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The spatiotemporal organization of chromatin influences many nuclear processes: from chromo-

some segregation to transcriptional regulation. To get a deeper understanding of these processes

it is essential to go beyond static viewpoints of chromosome structures, and to accurately char-

acterize chromatin mobility and its diffusion properties. Here, we present GP-FBM: a new com-

putational framework based on Gaussian processes and fractional Brownian motion to analyze

and extract diffusion properties from stochastic trajectories of labeled chromatin loci. GP-FBM is

able to optimally use the higher-order correlations present in the data and therefore outperforms

existing methods. Furthermore, GP-FBM is able to extrapolate trajectories from missing data

and account for substrate movement automatically. Using our method we show that diffusive

chromatin diffusion properties are surprisingly similar in interphase and mitosis in mouse em-

bryonic stem cells. Moreover, we observe surprising heterogeneity in local chromatin dynamics,

which correlates with transcriptional activity. We also present GP-Tool, a user-friendly graphical

interface to facilitate the use of GP-FBM by the research community for future studies of nuclear

dynamics.

Introduction

The spatiotemporal organization of chromatin plays a crucial role in several nuclear processes: from

cell division, where chromatin is compacted during mitosis facilitating chromosome segregation, to

gene regulation, where precise control of transcription correlates with specific long-range chromatin

contacts [1]. Chromosome conformation capture techniques and imaging approaches have revealed
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fundamental structural features of chromatin at different resolutions. Of special interest are topological

associated domains (TADs) which are characterized by an increased frequency of interactions between

genomic loci within the same domain, and reduced interactions across domains [2, 3]. Remarkably, it

has been shown that TAD organization can influence regulation of transcription [4] and that TADs are

dismantled during mitosis where chromatin density dramatically increases [5,6]. However, much less is

known about the diffusion and mobility properties of chromatin and how they depend on the genomic

context. For instance, it is not clear whether or how transcriptional activation affects chromatin

mobility, with previous studies giving seemingly conflicting results [7, 8]. Insights into the dynamic

properties of chromatin motion are required to understand how gene regulatory elements explore the

nuclear space to “find” their distal targets and/or to build regulatory hubs [9].

The simplest model to describe the diffusion of microscopic systems is Brownian motion, whereby

movements are caused by random collisions of small particles within the system [10, 11]. However,

as a bulky polymer making interactions with the nuclear environment, chromatin frequently displays

sub-diffusive behavior, more constrained than classical Brownian motion [12]. Therefore, the mean

squared displacement (MSD) of chromatin is expected to follow this relationship with time: MSD ∝

Dtα. Two parameters thus describe the diffusion properties of chromatin: the apparent diffusion

coefficient D, indicating the speed of motion, and the anomalous diffusion exponent α, which for sub-

diffusive behavior is < 1 which indicates greater confinement (henceforth we refer to it as confinement

parameter). The traditional method used to estimate the diffusion parameters is based on calculating

the MSD over time from measured trajectories and fitting the above theoretical expression to the data.

More sophisticated methods, such as can be derived from Spot-On [13], use the whole distribution of

observed displacements (henceforth referred to as DDB (displacement distribution-based) methods).

However, they do not use all the information contained in the trajectories as higher-order correlations

are discarded. Furthermore, errors due to measurement noise cannot easily be included into the

analysis, and it is not possible to recover missing data points due to misdetection or occlusions.

Here, we propose a novel computational method, GP-FBM, based on Gaussian Processes (GP) [14]

and fractional Brownian motion (FBM) [15, 16]. Importantly, GP provides a consistent probabilistic

framework that considers entire trajectories and thus utilizes all the available information. Trials on

simulated data demonstrate a greater precision of GP-FBM in measuring diffusion parameters over

existing techniques. Furthermore, GP-FBM naturally takes into account imprecision in localization

and occlusions without the need to establish a fitted MSD curve or displacement distributions, as it

is applied directly on trajectories. We further extend this model to account for external sources of

movement (e.g. displacement of whole nuclei or chromosomes) using underlying correlations between
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multiple trajectories, without the need to further develop substrate motion models and experiments

for calibration. Finally, we applied GP-FBM to two experimental systems to study chromatin diffu-

sion properties in different contexts. First, we characterized chromatin dynamics in interphase and

mitosis using tagged arrays inserted at random genomic locations in mouse embryonic stem (ES) cells.

Although chromatin density increases by a factor of three during mitosis [17], our results surprisingly

indicate that there are no significant differences on average in the diffusion coefficient or confinement

parameter. Second, to compare the diffusion properties of different specific genomic regions, we per-

formed double-labeling and live tracking experiments around the HoxA locus in mouse ES cells before

and after induction of the genes with retinoic acid. We discover that, instead of having homogeneous

diffusion properties across euchromatin, genomic loci significantly differ in both their apparent diffusion

coefficients and confinement parameters. In some cases, altered chromatin diffusion properties corre-

late with underlying functions such as gene activity changes. The methods we have developed have

been integrated into a user-friendly package, GP-Tool, for use in the scientific community. Chromatin

mobility has been largely overlooked in previous studies of genome functions, and we anticipate that

GP-FBM will greatly facilitate research in that area.

