learning approaches have revolutionized many areas of64

CV such as object recognition [16] and are superior to classical CV methods in many applications65

[17]. The success of machine learning in image analysis can be attributed to the evolution of neu-66

ral networks from simple architectures to advanced feature-extracting convolutional neural networks67

(CNN) [18]. The complexity of CNN could be exploited because deep learning algorithms offered68

new and improved training approaches for these more complex method networks. Another advan-69

tage of machine learning methods is their robustness to variable image backgrounds and image70

qualities when model training is based on a sufficiently diverse set of training images. Although71

CNN have been very successful in general image classification and segmentation, their application72

in plant phenotyping is still limited to a few species and features. Current applications include plant73

pathogen detection, organ and feature quantification, and phenological analysis [19, 20, 9].74

Maize cobs can be described with few geometric shape and color parameters. Since the size and75

shape of maize cobs are important yield components with a high heritability and are correlated76

with total yield [21, 22], they are potentially useful traits for selection in breeding programs. High77
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throughput phenotyping approaches are also useful for characterizing native diversity of crop plants78

to facilitate their conservation or utilize them as genetic resources [23, 24]. Maize is an excellent79

example to demonstrate the usefulness of high throughput phenotyping because of its high genetic80

and phenotypic diversity, which originated since its domestication in South-Central Mexico about81

9,000 years ago [25, 26, 27]. A high environmental variation within its cultivation range in combina-82

tion with artificial selection by humans resulted in many phenotypically divergent landraces [28, 29].83

Since maize is one of the most important crops worldwide, large collections of its native diversity84

were established in ex situ genebanks, whose genetic and phenotypic diversity are now being char-85

acterized [30]. This unique pool of genetic and phenotypic variation is threatened by genetic erosion86

[31, 32, 33] and understanding its role in environmental and agronomic adaptation is essential to87

identify valuable genetic resources and develop targeted conservation strategies.88

In the context of native maize diversity we present a CNN-based deep learning model implemented89

in a robust and widely applicable analysis pipeline for recognizing, semantic labeling and automated90

measurements of maize cobs in RGB images for large scale plant phenotyping. Highly variable traits91

like cob length, kernel color and number were used for classification of the native maize diversity of92

Peru [34] and are useful for the characterization of maize genetic resources because cobs are easily93

stored and field collections can be analyzed at a later time point. We demonstrate the application94

of image segmentation to photographs of native maize diversity in Peru. So far, cob traits have95

been studied for small sets of Peruvian landraces, only such as cob diameter in 96 accessions of96

12 Peruvian maize landraces [35], or cob diameter in 59 accessions of 9 highland landraces [36].97

Here we use image analysis to obtain cob parameters from 2,484 accessions of the Peruvian maize98

genebank hosted at Universidad Nacional Agraria La Molina (UNALM) by automated image analysis.99

We also show that the DeepCob image analysis pipeline can be easily expanded to different image100

types of maize cobs such as segregating populations resulting from genetic crosses.101

Results102

Comparison of image segmentation methods To address large-scale segmentation of maize103

cobs, we compared three different image analysis methods for their specificity and accuracy in de-104

tecting and segmenting both maize cobs and measurement rulers in RGB images. Correlations be-105

tween true and derived values for cob length and diameter show that Mask R-CNN far outperformed106

the classical Felzenszwalb-Huttenlocher image segmentation algorithm and a window-based CNN107

(Window-CNN) (Figure 1). For two sets of old (ImgOld) and new (ImgNew) maize cob images (see108

Materials and Methods), Mask R-CNN achieved correlations of 0.99 and 1.00, respectively, while109

correlation coefficients ranged from 0.14 to 0.93 with Felzenszwalb-Huttenlocher segmentation and110

from 0.03 to 0.42 with Window-CNN, respectively. Since Mask R-CNN was strongly superior in111

accuracy to the other two segmentation methods, we restricted all further analyses to this method112

only.113
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Figure 1: Pearson correlation between true and estimated cob length for three image segmentation methods
(Felzenszwalb-Huttenlocher segmentation,Window-CNN,Mask R-CNN). True (x-axis) and estimated (y-axis)
mean cob length (a,c) and diameter (b,d) per image with each approach, split by dataset, ImgOld and ImgNew
are shown. In all cases, MaskRCNN achieves the highest correlation of at least 0.99 with the true values.

Parameter optimization of Mask R-CNN We first describe parameter optimizations during train-114

ing of the Mask R-CNN model based on the old (ImgOld) and new (ImgNew) maize cob image data115

from the Peruvian maize genebank. A total of 90 models were trained, differing by the parameters116

learning rate, total epochs, epochs.m, mask loss weight, monitor, minimask (see Material and Meth-117

ods), using a small (200) and a large (1,000) set of randomly selected images as training data. The118

accuracy of Mask R-CNN detection depends strongly on model parameters, as AP@[.5:.95] values119

for all models ranged from 5.57 to 86.74 for 200 images and from 10.49 to 84.31 for 1,000 images120

for model training (Supplementary Table S1). Among all 90 models, M104 was the best model for121

maize cob and ruler segmentation with a score of 86.74, followed by models M101, M107, and M124122

with scores of 86.56. All four models were trained with the small image dataset.123

Given the high variation of the scores, we evaluated the contribution of each training parameter124

to this variation with an ANOVA (Table 1). There is an interaction effect between the size of the125

training set and the total number of epochs trained, as well as an effect of a minimask, which is often126

used as a resizing step of the object mask before fitting it to the deep learning model. The other127

training parameters learning rate, monitoring, epochs.m (mode to train only heads or all layers), and128

mask loss weight had no effect on the AP@[.5:.95] value. The lsmeans show that training without129

minimask leads to higher scores and more accurate object detection. Table 1 shows an interaction130

between the size of the training set and the total number of epochs. Model training with 200 images131

over 200 epochs was not different from training over 50 epochs or from model training with 1,000132

images over 200 epochs at p < 0.05. In contrast, model training over 15 epochs only resulted in133

lower AP@[.5:.95] values.134
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Table 1: Lsmeans of AP@[.5:.95] in the ANOVA analysis for Mask R-CNN model parameters minimask and
the interaction of training set size × total number of epochs. Mean values that share a common letter are not
significantly different (p < 0.05). Individual p-values of comparisons are in Supplementary Tables S2 and S3.