Results

GP-FBM: A Gaussian process with a fractional Brownian kernel to model particle

diffusion dynamics

Current methods to analyze particle diffusion dynamics rely on two-point statistics as only particle

displacements calculated between two frames at different time intervals are used. This has important

drawbacks: higher order correlations within the trajectories are discarded; errors due to measurement

noise cannot easily be included into the analysis; and missing data points due to misdetection or

occlusions are ignored. To address these problems we built a consistent probabilistic framework based

on Gaussian Processes (GP). Briefly, a GP is defined as a collection of random variables such that every

finite subset of them follows a multivariate normal distribution which is fully determined by its mean

and kernel functions µ(t) and Σ(t, t′) [14]. We assume that a stochastic diffusion trajectory x(t) of a

given chromatin locus can be modeled as a Gaussian process with the following fractional Brownian

kernel:

ΣD,α(t, t′) = D
(
|t|α + |t′|α − |t− t′|α

)
, (1)

where D is the apparent diffusion coefficient and α is the confinement parameter defined in the range

0 < α < 2. This kernel produces a generalized Brownian motion with a mean squared displacement
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Figure 1: GP-FBM outperforms existing methods on simulated data. (a) Simulated 2D trajectory
and GP-FBM inference: black dots are simulated values, red dots are the values after inclusion of noise and
10% occlusions, while the blue line is the most probable trajectory with shading representing the 95% credible
interval as inferred by GP-FBM. (b) Posterior probability distributions for D (top) and α (bottom) inferred
for trajectory in (a). Triangles denote the values set in the simulation. (c) Comparing inference relative errors
as obtained by GP-FBM (blue), MSD (green) and DDB (orange) for 2000 simulated trajectories with random
diffusion parameters.

〈r2〉 = 2nDtα, where n corresponds to the number of degrees of freedom. Then the probability of

observing a discrete trajectory r = {ri} measured at a set of times t = {ti} is given by the multivariate

Gaussian distribution,

N (r|D,α,µ) ∝ exp

[
−1

2
(r − µ)TΣ−1(r − µ)

]
, (2)

where the covariance matrix is defined as Σij ≡ ΣD,α(ti, tj) and we take a constant µ without loss of

generality. Furthermore, we can easily incorporate localization errors by adding the diagonal term σ2i δij

to the covariance matrix Σ, which assumes that errors are decorrelated and normally distributed with

standard deviations σ = {σi} (see Methods). Ultimately, providing a trajectory r and the localization

errors σ, the likelihood (2) can be used to calculate estimates of the diffusion parameters D and α.

To test the performance of the GP-FBM method, we generated 2000 synthetic trajectories using

uniformly distributed random values of D and α in the range 0 < D < 1.5 and 0 < α < 2. As

real trajectories present occlusions and localization imprecision, we removed 10% of the points and

introduced positional noise of about 1/10 of a pixel (an example is shown in Fig. 1a). We then obtain a

posterior distribution over the parameters D and α given the trajectory and the localization errors by

combining the likelihood (2) with flat priors over the parameters, which can be sampled using Markov

Chain Monte Carlo (MCMC) (see Fig. 1b and Methods). Interestingly, once the diffusion parameters

are estimated, the power of the GP framework can be used to infer the most probable trajectory of
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Figure 2: GP-FBM can remove substrate movement to improve estimation of diffusion parame-
ters. (a) Scheme showing the measured trajectories of the particles r1 and r2 as the combination of substrate
motion R and the particles’ diffusion with respect to the substrate, a1 and a2. (b-c) Distributions of relative
errors for the estimation of diffusion parameters on 2000 pairs of simulated trajectories with random parameters
when substrate movement is accounted for (orange) or not (blue). (d) Distributions of relative errors for the
estimation of diffusion parameters of substrate motion.

the particle by removing measurement noise and predicting the localization of the particle position

where occlusions or misdetections occurred (Fig. 1a). We compared the results obtained using our

approach on the simulated data with the traditional MSD method and a DDB method inspired by

Spot-On [13]. GP-FBM clearly outperforms both methods, producing much smaller relative errors of

parameter estimation (Fig. 1c). Unlike GP-FBM, both MSD and DDB methods require trajectories to

be split into individual displacements, thus breaking higher order correlations that the trajectories may

contain. Therefore GP-FBM method can optimally infer diffusion parameters from single trajectories,

using all the information contained in the data and thus achieving greater precision.

Accounting for substrate movement with GP-FBM

Often a particle may be subject to secondary movement that is entangled with its diffusion dynamics. In

chromatin dynamics, this movement is frequently associated with the substrate in which the particle

is diffusing, such as cell displacement, membrane fluctuations or chromatin reallocation, as well as

technical considerations such as thermal drift and undesired media flow. If overlooked, this may result

in over-estimation of the diffusive properties. However, when two or more particles are measured in the

same cell, this substrate movement can be accounted for by analyzing the correlation that introduces

between the particle trajectories. To that end, we developed a correlation covariance model that takes

advantage of the GP-FBM framework to quantify and handle the substrate movement and the possible

correlations that may introduce into the movement of particles (see Methods). In the case of two

particles, we obtain the probability distribution,

ρ(r1, r2|α,D) ∝ exp

−1

2

r1
r2


T Σ1 + ΣR ΣR

ΣR Σ2 + ΣR


−1r1

r2


 , (3)

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.435699doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435699
http://creativecommons.org/licenses/by-nc-nd/4.0/


where Σ1, Σ2 and ΣR are FBM covariance matrices for the two particles and substrate respectively with

diffusion parameters D = {D1, D2, DR} and α = {α1, α2, αR}. This method can easily be extended

for higher numbers of particles, limited only by required computational power in practice. In this

study, we restrict our analysis to five particles per cell.

To demonstrate the utility of this approach, we generated 2000 synthetic trajectories as before, but

now including substrate movement, generating vectors ri as a combination of substrate displacementR

and the actual particle displacement ai (Fig. 2a). Again, simulations are generated with 10% occlusion

rate and localization errors. As expected, without applying the correlation covariance model, D and α

tend to be overestimated; however, the parameters are precisely measured when the substrate correction

is incorporated into the model (Fig. 2b,c). The method is also able to precisely estimate the dynamic

properties of the substrate and to estimate, albeit with less precision, the substrate movement (see Fig.