Minimask Lsmeans

no 79.95a

yes 48.17b

Size of training set Total number of epochs Lsmeans

200 200 72.63a

200 50 69.97ab

1000 50 64.37bc

1000 200 64.17abc

1000 15 62.38bc

200 15 56.51c

Loss behavior of Mask R-CNN during model training Monitoring loss functions of model com-135

ponents (classes, masks, boxes) during model training identifes components that need further ad-136

justments to achieve full optimization. Compared to the other components, mask loss contributed137

the highest proportion to all losses (Figure 2), which indicates that the most challenging process in138

model training and optimization is segmentation by creating masks for cobs and rulers. The best139

model M104 shows a decreasing training and validation loss during the first 100 epochs and a ten-140

dency for overfitting in additional epochs (Figure 2b). This suggests that model training over 100141

epochs is sufficient. Other models like M109 (Figure 2c) exhibit overfitting with a 10-fold higher142

validation loss than M104. Instead of learning patterns, the model memorizes training data, which143

increases the validation loss and results in weak predictions for object detection and image segmen-144

tation.145

Visualization of feature maps generated by Mask R-CNN Although neural networks are con-146

sidered a ”black box” method, a feature map visualization of selected layers shows interpretable147

features of trained networks. In a feature map, high activations correspond to high feature recogni-148

tion activity in that area, as shown in Figure 3A for the best model M104. Over several successive149

CNN layers, the cob shape is increasingly well detected until, in the last layer (res4a) the feature150

map indicates a robust distinction between foreground with the cob and ruler objects and the back-151

ground. High activations occur at the top of the cobs (Fig. 3A, res4g layer), which may contribute to152

localization. Because the cobs were oriented according to their lower (apical) end in the images, it153

may be more difficult for the model to detect the upper edges, which are variable in height. Overall,154

the feature maps show that the network learned specific features of the maize cob and the image155

background.156

The Mask R-CNN detection process can be visualized by its main steps, which we demonstrate157

using the best model (Figure 3B). The top 50 anchors are output by the Region Proposal Network158

(RPN) and the anchored boxes are then further refined. In the early stages of refinement, all boxes159
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Figure 2: Mask R-CNN training and validation losses during training for 200 epochs on ImgOld and ImgNew
maize cob images from the Peruvian genebank. a) Loss curves for model M104, which emerged as the best
model b) Model M104 with a different scale on the y-axis. The mask loss showed the largest effect on overall
loss, indicating that masks are most difficult to optimize. Other losses, like class loss or bounding box loss, are
of minor importance. c) Model M109 shows overfitting as indicated by much higher validation losses resulting
in an inferior model based on AP@[.5:.95].

already contain a cob or ruler, but boxes containing the same image element have different lengths160

and widths. In later stages, the boxes are further reduced in size and refined around the cobs and161

rulers until, in the final stage, mask recognition provides accurate-fitting masks, bounding boxes,162

and class labels around each recognized cob and ruler.163

The best Mask R-CNN model for detection and segmentation of both maize cobs and rulers is164

very robust to image quality and variation. This robustness is evident from a representative subset165

of ImgOld and ImgNew images that we did not use for training and show a high variation in image166

quality, backgrounds and diversity of maize cobs (Figure 4). Both the identification of bounding boxes167

and object segmentation are highly accurate regardless of image variability. The only inaccuracies168

in the location of bounding boxes or masks occur at the bottom edge of cobs.169

Maize model updating on additional image datasets To extend the use of our model for images170

of corn cobs taken under different circumstances and in different environments (e.g., in the field),171

we investigated whether updating our maize model for new image types with additional image data172

included in the ImgCross and ImgDiv data sufficiently improves the segmentation accuracy of cob173

and ruler elements compared to a full training process starting again with the standard COCO model.174

We used the best maize model trained on ImgOld and ImgNew data (model M104, hereafter maize175

model), which is pre-trained only on the cob and ruler classes. In addition to updating to our maize176

model, we updated the COCO model with the same images. In this context, the COCO model serves177

as a validation, as it is a standard mask-R CNN model trained on the COCO image data [37], which178

contains 80 annotated object classes in 330K images.179

Overall, model updating using training images significantly improved the AP@[.5:.95] scores of the180
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d) res4ac) res4db) res4g a) res4hA

B a) b) c) d) e)

Figure 3: Feature map visualizations and improved segmentation throughout learning A) Examples of feature
map visualizations on resnet-101 (for an explanation, see Materials and Methods). a) An early layer shows
activations around the cob shape and the ruler on the right. b) The next layer shows more clarified cob shapes
with activations mainly at the top and bottom of cobs c) A later layer shows different activations inside the cob.
d) The latest layer masks the background very well masked from cobs and rulers. B) Visualization of the
main detection procedure of Mask R-CNN a) The top 50 anchors obtained from the region proposal network
(RPN), after non-max suppression. b), c) and d) show further bounding box refinement and e) shows the
output of the detection network: mask prediction, bounding box prediction and class label. All images are
quadratic with a black padding because images are internally resized to a quadratic scale for more efficient
matrix multiplication operations.