2d, Fig. S1 and Methods). Furthermore, we tested the performance of the method depending on the

number of tracked particles subjected to the same substrate movement. Precision is increased with use

of more particles, but the bulk of the error is already removed with only two particles (see Fig. S2).

Finally, we showed that GP-FBM outperforms a DDB method where the substrate movement is taken

into account (see Methods and S3). In conclusion, GP-FBM has the ability to remove the substrate

movement from the analysis which is demonstrably important for precise measurement of diffusion

parameters. Other approaches can be applied to estimate cell movements and correct trajectories [18],

but GP-FBM has the advantage of being able to derive this information directly from the trajectories

themselves, provided that two or more particles are tracked per cell, thanks to the correlation that the

substrate movement introduces between the particles.

Analyzing chromatin dynamics in interphase and mitosis with GP-FBM

Due to chromosome compaction and condensation, chromatin density increases by a factor of three

during mitosis [17]. Although, the structure of mitotic chromatin has been intensively studied [5,19,20],

it is unknown if or how the higher density and rearrangement of chromatin fibers affects chromatin

diffusion properties. To measure chromatin dynamics in interphase and mitosis, we used a mouse

ES cell line carrying approximately 20 TetO arrays of 7 kb length inserted at random genomic lo-

cations [21]. GFP::TetR is stably expressed in these cells, where it binds to the TetO arrays for the

simultaneous visualization of several chromatin loci in each cell. We performed confocal live-imaging of

these cells, distinguishing interphase and mitotic cells by DNA staining using Hoechst 33342, recording

images at 4 frames/s for 75 s. To increase the number of mitotic cells we also performed live-imaging

experiments on cells arrested in prometaphase with nocodazole (see Fig 3a and Methods). Before
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Figure 3: Chromatin dynamics are similar in interphase and mitosis, and are highly variable
across loci. (a) Maximum projection images of ES cells containing spots of TetR::GFP (green) bound to
TetO arrays, with DNA (blue) stained with Hoechst (scale bar is 10 µm). Inset shows magnification of the
selected area (scale bar 1 µm). (b) Displacement distributions for loci in interphase (blue), mitosis (red) or
mitotic arrest (green), plotted for different time intervals. The observed mean displacement is shown with
yellow crosses and theoretical curves with and without substrate movement are shown with black continuous
and dashed lines, respectively. The model with substrate movement fits better the data specially at greater
time intervals, suggesting a greater confounding effect, especially for active mitotic cells. (c-d) Distribution
of estimated D and α in the three conditions, correcting for substrate movement. (e-f) Estimations of the
inter-(grey) and intra-cell (color) proportions of total variance for D and α in interphase (blue), mitosis (red)
and mitotic arrest (green).
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applying the GP-FBM probabilistic framework, we enhanced particle localization precision by fitting a

2D Gaussian function to the intensity of the tracked spots (see Methods and S4). Comparing the per-

formance of GP-FBM with and without substrate movement correction, it was apparent that actively

dividing mitotic cells had greater substrate movement (presumably due to coordinated alignment and

movement of chromosomes by the mitotic spindle), but that appreciable correction was required for

precise chromatin dynamics measurements in all conditions (Fig. 3b). Surprisingly, we observed no

significant differences in the mean diffusion coefficient or confinement parameter between interphase

and mitotic chromosomes, suggesting that condensation may not necessarily affect the average local

diffusion dynamics of chromatin (Fig. 3c and d). We observed a small but significant increase in the

confinement parameter of mitotic-arrested cells compared to interphase, which might be related to the

effect that nocodazole has on microtubule formation and thus mitotic chromosome stability [22].

Interestingly, we obtained a wide range of estimated D and α coefficients indicating a remarkable

spot-to-spot variability in their diffusion dynamics, even when correcting for substrate movement. This

variability could partially be caused by differences in the state of the analyzed cells (inter-cell variabil-

ity) leading to different overall chromatin dynamics. Alternatively, differences in the chromatin context

of the genomic loci could lead to specific diffusion dynamics (intra-cell variability). Applying the law of

total variance, we quantified the contribution of inter-cell vs intra-cell variability (see Methods) (Fig.

3e and f). Strikingly, as much as 75% of the variability in D and 65% in α could be explained by dif-

ferences within the same cells, and this estimate is even higher when substrate movement is taken into

account. Together, this suggests that different genomic loci may have characteristic diffusion dynamic

properties due to their specific chromatin or nuclear context.

GP-FBM distinguishes locus- and cell-specific chromatin diffusion properties

Except for a tendency for chromatin mobility to be reduced at centromeric or telomeric locations in

yeast [23], little is known about how different genomic contexts may affect dynamics of the underlying

chromatin. Further, previous studies give conflicting views on whether transcriptional activation can

increase local confinement of a gene (as observed in the same cell before and after estrogen stimulation

[24]) and/or increase gene mobility (as observed comparing cells before and after differentiation [25]).

To compare the diffusion properties of different specific genomic regions, we performed double-labeling

and live tracking experiments with the ANCHOR system [26] around the HoxA locus in mouse ES cells

before and after induction of Hox genes with retinoic acid. We engineered the ANCH1 and ANCH3 [24]

labels into different locations within the same allele to generate two ES lines with equidistant probes

assessing inter-TAD (T1-T2) or intra-TAD (T2-T3) associations (Fig. 4a), and imaged at 2 frames/s
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Figure 4: Chromatin dynamics of three chromatin loci within the HoxA genomic region. (a)
Example of microscopy image obtained on ANCHOR cell line (scale 5 µm) with tracked trajectories shown
in amplified subpanel (scale 0.3 µm). (b) ES Hi-C map around the HoxA cluster, illustrating the locus TAD
structure. The positions of ANCHOR probes (T1, T2 and T3) and the genes Haunt and the HoxA cluster
are shown underneath the map. (c) Inter-probe distances measured for ES cells before (blue) and after (red)
treatment with retinoic acid. (d-e) Comparisons of diffusion coefficients and confinement parameters between
the three labeled loci, before (blue) and after (red) treatment with retinoic acid.

for 2 min. As may be expected, the average inter-probe distance was higher for the inter-TAD

than intra-TAD combination, but with large heterogeneity in the distance distributions (Fig. 4b;

[27]). Interestingly, Hox gene induction had no effect on intra-TAD distances within the neighboring

domain, but increased inter-TAD distances, supporting the idea of general TAD reinforcement as

cell differentiation is induced [28]. We performed GP-FBM for the three loci and found that, in

undifferentiated ES cells, although they have equivalent diffusion rates, region T1 is significantly more

confined than T2 or T3 (Fig. 4c,d). Closer inspection of the ES (and differentiated neuronal precursor

cell) epigenomic profiles around these regions showed that T1 is close (<15 kb) to a putative active

enhancer of Halr1 (Fig. S5). This gene encodes the long non-coding RNA Haunt, whose specific

expression in ES cells is linked to suppression of the HoxA genes [29]. Active histone modifications

around T1, compared to the silent T2 and T3 regions, thus appears linked to a greater confinement

of the chromatin, in line with a previous study of an estrogen-induced gene [24]. Hox gene induction

by retinoic acid had no significant effect on the diffusion rate of T1 but did reduce locus confinement

(Fig. 4c,d). In contrast, the region T2, which lacks any known epigenomic or regulatory features,

had increases in D and α, perhaps indicative of general chromatin remodeling caused on onset of

differentiation. Curiously, T3 became more confined on retinoic acid treatment, with a concomitant

increase in diffusion rate. This region contains sites bound by the architectural protein CTCF, whose
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Figure 5: GP-Tool program: A graphical user interphase to apply GP-FBM on microscopy movies.
(a) Main viewport (b) GProcess plugin also calculates the posterior distribution for D and α using MCMC.
(c) The plugin for trajectories enhances the localization of tracked trajectories, estimate error, particle size and
signal.

binding is either lost or reduced on differentiation to neuronal precursors (Fig. S5). CTCF is proposed

to form a roadblock for cohesin-mediated loop extrusion processes [30, 31], and this may be expected

to play out in alterations to local chromatin dynamics, although this has been largely unexplored.

Overall, these results show a correlation between activity or function of a gene locus and its local

chromatin dynamics, a feature that has been largely overlooked in most previous studies.

GP-Tool: A user-friendly graphical interface to apply GP-FBM

To facilitate use of GP-FBM by the community, we developed a freely available graphical user interface

called GP-Tool (Fig. 5; github.com/guilmont). GP-Tool contains 4 plugins: movie, alignment, trajec-

tories and g-process. The movie plugin allows the user to open TIFF files, display basic ImageJ and

OME metadata, define colormaps for each channel and manually correct for contrast. The alignment

plugin runs the algorithm described in Methods to digitally correct chromatin aberration and possible

camera calibration issues. Alternatively, the user can manually modify each of the parameters. The

program can perform the analysis of several cells in the same movie. The trajectories plugin provides

the ROI utility which allows the user to select spots of interest and extract trajectories. Finally,

the g-process plugin allows to infer the diffusion and confinement parameters correcting for substrate

movement if two or more particles are tracked. It is also possible to use a MCMC sampler to obtain

the posterior probability distribution associated with each of these parameters. Once the analysis is

complete, the tool provides the possibility to save the results into two file formats: JSON and HDF5.
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It also provides export functions to save tables in CSV format. All these formats are easily parsed in

all major computing languages, such as C/C++, Python and R.

Discussion

We developed GP-FBM, a Bayesian framework that combines the inference power of Gaussian processes

with fractional Brownian motion, a flexible model to describe diffusion dynamics. GP-FBM treats

stochastic trajectories as a whole without preprocessing or extracting limited statistics from them.

Therefore, this approach utilizes optimally all the information contained in the data by incorporating

higher-order correlations into the analysis. Furthermore, the Gaussian process framework allows us to

easily integrate spot-dependent localization errors which translates into a consistent weighting of the

time point depending on the precision at which the spot position is determined. Furthermore, missing

data due to spot misdetection or occlusion does not hinder the analysis and, on the contrary, GP-FBM

can be used to infer spot positions at time points when it was not measured. Finally, when two or more

particles are tracked inside the cell, GP-FBM uses possible cross-correlation between the trajectories to

characterize substrate movement and, therefore, remove it from the analysis of the diffusion dynamics

of particles. Benchmarking shows improved precision of GP-FBM against two existing methods: the

traditional MSD curve fitting and the more advanced DDB approach. This increase in accuracy can

potentially be crucial to study changes in diffusion dynamic properties in different conditions, and can

even be applied to single trajectories.

We applied GP-FBM to two ES cell systems to ask different questions about chromatin diffusion

properties. Overall, we observe a large variability in chromatin dynamics when comparing individual

cells and comparing different loci. A fraction of this variability can be explained by differences across

cells, especially in interphase cells, indicating that cell state related to cell cycle or metabolism may

globally influence chromatin dynamics. However, the majority of the observed variability is related to

differences across loci. On the other hand, chromatin exhibits on average similar diffusion dynamics in

interphase and mitosis despite a large difference in chromatin density. This result may be related with

recent findings showing that mitotic chromatin is not as inaccessible and inert as previously thought.