a

b

Figure 4: Examples of detection and segmentation performance on a representative example of diverse
images from the Peruvian maize landrace ImgOld (a) and ImgNew (b) image sets including different cob and
background colors.
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Figure 5: Improvement of AP@[.5:.95] scores during 50 epochs of model updating to different maize cob
image datasets (a, b: ImgCross; c, d: ImgDiv). Updating on the COCO initial weights/COCO model (a,c) in
comparison to updating on the pre-trained maize model (b,d) depends on different amounts of training images,
namely 10, 20, 30, 40 or 50 images.

additional image datasets (Figure 5), with scores differing between image sets, initial models, and181

training set sizes. With standard COCO model weights (Fig. 6a, c), AP@[.5:.95] scores were initially182

low, down to a value of 0, in which neither cobs nor rulers were detected. However, scores increased183

rapidly during up to 0.7 during the first 30 epochs. In contrast, with the pre-trained weights (Fig. 5b,184

d) of the maize model AP@[.5:.95] scores were already high during the first epochs and then rapidly185

improved to higher values than with the COCO model. Therefore, object segmentation using ad-186

ditional maize cob image data was significantly better with the pre-trained maize model from the187

beginning and throughout the model update.188

Given the high variation in these scores, we determined the contribution of the three factors starting189

model, training set size and training data set to the observed variation in AP@[.5:.95] scores with190

an ANOVA. In this analysis, the interactions between dataset and starting model were significant.191

By accounting for the lsmeans of these significant interactions (Table 2), updating of the pre-trained192

maize model than of the COCO model was better in both data sets. With respect to traing set sizes,193

AP@[.5:.95] scores of maize model were essentially the same for different sizes and were always194

higher than of the COCO model. In summary, there is a clear advantage in updating a pre-trained195

maize model over the COCO model for cob segmentation with diverse maize cob image sets.196

Descriptive of data obtained from cob image segmentation To demonstrate that the Mask197

R-CNN model is suitable for large-scale and accurate image analysis, we present the results of a198

descriptive analysis of 19,867 maize cobs that were identified and extracted from the complete set of199

images from the Peruvian maize genebank, i.e., the ImgOld and ImgNew data. Here, we focus on the200
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Epoch 1 Epoch 12

-

a
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Figure 6: Detection of cob and ruler after model updating the pretained maize model with differ-
ent image datasets. a) Updating with 10 training images from ImgCross. The original maize
model detected only one cob (epoch 0). After one epoch of model updating both cobs were ac-
curately segmented and after epoch 12 the different ruler element was detected. Photo credit: K.
Schmid, University of Hohenheim. b) Segmentation of various genebank images after updating for
25 epochs with 20 training images from ImgDiv. Photo credits: https://nexusmedianews.com/
drought-is-crippling-small-farmers-in-mexico-with-consequences-for-everyone-else-photos-73b35a01e4dd
(Left) https://www.ars.usda.gov/ARSUserFiles/50301000/Races\_of\_Maize/RoM\_Paraguay\_0\
_Book.pdf (Center) Right: CIMMYT, https://flic.kr/p/9h9X6B. All photos are available under a Creative
Commons License. c) Segmentation of cobs and rulers in post-harvest images of the Swiss Rheintaler
Ribelmais landrace with the best model from ImgCross without updating on these images. Photo credit:
Benedikt Kogler, Verein Rheintaler Ribelmais e.V., Switzerland
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Table 2: Lsmeans of AP@[.5:.95] score of the significant interactions for model updating, dataset × starting
model and starting model × training set size. Means sharing a common letter are not significantly different.

Dataset Starting Model Lsmeans

ImgDiv maize 75.40a

ImgCross maize 71.04b

ImgCross COCO 62.74c

ImgDiv COCO 61.86c

Starting Model Dataset Lsmeans

maize 40 74.11a

maize 50 74.06a

maize 30 73.48a

maize 10 72.40a

maize 20 72.03a

COCO 50 67.54b

COCO 40 65.39b

COCO 20 61.71c

COCO 30 61.67c

COCO 10 55.19d

question whether image analysis identifies genebank accessions which are highly heterogeneous201

with respect to cob traits by using measures of trait variation and multivariate clustering algorithms.202

Our goal was to identify heterogeneous genebank accessions that either harbor a high level of203

genetic variation or are admixed because of co-cultivation of different landraces on farmers fields204

or mix-ups during genebank storage. We therefore analysed variation of cob parameters within205

images to identify genebank accessions with a high phenotypic diversity of cobs using two different206

multivariate analysis methods to test the robustness of the classification.207

The first approach consisted of calculating a Z -score of each cob in an image as measure of de-208

viation from the mean of the image (Within image Z -scores), clustering these scores with a PCA,209

followed by applying CLARA and determining the optimal number of clusters with the average sil-210

houette method. The second approach consisted of calculating a centered and scaled standard de-211

viation of cob parameters for each image, applying a PCA to the values of all images, clustering with212

k -means and determining the optimal cluster number with the gap statistic. With both approaches,213

the best-fitting numbers of clusters was k = 2 with a clear separation between clusters and little214

overlap along the first principal component (Figure 7). The distribution of trait values between the215

two groups shows that they differ mainly by the three RGB colors and cob length (in the Z -score216

analysis only) suggesting that cob color tends to more variable than most morphological traits within217

genebank accessions. Supplementary Figure S1 shows images of genebank accessions classified218

as homogeneous and variable, respectively.219
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Figure 7: Clustering of individual images by their heterogeneity of maize cob traits within images. Clustering
approaches with the extracted cob traits. (A) First two principal components showing the average color of
individual cobs (n = 19, 867 cobs) (left) and average cob color per analyzed image (n = 3, 302 images) (right).
The colors of each dot reflect the average RGB values (i.e., the color) of each cob, or image, respectively. (B)
PCA plots showing clusters identified with CLARA (left) and k -means clustering (right). (C) Distribution of cob
traits within each method and cluster.