Indeed, several studies have shown that mitotic chromatin is bound by transcription factors [32,33] and

some genes are even transcribed during mitosis [34]. In contrast, different genomic loci can have striking

differences from average chromatin dynamic properties, which appear to correlate with underlying

functions such as transcriptional activity or binding of insulator proteins. More widespread application

of GP-FBM to labeled transcribed loci and other specific regulatory elements, such as enhancers or

TAD borders, will likely uncover more interesting functional links between genome function and the
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dynamics of its component chromatin.

Finally, we present GP-Tool a graphical user interface that helps to perform GP-FBM analysis on

microscopy movies with only a few mouse clicks. Importantly, this tool and the GP-FBM framework

can be applied to study not only chromatin dynamics but potentially any labeled particle that can be

tracked over time. Moreover, the FBM kernel used in this study can easily be replaced in principle

by alternative kernels that may better describe dynamics of other systems. We thus anticipate that

GP-FBM and GP-Tool will greatly facilitate the analysis of diffusion dynamics in biology.

Methods

Cell lines, culture and treatments

Transgenic TetO ES line

The mouse ES cell line was kindly provided by Dr. Luca Giorgetti. It is derived from an X0 clone

of the PGKT2 subclone of the feeder-independent PGK12.1 mouse ES line which was engineered

by co-transfection with pBROAD3-TetR-ICP22NLS-eGFP and pcDNA3.1Hygro to stably express the

TetR-eGFP recombinant protein after random integration and hygromycin selection (250 µg/ml) as

described in [21,35]. The piggyBac transposon system was then used to generate cells with 20-25 stable

random integrations of a 150 TetO binding site array as described in [21]. Cells were cultured on 0.1%

gelatin-coated culture plates in DMEM (4.5g/l glucose) supplemented with GLUTAMAX-I, 15% fetal

calf serum (ES cell culture tested), 0.1 mM beta-mercaptoethanol, 1,500 U/ml leukemia inhibitory

factor (LIF; produced in house) and 0.1 mM non-essential amino acids in 5% CO2 at 37o C. Mitotic

arrest was performed by treating the cells for 5 h with 100 ng/ml Nocodazole (Sigma, M1404-2MG).

Transgenic ANCHOR ES lines

J1 mouse ES cells were grown on gamma-irradiated mouse embryonic fibroblast cells under stan-

dard conditions (4.5 g/L glucose-DMEN, 15% FCS, 0.1 mM non-essential amino acids, 0.1 mM

beta-mercaptoethanol, 1 mM glutamine, 500 U/mL LIF, gentamicin), then passaged onto feeder-free

0.2% gelatin-coated plates for at least two passages to remove feeder cells before subsequent transfec-

tions. The two (“inter-TAD” and “intra-TAD”) ANCHOR transgenic lines were generated by sequential

CRISPR/Cas9-mediated knock-in experiments in the following manner. First, flanking homology arms

(mm9 chr6: 52,320,061-52,321,144, and chr6: 52,321,145-52,322,244) were introduced by PCR ampli-

fication and Gibson assembly into a vector containing ANCH1 sequence [26]. This vector (1 µ g) was

co-transfected with 3 µg of a vector containing Cas9-GFP, a puromycin resistance marker and the
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scaffold to transcribe the sgRNA specific to the T2 insertion site (CGGCGCGCACTTAACACCAA;

vector generated by the IGBMC Molecular Biology platform) in 1 million cells with Lipofectamine-

2000. Two days after transfection, the cells were cultured for 24 h with 3 µg/ml puromycin, then 48

h with 1 µg/ml puromycin to enrich for transfected cells, before sorting individual GFP-positive cells

on to feeders to amplify individual clones. Clones with the correct sequence were screened by PCR

and sequencing, then the CRISPR knock-in process was repeated to insert the ANCH3 sequence [24]

into either the T1 site (“inter-TAD” line; homology arms at chr6: 52,013,471-52,014,370 and chr6:

52,014,371-52,015,270; gRNA sequence AATCGAGCTCACGCCATTAG) or the T3 site (“intra-TAD”

line; homology arms at chr6: 52,622,955-52,623,855 and chr6: 52,623,856-52,624,755; gRNA sequence

TATGCTGAGGCGTGTCGCAA). Final clones were verified for maintained pluripotency by qRT-

PCR to assess Oct4, Nanog (e.g. Fig. S5) and Sox2 expression. Subsequent microscopy experiments

(see below) confirmed heterozygous incorporation of the ANCH sequences (detection of one specific

spot per ANCH sequence per cell) within the same allele (two spots were always in close proximity).

OR transfection

150,000 cells are plated two days prior to imaging off feeder cells onto laminin-511-coated 35 mm glass

bottom petri dishes, and transfected with 3 µg OR1-EGFP and 3 µg OR3-IRFP plasmids (vectors

available from NeoVirTech (contact@neovirtech.com); were modified from original source by changing

the C-terminal fluorescent protein sequence, introducing Kozak sequence before the translation start

site and replacing the CMV promoter with EF-1α) using Lipofectamine-2000. After two days, the

medium is changed to remove dead cells, before passing directly to microscopy.

Hox induction

ES cells were passaged without feeders and cultured on laminin-511 for two days without LIF, then

for a subsequent three days without LIF and with the addition of 5 µM retinoic acid. One day after

the addition of retinoic acid, the cells are transfected with the OR proteins as previously.