Discussion220

Our comparison of three image segmentation methods showed Mask R-CNN to be superior to221

the classic image analysis method Felzenszwalb-Huttenlocher segmentation and Window-CNN for222

maize cob detection and segmentation. Given the recent success of Mask R-CNN for image223

segmentation in medicine or robotics, its application for plant phenotyping is highly promising as224

demonstrated in strawberry fruit detection for harvesting robots [38], orange fruit detection [39] and225

pomegranate tree detection [40]. Here we present another application of Mask R-CNN for maize226

cob instance segmentation and quantitative phenotyping in the context of genebank phenomics. In227

contrast to previous studies we performed a statistical analysis on the relative contribution of Mask228

R-CNN training parameters, and our application is based on more diverse and larger training image229

sets of 200 and 1,000 images. Finally, we propose a simple and rapid model updating scheme230

for applying the method on different maize cob image sets to make this method widely useful for231

cob phenotyping. The provided manuals offer a simple application and update of the deep learning232

model on custom maize cob datasets.233

Identifying optimal parameters for image segmentation After optimizing various model param-234

eters, the final Mask R-CNN model detected and segmented cobs and rulers very reliably with a235

very high AP@[.5 : .95] score of 87.7, enabling accurate and fast extraction of cob features. Since236

such scores have not been reported for existing pipelines for maize cob annotation because they are237

mainly used for deep learning, we compared them to other contexts of image analysis and plant phe-238
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notyping where these parameters are available. Our score is higher than the original Mask R-CNN239

implementation on COCO with Cityscapes images [41], possibly due to a much smaller number of240

classes (2 versus 80) in our dataset. Depending on the backend network, the score of the original241

implementation ranged between 26.6 and 37.1. The maize cob score is also greater than 57.5 in242

the test set for pomegranate tree detection [40] and comparable to a score of 89.85 for strawberry243

fruit detection [38]. Although both maize cob and ruler detection and segmentation performed well,244

we observed minor inaccuracies in some masks. A larger training set did not improve precision and245

eliminate these inaccuracies, as the resolution of the mask branch in the Mask R-CNN framework246

may be too low, which could be improved by adding a convolutional layer of, for example, 56×56247

pixel instead of the usual 28×28 pixel at the cost of longer computing time.248

Mask R-CNN achieved higher correlation coefficients between true and predicted cob measure-249

ments than existing image analysis methods, which reported coefficients of r = 0.99 for cob length,250

r = 0.97 for cob diameter [14] and r = 0.93 for cob diameter [13]. Our Mask R-CNN achieved251

coefficients of r = 0.99 for cob diameter and r = 1 for cob length. Such correlations are a remark-252

able improvement considering that they were obtained with the highly diverse and inhomogeneous253

ImgOld and ImgNew image data (Table 8 and Supplementary Table S4), whereas previous studies254

used more homogeneous images with respect to color and shape of elite maize hybrid breeding ma-255

terial taken with uniform backgrounds. The high accuracy of Mask R-CNN indicate the advantage of256

the learning on specific cob and ruler patterns in deep learning.257

Another feature of our automated pipeline is the simultaneous segmentation of cob and ruler, which258

allows pixel measurements to be instantly converted to centimeters and morphological measure-259

ments to be returned. Such an approach was also used by Makanza et al., [14], but no details260

on ruler measurements or accuracy of ruler detection were provided. The ability to detect rulers261

and cobs simultaneously is advantageous in a context where professional imaging equipment is not262

available, such as agricultural fields.263

Selection of training parameters to reduce annotation and training workload Our Mask R-264

CNN workflow consists of annotating the data, training or updating the model, and running the265

pipeline to automatically extract features from the maize cobs. The most time-consuming and266

resource-intensive step was the manual annotation of cob images to provide labeled images for267

training, which took several minutes per image, but can be accelerated by supporting software [42].268

In the model training step, model weights are automatically learned from the annotated images in an269

automated way, which is a major advantage over existing maize cob detection pipelines that require270

manual fine-tuning of parameters for different image datasets using operations such as thresholding,271

filtering, water-shedding, edge detection, corner detection, blurring and binarization [13, 14, 15].272

Statistical analysis of each Mask R-CNN training parameters helps to reduce the amount of annota-273

tion and fine-tuning required (Tables 1 and 2). For example, there was no significant improvement on274

a large training set of 1,000 compared to 200 images, as learning on and segmenting of two object275

classes only seems to be a simple task for Mask R-CNN. Therefore, the significant amount of work276

involved in manual image annotation can be reduced if no more than 200 images need to be anno-277
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tated. Since many training parameters did not have a strong impact on the final model result, this278

suggests that such parameters do not need to be fine-tuned. For example, using all layers instead279

of only the network heads (only the last part of the network involving the fully-connected layers) did280

not improve significantly the final detection result. Training image datasets with only a few object281

classes on network heads greatly reduces the runtime for model training.282

Technical equipment and computational resources for deep learning The robustness of the283

Mask R-CNN approach imposes only simple requirements for creating images for both training and284

application purposes. RGB images taken with a standard camera are sufficient. In contrast, neural285

network training requires significant computational resources and is best performed on a high per-286

formance computing cluster or on GPUs with significant amounts of RAM. Training of the 90 different287

models (Table S6) was executed over 3 days, using 4 parallel GPUs on a dedicated GPU cluster.288

However, once the maize model is trained, model updating with only a few annotated images from289

new maize image data does not require a high performance computing infrastructure anymore, as290

in our case updating with 20 images was achieved in less than an hour on a normal workstation with291