Microscopy

Live cell imaging of TetO ES cells

35 mm glass-bottom dishes (Ibidi 81158) were coated with 10 µg/ml fibronectin human plasma (Sigma,

F2006-1MG) in PBS for 45 minutes at room temperature. 3-5x105 cells were seeded one day before

imaging, then the medium was replaced by phenol-red-free medium containing 500 ng/ml Hoechst

33342 (Invitrogen, H3570). Cells arrested in mitosis were collected on the day of imaging by “shake-
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off”, incubated with 0.25% Trypsin-1 mM EDTA (Invitrogen, 25200-072) for 1 min at 37°C and washed,

and placed on fibronectin-coated glass-bottom dishes in phenol-red-free medium containing 100 ng/ml

Nocodazole and 500 ng/ml Hoechst 33342. Confocal live-cell imaging was performed on a Nikon

Eclipse Ti-E inverted widefield microscope (Perfect Focus System) equipped with a CSU-X1 confocal

scanner unit and an Evolve back-illuminated EMCCD camera (Photometrics). Images were recorded

using 100x HC Plan APO oil immersion objective (Leica, NA 1.4). Intensities were set to 10% for the

405 nm and 30% or 50% for the 491 nm lasers, with exposure times of 100 ms and 50 ms or 25 ms,

respectively. 5 z-stacks with 0.5 µm distances were recorded for each channel. 301 time-lapse images

were recorded only in the 491 channel.

Live cell imaging of ANCHOR ES cells

Imaging experiments were performed on an inverted Nikon Eclipse Ti microscope equipped with a PFS

(perfect focus system), a Yokogawa CSU-X1 confocal spinning disk unit, two sCMOS Photometrics

Prime 95B cameras for simultaneous dual acquisition to provide 95% quantum efficiency at 11 µm x

11 µm pixels and a Leica 100x oil objective (HC PL APO 1,4 oil immersion). We excited EGFP and

IRFP with a 491 nm ( 100mw) and a 635-nm laser (>28mW),respectively. We detected green and

far red fluorescence with an emission filter using a 525/50 nm and a 708/75 nm detection window,

respectively. A thermostated heater (Tokai Hit Stage Top Incubator) allowed for heating at 37o C,

humidity and CO2 control (5%). Time-lapse analysis of GFP and IRFP foci was performed in 2D

acquiring 241 time points at a 0.5 s time interval. The system was controlled using Metamorph 7.10

software. Time-lapse was concatenated into single TIFF file.

RT-qPCR

RNA was extracted from cells using the Nucleospin RNA extraction kit (Machery-Nagel), then cDNA

was prepared with SuperScript IV (Invitrogen), following the manufacturer’s instructions and using

random hexanucleotides as primers. The cDNA was quantified by qPCR on a LC480 LightCycler

(Roche), using QuantitTect SYBR Green PCR kit (Qiagen). Amplification was normalized to GAPDH.

Primer sequences are given in Supplemental Table 1.

Image pre-processing

Spot detection and tracking

Spot detection and tracking for all movies was performed with ICY, an image analysis software [36].

Localization precision was then enhanced by assuming that the spots have the shape of a 2D Gaussian
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function. We optimize its localization using the NM-Simplex method [37] and estimate localization

precision using MCMC [38]. This method is implemented and automatically runs while loading tra-

jectories in GP-Tool. For more information see figure S4.

Multi-channel alignment correction

For the ANCHOR ES cell line experiments, we used a spinning disk microscope setup with 2 cameras,

i.e., one per channel. Even though these cameras were aligned manually using fluorescent beads, we

could still observe non-negligible differences between images captured in both cameras. Furthermore,

even in rare situations when both cameras were in perfect alignment, we could observe effects of

chromatic aberrations towards the edges of the image due the different wavelength used. To correct

for such problems, we performed digital post-alignment using a generic set of affine transformations

including translation, rotation and scaling as defined in

Ω =


sx 0 (1− sx)W/2

0 sy (1− sy)H/2

0 0 1




1 0 dx + cx

0 1 dy + cy

0 0 1




cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1




1 0 −cx

0 1 −cy

0 0 1

 , (4)

where, si accounts for scaling in directions x and y, di accounts for translation in both directions and

θ is the angle of rotation between both channels in relation to point ci.

To infer optimal parameters for correction, we used 10 frames from all the movies recorded in the

session and maximize the following likelihood using the Nelder-Mead simplex model [37]

logP ∝ −WH

2
log

∑
k,l

[I2(k, l|Ω)− I1(k, l|1)]2

 , (5)

where W and H correspond to width and height of images and Ir(k, l|A) is the value of pixel (k,l) in

channel r given transformation A. Fig. S6 shows examples of misaligned images and how the alignment

improves greatly after applying our algorithm.

Derivation of GP-FBM models

Covariance function of fractional Brownian Motion

The covariance function of FBM can easily be derived from the assumption of two basic properties:

stationary increments B(t) − B(s) ∝ B(t − s) and a power-law variance,
〈
B(t)2

〉
∝ |t|α. Then, the
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off-diagonal terms of the covariance function can be determined as follows:

〈Bα(t)Bα(s)〉 ∝ 1

2
〈[Bα(s)−Bα(s) +Bα(t)]Bα(s) +Bα(t)[Bα(t)−Bα(t) +Bα(s)]〉

=
1

2

〈
Bα(s)2 +Bα(t− s)Bα(s)−Bα(t)Bα(t− s) +Bα(t)2

〉
=

1

2

〈
Bα(t)2 +Bα(s)2 +Bα(t− s)(Bα(s)−Bα(t))

〉
=

1

2

〈
Bα(t)2 +Bα(s)2 −Bα(t− s)2

〉
=

1

2
(|t|α + |s|α − |t− s|α).

(6)

Finally, the apparent diffusion coefficient D is introduced as a proportionality factor to re-scale the

movement leading to the final kernel as presented in the main text:

ΣD,α(t, s) = 2Dα 〈Bα(t)Bα(s)〉 . (7)

Bayesian inference of diffusion parameters

The GP provides the probability of observing a trajectory r given D and α. Then, we applied Bayes

theorem [39] to obtain the posterior distribution over the diffusion parameters given the measured

trajectory:

P (D,α,µ|r) =
P (r|D,α,µ) P (D,α,µ)∫

P (r|D,α,µ) P (D,α,µ)dDdαdµ
, (8)

where P (D,α,µ) represents the prior distribution of the model parameters. Assuming a flat prior on

µ, D and α, the log-posterior can be expressed as

log(P (D,α,µ|r)) ∝ −1

2
(r − µ)TΣ−1D,α(r − µ)− 1

2
log |ΣD,α| −

N

2
log(2π), (9)

where N represents the number of points measured and | · | is the determinant function. To obtain

maximum posterior estimates, we optimized (9) using the Nelder-Mead Simplex method [37]. In

addition, to calculate confidence intervals for our estimations we used the MCMC method [38] to

sample from the posterior probability distribution. Note that, thanks to this Bayesian approach,

available prior knowledge of the diffusion parameters can easily be incorporated into the analysis.

Incorporation of substrate movement in the GP-FBM framework

In the main text, we introduced an extended GP-FBM model to deal with external sources of movement

that may distort the analysis of particle diffusion. Here, we present the derivation for two particles

subject to a common substrate movement, however it can be extended for an arbitrary number of
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particles using the marginalization rule of multi-variate Gaussian distributions [39]. The key idea is

to assume that the movement of the particles with respect to the substrate as well as the movement

of the substrate itself can be described by independent fractional Brownian motions. Therefore, the

probability of observing the particle trajectories a1 and a2 with respect to a given frame of reference

that moves with the substrate and the trajectory R of the moving frame is:

ρ(a1,a2,R|α,D) ∝ exp

(
−1

2
a1

TΣ−11 a1 −
1

2
a2

TΣ−12 a2 −
1

2
RTΣ−1R R

)
(10)

where Σ1, Σ2 and ΣR are FBM covariance matrices that are fully characterized given the diffusion

parameters D = {D1, D2, DR} and α = {α1, α2, αR}.

Next, to obtain the probability distribution over the particle trajectories r1 and r2 with respect to

the microscope reference frame, we applied the the change of coordinates ri = ai +R (see scheme in

Fig. 2a) leading to the matrix expression,

ρ(r1, r2,R|α,D) ∝ exp

−1

2


r1

r2

R


T 

Σ−11 0 −Σ−11

0 Σ−12 −Σ−12

−Σ−11 −Σ−12 Σ−11 + Σ−12 + Σ−1R



r1

r2

R


 , (11)

Then, to marginalize out the unobserved trajectory of the moving frame Ri, we need to calculate the

inverse of the block matrix in equation 11. To do so, we use results from [40] on inverting a 2x2 block

matrix such as

Λ =

A B

C D

 (12)

according to the following result

Λ−1 =

A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

 (13)

.

Taking A =
[
(Σ−11 , 0); (0, Σ−12 )

]
, B = −

[
Σ−11 ; Σ−12

]
, C = BT and D = Σ−11 + Σ−12 + Σ−1R , it is

easily shown that the top-left corner of Λ−1 is given by [(Σ1 + ΣR, ΣR); (ΣR, Σ2 + ΣR)]. Using this

result, we can marginalize out R in equation 11 giving the expression,

ρ(r1, r2|α,D) ∝

∣∣∣∣∣∣Σ1 + ΣR ΣR

ΣR Σ2 + ΣR

∣∣∣∣∣∣
−1

exp

−1

2

r1
r2

T Σ1 + ΣR ΣR

ΣR Σ2 + ΣR

−1r1
r2


 . (14)

This result clearly shows that the substrate movement induces a correlation between the particle
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trajectories as the off-diagonal elements of the block matrix in (14) are non zero. In addition, the

covariance matrix of the substrate movement appears also in the diagonal terms, increasing the overall

variance of the particles and their total movement. Therefore, if this correction is ignored the diffusion

parameters are over-estimated.

Inference of substrate movement

Similarly as before, the diffusion parameters of the particles as well as the substrate can be estimated

using equation 14 and Bayesian inference. Furthermore, we can also estimate how large the movement

of the substrate is. For that, we can calculate the conditional distribution of R given the particle

trajectories as

〈R〉 = −
(
Σ−11 + Σ−12 + Σ−1R

)−1 (
Σ−11 Σ−12

)r1 − µ1

r2 − µ2

 (15)

with co-variance matrix given by Σ〈R〉 =
(
Σ−11 + Σ−12 + Σ−1R

)−1.
Unfortunately, we could not find an analytical solution for this problem. Nonetheless, we can solve

it numerically. In Fig. S1a we show an example of the estimated movement for the substrate with one

standard deviation compared to the real simulated trajectory for a system with two particles. In Fig.

S1b-c we display the overall accuracy when working with two or more particles.

Benchmarking GP-FBM

Simulated trajectories

We simulated single trajectories with 250 time points using the aforementioned Gaussian process

with FBM kernel. Similarly to experimental setup, trajectories are simulated using time steps of 0.5

seconds and positional noise was included. To benchmark a system of N particles affected by substrate

movement, we generate N+1 trajectories and add the latter to all the others. Finally, 10% of points

are randomly removed from each trajectory to simulate for experimental occlusions.