16 CPU threads and 64GB RAM.292

Model updating with the pre-trained maize model on two different image datasets ImgCross and293

ImgDiv significantly improved the AP@[.5 : .95] score for cob and ruler segmentation on the new294

images. The improvement was achieved despite additional features in the new image data that were295

absent from the training data. New features include rotated images, cobs in different orientation296

(horizontal instead of vertical) and different backgrounds (Figure 6). The advantage of a pre-trained297

maize model over the standard COCO model was independent of the image data set and achieved298

higher AP@[.5 : .95] scores with a small number of epochs (Figure 5) because it saves training299

time for new image types, is widely applicable, and can be easily transferred to new applications for300

maize cob phenotyping. Importantly, the initial training set is not required for model updating. Our301

analyses indicate that only 10-20 annotated new images are required and the update can be limited302

to 50 epochs. The updated model can then be tested on the new image dataset, either by visual303

inspection of the detection or by annotating some validation images to obtain a rough estimate of the304

AP@[.5 : .95] score. The phenotypic traits can then be extracted by the included post-processing305

workflow, which itself only needs to be modified if additional parameters are to be implemented.306

The runtime of the pipeline after model training is very fast. Image segmentation with the trained307

Mask R-CNN model and parameter estimation of eight cob traits took on average of 3.6 seconds per308

image containing an average of six cobs. This time is shorter than previously published pipelines309

(e.g., 13 seconds per image in [13]), although it should be noted that any such comparisons are not310

based on the same hardware and the same set of traits. For example, the pipeline for three dimen-311

sional cob phenotyping performs a flat projection of the surface of the entire cob, but is additionally312

capable of annotating individual cob kernels and the total time for analyzing a single cob is 5-10313

minutes [15]. The ear digital imaging (EDI) pipeline of Makanza et al. [14] processes more than 30314

unthreshed ears at the same time and requires more time per image at 10 seconds, but also extracts315

more traits. However, this pipeline was developed on uniform and standardized images and does316

not involve a deep learning approach to make it generally applicable.317
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Application of the Mask R-CNN pipeline for genebank phenomics To demonstrate the utility318

of our pipeline, we applied it to original images of maize cobs from farmer’s fields during the estab-319

lishment of the official maize genebank in Peru in the 1960s and 1970s (ImgOld) and to more recent320

photographs taken during the regeneration of existing maize material in 2015 (ImgNew). The native321

maize diversity of Peru was divided into individual landraces based mainly on cob traits. Our interest322

was to identify genebank accessions with high or low diversity of cob traits within accessions to clas-323

sify accessions as ’pure’ representatives of a landrace or as accessions with high levels of native324

genetic diversity, evidence of recent gene flow, or random admixture of different landraces. We used325

two different approaches to characterize the amount of variation for each trait within the accessions326

based on the eight traits measured by our pipeline. Unsupervised clustering of variance measure327

identified two groups of accessions that differed in their overall level of variation. The distribution328

of normalized variance parameters (Z-scores and standard deviations) within both groups indicate329

that variation in cob color has the strongest effect on variation within genebank accessions, sug-330

gesting that cob color is more variable that morphometric characters like cob length or cob diameter.331

This information is useful for subsequent studies, in terms of the relationship between genetic and332

phenotypic variation in native maize diversity, the geographic patterns of phenotypic variation within333

landraces, or the effect of seed regeneration during ex situ conservation on phenotypic diversity,334

which we are currently investigating in a separate study.335

Conclusion336

We present the successful application of deep learning by Mask R-CNN to maize cob segmentation337

in the context of genebank phenomics by developing a pipeline written in Python for a large-scale338

image analysis of highly diverse maize cobs. We also developed a post-processing workflow to au-339

tomatically extract measurements of eight phenotypic cob traits from cob and ruler masks obtained340

with Mask R-CNN. In this way, cob parameters were extracted from 19,867 individual cobs with a fast341

automated pipeline suitable for high-throughput phenotyping. Although the Mask R-CNN model was342

developed based on native maize diversity of Peru, the model can be easily used and updated for343

additional image types in contexts like the genetic mapping of cob traits or in breeding programs. It344

therefore is of general applicability in maize breeding and research and for this purpose, we provide345

simple manuals for maize cob detection, parameter extraction and deep learning model updating.346

Future developments of the pipeline may include linking it to mobile phenotyping devices for real-347

time measurements in the field and using the large number of segmented images to develop refined348

models for deep learning, for example, to estimate additional parameters such a row numbers or349

characteristics of individual cob kernels.350

Materials and Methods351

Plant material The plant material used in this study is based on 2,484 genebank accessions of 24352

Peruvian maize landraces collected from farmer’s fields in the 1960s and 1970s, which are stored353
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the Peruvian maize genebank hosted at the Universidad Agraria La Molina (UNALM), Peru. These354

accessions originate from the three different ecogeographical environments (coast, highland and355

rainforest) present in Peru and therefore represent a broad sample of Peruvian maize diversity.356

Image data of maize cobs All accessions were photographed during their genebank registration.357

An image was taken with a set of 1-12 maize cobs per accession laid out side by side with a ruler358

and accession information. Because the accessions were collected over several years, the images359

were not taken under the same standardized conditions of background, rulers and image quality.360

Prints of these photographs were stored in light-protected cupboards of the genebank and were361

digitized with a flatbed scanner in 2015 and stored as PNG files without further image processing.362

In addition, all genebank accession were regenerated in 2015 at three different locations reflecting363

their ecogeographic origin and the cobs were photographed again with modern digital equipment364

under standardized conditions and also stored as PNG images. The image data consist thus consist365

of 1,830 original (ImgOld) and 1,619 new (ImgNew) images for a total of 3,449 images. Overall, the366

images show a high level of variation due to technical and genetic reasons, which are outlined in367

Figure 8. These datasets were used for training and evaluation of the image segmentation methods.368

Passport information available for each accession and their assignment to the different landraces is369

provided in Table S5. All images were re-scaled to a size of 1000x666 pixels with OpenCV, version370

3.4.2; [43].371

Ruler position

Background brightness Distance between cobs

Cob shadowCob shape

Cob color differences within image Color and pattern within cobs

Ruler color and size

Figure 8: Variability of image properties among the complete dataset (containing ImgOld and ImgNew)

We used two different datasets for updating the image segmentation models and evaluating their372

robustness. The ImgCross image dataset contains images of maize cobs and spindles derived from373

a cross of Peruvian landraces with a synthetic population generated from European elite breeding374

material and therefore reflects genetic segregation in the F2 generation. The images were taken375

with digital camera at the University of Hohenheim under standardized conditions and differ from the376
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other data sets by a uniform green background, a higher resolution 3888x2592 pixels (no re-sizing),377

a variable orientation of the cobs, orange labels and differently colored squares instead of a ruler.378

A fourth set of images (ImgDiv) was obtained mainly from publicly available South American maize379

genebank catalogs and from special collections available as downloadable figures on the internet.380

The ImgDiv data vary widely in terms of number and color of maize cobs, image dimensions and381

resolution, number, position and orientation of cobs. Some images also contain rulers as in ImgOld382

and ImgNew.383

Software and methods for image analysis Image analysis was mainly performed on a worksta-384

tion running Ubuntu 18.04 LTS and the analysis code was written in Python (version 3.7; [44]) for385

all image operations. OpenCV (version 3.4.2; [43]) was used to perform basic image operations like386

resizing and contour finding.387

For Window-CNN and Mask R-CNN, deep learning was performed with the Tensorflow (version388

1.5.0; [45]) and Keras (version 2.2.4; [46]) libraries. In Mask R-CNN, the framework [47] from the389

matterport implementation (https://github.com/matterport/ Mask RCNN) was used and adapted to390

the requirements of the maize cob image datasets. Statistical analyses for evaluating the contri-391

bution of different parameters in Mask R-CNN and for the clustering of the obtained cob traits was392

carried out with R version 3.6.3 [48].393

We tested three different approaches (Felzenszwalb-Huttenlocher segmentation, Window-CNN and394

Mask R-CNN) for cob and ruler detection and image segmentation. Details on their implementation395

and comparison can be found in the Supplementary Text, but our approach is briefly described396

below.397

For image analysis using traditional approaches, we first applied various tools such as filtering,398

water-shedding, edge detection and corner detection to representative subsets of ImgOld and ImgNew.399

The best segmentation results were obtained with the graph-based Felzenszwalb-Huttenlocher im-400

age segmentation algorithm [49] implemented in the Python scikit-image library version 0.16.2 [50]401

and the best ruler detection with the naive Bayes Classifier, implemented in the PlantCV library [51].402

The parameters had to be manually fine-tuned for each of the two image datasets.403

Too evaluate deep learning, we used a windows-based (Window-CNN) and a Mask R convolutional404

neural network (Mask R-CNN), both of which require training on annotated and labeled image data.405

Convolutional Neural Networks [52] (CNN) are known to be the most powerful feature extractors and406

their popularity for image classification dates back to the ImageNet classification challenge, which407

was won by the architecture AlexNet [53]. Generally, a CNN consists of 3 different layer types,408

which are subsequently connected: Convolutional layers, Pooling Layers and Fully-Connected (FC)409

Layers. In a CNN for cob detection classes ’cob’ and ’ruler’ can be learned as a feature using410

deep learning, which provides maize cob feature extraction independent of the challenges in diverse411

images like scale, cob color, cob shape, background color and contrast.412

Since our goal was to localize and segment the cobs within the image, we first used sliding window413

CNN (Window-CNN), which passes parts of an image to a CNN at a time and returns the probability414
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that it contains a particular object class. Sliding windows have been used in plant phenotyping415

to detect plant segments [54, 55]. Our implementation of Window-CNN is described in detail in416

Supplementary Text.417

Since sliding window CNN have low accuracy and very long runtime, feature maps are used to418

filter out putative regions of interest on which boxes are refined around objects. Mask R-CNN [47]419

is the most recent addition to the family of R-CNN [56] and includes a Region Proposal Network420

(RPN) to reduce the number of bounding boxes by passing only N region proposals that are likely421

to contain some object to a detection network block. The detection network generates the final422

object localizations along with the appropriate classes from the RPN proposals and the appropriate423

features from the feature CNN. Mask R-CNN extends a Fast R-CNN [57] with a mask branch of two424

additional convolutional layers that perform additional instance segmentation and return a pixel-wise425

mask for each detected object containing a bounding box, a segmentation mask and a class label.426

Implementation of Mask R-CNN to detect maize cobs and rulers The training image data (200427

or 1,000 images) were randomly selected from the two datasets ImgOld and ImgNew to achieve428

maximum diversity in terms of image properties (Table 8 and Supplementary Table S4). Both subsets429

were each randomly divided into a training set (75%) and a validation set (25%). Both image subsets430

were annotated using VGG Image Annotator (via; version 2.0.8 [58]). A pixel-precise mask was431

drawn by hand around each maize cob (Supplementary Figure S2). The ruler was labeled with432

two masks, one for the horizontal part and one for the vertical part, which facilitates later prediction433

of the bounding boxes of the ruler compared to annotating the entire ruler element as one mask.434