Mean squared displacement (MSD) implementation

To calculate D and α for single trajectories, we estimate a MSD using a sliding window method. This

method is mathematically defined as follows

〈
r2n
〉

=
1

N − n

N−n∑
i=1

(ri+n − ri)2 , (16)
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for a trajectory with N points and step interval n. Due to implicit correlations present in single

trajectories, we use only initial 10% step intervals. To improve accuracy, we also estimate an average

localization error σ. Finally, this experimental curve is approximated by the theoretical mean squared

displacement equation 〈
r2
〉

= 4D tα + 2σ2, (17)

from which diffusion parameters are inferred using linear regression. For more information [41].

Displacement distribution based (DDB) implementation

The theoretical expressions for the displacement distribution is obtained as a solution of the Fokker-

Planck equation with localization error σ. In polar coordinates it takes the form

ρ(r, θ|D,α, t, σ) drdθ =
r

2π(2D tα + σ2)
e
− r2

4Dtα+2σ2 drdθ. (18)

In order to calculate experimental distributions for single cells, we resort to a sliding window method

similar to the one present for MSD. Differently, we calculate normalize histograms with all the absolute

displacement values. As before, we calculate an average localization error σ to improve localization

and use only histograms calculate for initial 10 step intervals. With these measurements, we optimize

the equation above for D and α using Bayes approach with non-informative priors for both parameters.

Statistical analysis

To compare diffusive properties or inter-probe distances across different loci or conditions (Figs 3c and

d, and 4b-d), we performed Wilcoxon rank sum tests. For inter-probe distances, the distributions of

the median distances for each movie were used. For Figs 4c and d, where fifteen pairwise comparisons

are possible, the p-values were corrected for multiple testing with the Benjamini-Hochberg method.

Use of published epigenomic datasets

ES Hi-C sequence data from [28] were taken from Gene Expression Omnibus (GSE96107), and mapped

to mm9 and normalized with FAN-C [42]. The normalized submatrix (chr6:51500000-53000000) was

then extracted for visualization. ES and neuronal precursor cell H3K27ac and CTCF ChIP-seq data

were taken as bigWig files from Gene Expression Omnibus; GSE96107 for all except ES H3K27ac,

taken from GSE49847) and visualized in R using the package rtracklayer.
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Supplementary Information

Primer Name Sequence
GAPDH S 5’- CATCACTGCCACCCCAGAAGACTG
GAPDH R 5’- ATGCCAGTGAGCTTCCCGTTCAG
Nanog S 5’- AGCAGAAGTACCTCAGCCTC
Nanog R 5’- CCGCTTGCACTTCATCCTTT
Hoxa1 S 5’- CACCAAGAAGCCTGTCGTTC
Hoxa1 R 5’- CGTAGCCGTACTCTCCAACT
Hoxa4 S 5’- GGTGTACCCCTGGATGAAGA
Hoxa4 R 5’- AAGACTTGCTGCCGGGTATA
Hoxa7 S 5’- AAGCCAGTTTCCGCATCTAC
Hoxa7 R 5’- CTTCTCCAGTTCCAGCGTCT
Hoxa9 S 5’- CAATGCCGAGAATGAGAGCG
Hoxa9 R 5’- CTGGTGTTTTGTGTAGGGGC
Hoxa13 S 5’- GCCAAATGTACTGCCCCAAA
Hoxa13 R 5’- CTATAGGAGCTGGCGTCTGA

Table S1: Primers

Figure S1: Estimating background movement from tracked particles. (a) Black dashed lines correspond
to simulated substrate movement, while purple line is the path estimated for the substrate using GP-FBM.
Shaded area correspond to one standard deviation. (b) Positional error distribution in pixel units calculated
between substrate simulated and estimated trajectories for systems with 2, 4, 6 and 10 particles.
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Figure S2: Accuracy gain with number of particles when correcting for substrate movement. If
more than one particle under similar context are present, we can used implicit correlations to correct inference.
As we can see, there is little gain in precision when using more than 3-4 particles.

Figure S3: Bench-marking GP-FBM and DDB approaches for inference of diffusion properties
with substrate movement A set of 10,000 trajectories of two particles with substrate movement were gen-
erated. Simulated values were inferred using GP-FBM (in blue) and DDB (in orange) and relative errors on D
and α were plotted for particles and substrate. σ-values correspond to one standard deviation.

Figure S4: Verifying localization enhancement algorithm via a synthetic movie. To test this method,
we generated a synthetic movie with 500 frames for a single particle trajectory. The spot was generated using
a 2D symmetric Gaussian shape with deviation 1, background signal was set to 100 and spot intensity to 200.
Signal noise was generated in the form of a Poisson distribution by taking original signal as mean. In (a) we
have a frame of such a synthetic movie. (b) Spots were tracked with ICY and further enhanced as described
in Methods. Distribution of positional errors were calculated using simulated trajectories as reference. (c)
Distribution of positional error standard deviations, computed per spot with MCMC.
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Figure S5: (a) RT-qPCR results, showing expression of Nanog and HoxA genes, normalized to GAPDH, in ES
ANCHOR cells before and at different stages of induction by retinoic acid. The graph shows the average results
over triplicate experiments. The blue and red arrows indicate the timepoints at which microscopy is performed,
as in Fig 4. (b) Gene positions and H3K27ac ChIP-seq tracks in ES (blue) and neuronal precursor cells (red)
are plotted for a 200 kb window containing the HoxA cluster and the position of ANCHOR label T1. T1 is <15
kb from an ES-specific putative enhancer. (c) CTCF ChIP-seq tracks in ES (blue) and neuronal precursor cells
(red) are plotted for a 50 kb window flanking the ANCHOR label T3. T3 is very close to ES-specific CTCF
sites.
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Figure S6: Top images display simulated spots in which we exaggerate effects of camera misalignment. On
the bottom, white arrows point to regions with pronounced effects caused by chromatic aberrations. After
alignment algorithm is deployed, both channels are properly superposed.
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