Each mask was labeled as ”cob” or ”ruler”, and the annotations for training and validation sets were435

exported separately as JSON files.436

The third step consisted of model training on multiple GPUs using a standard tensorflow implemen-437

tation of Mask R-CNN for maize cob and ruler detection. We used the pre-trained weights of the438

COCO model, which is the standard model [47] derived from training on the MS COCO dataset [37],439

in the layout of resnet 101 (transfer learning). The original Mask R-CNN implementation was modi-440

fied by adding two classes for cob and ruler in addition to the background class. Instead of saving441

all models after each training epoch, only the best model with the least validation loss was saved442

to save memory. For training the Mask R-CNN models, we used Tesla K80 GPUs with 12 GB RAM443

each on the BinAC GPU cluster at the University of Tübingen.444

We trained 90 different models with different parameter settings (Supplementary Table S6) on both445

image datasets. The learning rate parameter learningrate was set to vary from 10−3, as in the446

standard implementation, to 10−5, since models with smaller datasets often suffer from overfitting,447

which may require smaller steps in learning the model parameters. Training was performed over 15,448

50, or 200 epochs (epochsoverall) to capture potential overfitting issues. The parameter epochs.m449

distinguishes between training only the heads, or training the heads first, followed by training on the450

complete layers of resnet101. The latter requires more computation time, but offers the possibility451

to fine tune not only the heads, but all the layers to obtain a more accurate detection. Also, the452

mask loss weight (masklossweight) was given the value of 1, as in the default implementation, or453
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10, which means a higher focus on reducing mask loss. Also, the monitor metric (monitor ) for the454

best model checkpoint was set to vary between the default validation loss and the mask validation455

loss. The latter option was tested to optimize preferentially for mask creation, which is usually456

more challenging than determining object class, bounding box loss, etc. The use of the minimask457

(minimask) affects the accuracy of mask creation and in the default implementation consists of a458

resizing step before the masks are forwarded by the CNN during the training process.459

The performance of these models for cob and ruler detection was evaluated by the IoU (Intersection460

over Union) score or Jaccard index [59], which is the most popular metric to evaluate the perfor-461

mance of object detectors. The IoU score between a predicted and a true bounding box is calculated462

by463

IoU =
Area of Overlap
Area of Union

(1)

The most common threshold for IoU is 50% or 0.5. With IoU values above 0.5, the predicted object464

is considered as true positive (TP), else as a false positive (FP). Precision is calculated by465

P =
TP

TP + FP
(2)

The average precision (AP) was calculated by averaging P over all ground-truth objects of all classes466

in comparison to their predicted boxes, as demonstrated in various challenges and improved network467

architectures [60, 61, 62] .468

Following the primary challenge metric of the COCO dataset [63], the goodness of our trained mod-469

els was also scored by AP@[.5 : .95], sometimes also just called AP, which is the average AP over470

different IoU thresholds from 50% to 95% in 5% steps. In contrast to usual object detection mod-471

els where IoU/AP metrics are calculated for boxes, in the following IoU relates to the masks [41],472

because this explores the performance of instance segmentation. We performed an ANOVA with473

90 model results scores to evaluate the individual impact of the parameters on the AP@[.5 : .95]474

score. Logit transformation was applied to fit the assumptions of heterogeneity of variance and nor-475

mal distribution (Supplementary Figure S3). Model selection was carried out including parameters476

learningrate (10−3, 10−4, 10−5, epochs.m (1:only heads, 2:20 epochs heads, 3:10 epochs heads;477

for the rest all model layers trained), epochsoverall (15, 50, 200), masklossweight (1,10), monitor478

(val loss, mask val loss) and minimask (yes, no). Also all two-way interactions were included in the479

model, dropping non-significant interactions first and then non-significant main effects if none of their480

interactions were significant.481

These results allow to formulate the following final model to describe contributions of the parameters482

on Mask R-CNN performance:483

yijh = µ + bi + vj + kh + (bk)ih + eijh (3)

where µ is the general effect, bi the effect of the i-th minimask, vj the effect of the j-th overall number484

of epochs, kh the effect of the h-th training set size, (bk)ih the interaction effect between the number485

of epochs and the training set size and eijh the random deviation associated with yijh. We calculated486

ANOVA tables, back-transformed lsmeans and contrasts (confidence level of 0.95) for the significant487
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influencing variables. As last step of model training, we set up a workflow with the best model as488

judged by its AP@[.5 : .95] score and performed random checks whether objects were detected489

correctly.490

Workflow for model updating with new pictures To investigate the updating ability of Mask R-491

CNN on different maize cob image datasets, we annotated additionally 150 images (50 training,492

100 validation images) from each of the ImgCross and ImgDiv datasets. For ImgCross, the high493

resolution of 3888 × 2592 pixels was maintained, but 75% of the images were rotated (25% by 90◦,494

25% by 180◦, and 25% by 270◦) to increase diversity. The corn cob spindles on these images were495

also labeled as cobs and the colored squares were labeled as rulers. The ImgDiv images were left496

at their original resolution and annotated with the cob and ruler classes.497

The model weights of the best model (M104) obtained by training with ImgOld and ImgNew were498

used as initial weights and updated with ImgCross and ImgDiv images. Based on the statistical499

analysis, optimal parameter levels of the main parameters were used and only the network heads500

were trained with a learning rate of 10−4 for 50 epochs without the minimum mask. Training was501

performed with different randomly selected sets (10, 20, 30, 40, and 50 images) to evaluate the502

influence of the number of images on the quality of model updating. For each training run, all503

models with an improvement step in validation loss were saved, and the AP@[.5:.95] score was504

calculated for each of them. For comparison, all combinations of models were also trained with the505

standard COCO weights.506

Statistical analysis of model updating results To evaluate the influence of the data set, the

starting model, and the size of the training set, an ANOVA was performed on the data set of AP@[.5 :

.95] from all epochs and combinations. Logit transformation was applied to meet the assumptions

of heterogeneity of variance and normal distribution. Epoch was included as a covariate. Forward

model selection was performed using the parameters dataset (ImgCross, ImgDiv), starting model

(COCO, pre-trained maize model), and training set size (10, 20, 30, 40, 50). All two-way and three-

way parameter interactions were included in the model. Because the three-way interaction was not

significant, the significant two-way interactions and significant main effects were retained in the final
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Ruler masks
-

-

Mask R-CNN cob and ruler detection 
and segmentation

-

Cob masks

Feature extraction:
Cob mean RGB color

Cob shape parameters
Cob length and diameter (Pixel)

Detect individual 
ruler elements

Convert pixels in cm

Cob length and diameter in cm

Figure 9: Post-processing of segmented images using a Mask R-CNN workflow that analyses segments
labeled as ’cob’ and ’ruler’ to extract the parameters cob length, diameter, mean RGB color,and shape pa-
rameters ellipticity and asymmetry. Cob length and diameter measures in pixels are converted to cm values
by measuring the contours of single ruler elements.

model, which can be denoted as follows:

yijh = µ + ci + nj + rh + (bk)ih + eijh

where

µ = general effect

ci = effect of the i-th dataset

nj = effect of the j-th starting model

kh = effect of the h-th training set size

(cn)ih = interaction effect between the dataset and the starting model

(nk )jh = interaction effect between the starting model and the training set size

eijh = random deviation associated with yijh

ANOVA tables, back-transformed lsmeans (Supplementary Tables S7 and S8) and contrasts (confi-507

dence level of 0.95) for the significant influencing variables were calculated.508

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.435660doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435660
http://creativecommons.org/licenses/by-nc-nd/4.0/


DeepCob: Maize cob phenotyping Page 21

Post-processing of segmented images for automated measurements and phenotypic trait509

extraction Mask R-CNN images are post-processed with an automated pipeline to extract phe-510

notypic traits of interest such as cob shape or cob color descriptors (Figure 9). The Mask R-CNN511

model returns a list of labeled masks, which are separated into cob and ruler masks for subsequent512

analysis. Contour detection is applied to binarized ruler masks to identify individual black or white513

ruler elements, whose length in pixel is then average for elements of a ruler to obtain a pixel value514

per cm for each image. Length and diameter of cob masks are then converted from pixel into cm515

values using the average ruler lengths. The cob masks are also used to calculate the mean RGB516

color of each cob. In contrast to a similar approach by Miller et al. [13], who sampled pixels from the517

middle third of cobs for RGB color extraction, we used the complete cob mask because kernel color518

was variable throughout the cob in highly diverse image data. We also used the complete cob mask519

to extract cob shape parameters that include asymmetry and ellipticity similar to a previous study of520

avian eggs [64], who characterized egg shape diversity using the morphometric equations of Baker521

[65]. Since our image data contained a high diversity of maize cob shapes we reasoned that shape522

parameters like asymmetry and ellipticity are useful for a morphometric description of maize cob523

diversity. Overall the following phenotypic traits were extracted from almost 19,867 cobs: Diameter,524

length, aspect ratio (length/diameter), asymmetry, ellipticity and mean RGB color separated by red,525

green, blue channels. Our pipeline returned all cob masks for later analysis of additional parameters526

as .jpg images.527

Quantitative comparison between Felzenszwalb-Huttenlocher segmentation, Window-CNN528

and Mask R-CNN For quantitative comparisons between the three image segmentation meth-529

ods, a subset of 50 images from ImgOld and 50 images from ImgNew were randomly selected.530

None of the images were included in the training data from Window-CNN or Mask R-CNN, and531

the subset is unbiased against the training data. True measurements of cob length and diameter532

were obtained using the annotation tool via [58]. Individual cob dimensions per image could not be533

directly compared to predicted cob dimensions because Felzenszwalb-Huttenlocher segmentation534

and Window-CNN often contained multiple cobs in a box or certain cobs were contained in multiple535

boxes. Therefore, the mean of the predicted cob width and length per image was calculated for each536

approach, penalizing incorrectly predicted boxes. Pearson correlation was calculated between the537

true and predicted mean diameter and length of the cob per image separately for the ImgOld and538

ImgNew sets.539

Unsupervised clustering to detect images with high cob diversity To identify genebank acces-540

sions with high phenotypic diversity in ImgOld and ImgNew images, we used two different unsuper-541

vised clustering methods. In the first approach, individual cob features (width, length, asymmetry,542

ellipticity, and mean RGB values) were scaled after their extraction from the images. The Z-score of543

each cob was calculated as Zij = xij −X̄j
Sj

, where Zij is the Z-score of the i th cob in the j th image, xij is544

a measurement of the i th cam of the j th image, and X̄j and Sj are the mean and are the standard545

deviation of the j-th image, respectively. The scaled dataset was analyzed using CLARA (Clustering546

LARge Applications) as described in the cluster R package [66]. The optimal cluster number was547
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determined by the average silhouette method implemented in the R package factoextra [67].548

In the second approach, we used the standard deviations of individual measurements within each549

each image (Sj ) as input for clustering. The standard deviations of each image were centered and550

standardized so that the values obtained for all images were on the same scale. This dataset was551

then clustered with k -means and the number of clusters, k , was determined using the gap statistic552

[68], which compares the sum of squares within clusters to the expectation under a zero reference553

distribution.554

Abbreviations555

AP@[.5 : .95] :AP@[ IoU=0.50:0.95 ] , sometimes also called mAP.556

CLARA: Clustering Large Applications557

RPN: Region Proposal Network558
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