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Summary

Epigenetics has hitherto been studied and understood largely at the level of individual organisms.
Here, we report a multi-faceted investigation of DNA methylation across 11,117 samples from
176 different species. We performed an unbiased clustering of individual cytosines into 55
modules and identified 31 modules related to primary traits including age, species lifespan, sex,
adult species weight, tissue type and phylogenetic order. Analysis of the correlation between DNA
methylation and species allowed us to construct phyloepigenetic trees for different tissues that
parallel the phylogenetic tree. In addition, while some stable cytosines reflect phylogenetic
signatures, others relate to age and lifespan, and in many cases responding to anti-aging
interventions in mice such as caloric restriction and ablation of growth hormone receptors. Insights
uncovered by this investigation have important implications for our understanding of the role of
epigenetics in mammalian evolution, aging and lifespan.
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Introduction

The oldest common ancestor of all mammals lived approximately 300 million years ago,
and over time diversified into more than 6,400 species that constitute the monotreme,
metatherian, and eutherian lineages '. These species exhibit a great diversity in traits such as
maximum lifespan, adult body weight, brain/body ratio, locomotory modes, sleep/wake cycles,
diet, and social behaviors. The lineage that eventually led to the emergence of the first modern
humans, Homo erectus, about two million years ago, with the acquisition of a larger brain, higher
cognitive abilities, and several unique physical and social characteristics 2. Comparative
epigenomics is an emerging field that aims to combine epigenetic signatures and phylogenetic
relationships to improve our understanding of gene-to-trait function **°. Even though genomic
regulatory regions are under sequence constraints ¢, epigenome evolution in these conserved
regions seems to correlate with transcription in mammals 3, potentially regulates fitness and
facilitates selection. A recent study even suggested that DNA methylation marks in regulatory
sequences partially relates to the phylogenetic differences of animals °. Previous DNA methylation
studies in mammals were limited with regard to the sample size (relatively few DNA samples and
few species) and the measurement platform (low sequencing depth at highly conserved stretches
of DNA). To address these challenges, we profiled 176 mammalian species across 63 tissue and
organ types using a methylation array platform that provides over 1k fold sequencing depth at
highly conserved cytosines. This unique dataset could robustly identify co-methylation networks
that underlie important species characteristics and allowed us to develop tissue-specific
phyloepigenetic trees that match the topology and branch lengths of the mammalian phylogeny.

DNA methylation networks relate to individual and species traits

We used a custom methylation array platform (HorvathMammalMethylChip40) that
profiles 36 thousand CpGs with flanking DNA sequences that are mostly conserved across
mammalian species’. With this mammalian array, we generated a large-scale DNA methylation
dataset, which consists of methylation profiles from 11,117 samples derived from 63 tissue types
of 176 different mammalian species (Table $1). Of these 36,000 cytosines, 14,705 mapped to
most eutherians and a subset of 7,956 also mapped to marsupials. Although analysis of individual
cytosines can be highly effective, it ignores co-methylation relationships and clustering patterns
that are associated with species traits. To address this, we used weighted correlation network
analysis (WGCNA) 7 to cluster CpGs with similar methylation dynamics into co-methylation
modules and summarize their methylation profiles using "module eigengenes", defined as the first
principal component that positively correlates with methylation changes in each module. WGCNA
also identifies intramodular hub CpGs, which are cytosines with the highest correlation within
each module. As such, eigengenes and intramodular hubs are mathematical representations of
a module. The respective eigengenes of these modules were subsequently used to identify their
potential correlations with various traits within and across mammalian species, such as
chronological age, sex, maximum lifespan, age at sexual maturity, adult body weight and other
characteristics for which the corresponding information are available.

In total, nine module networks were constructed, which differed with respect to the
underlying CpGs, tissues, and how they relate to different species (Extended Data Fig.1). The
eutherian network (Net1) was formed from 14,705 conserved CpGs in 167 eutherian species (Fig.
1a). This network showed the strongest association with various traits and will be the main focus
of the following sections. The Mammalian network (Net2) consisted of eutherians plus nine
marsupial species, reducing the number of cytosines to 7,925, which are shared between
eutherians and marsupials (Fig. 1b). This subset network was used to identify marsupial-related
modules. To identify the most conserved modules across species and tissue types, we developed
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seven consensus networks (see methods). These networks can be interpreted as a meta-analysis
of methylation networks to identify consensus modules that are preserved across mammalian
tissues (Extended Data Fig.1).

The eutherian network (Net1) clustered the 14,705 CpGs into 55 modules (Fig. 1a). These
modules were derived from unsupervised clustering of cytosine methylation levels, and were
labelled by colors per the convention of WGCNA (Fig. 1a). The smallest module (lavenderblush3
color) consisted of 33 CpGs, while the largest (turquoise module) had 1,864 CpGs. As information
on phylogenetic order, tissues, lifespan, age, sex and weight of each data point were available, it
allowed us to directly assess if any of the modules were enriched for these characteristics. Of the
55 modules, 31 were found to be related to specific species or biological characteristics (linear
regression p<102%) (Fig. 1b; Extended Data Fig.2; Table S3). Specifically, 16 modules were
related to phylogenetic orders. Eleven other modules related to tissue type, two modules to sex,
one module to age, two modules to maximum lifespan, and two modules to average adult species
weight. Some modules were simultaneously related to several characteristics. For example, the
two Rodentia modules (green, and yellowgreen) were also related to species lifespan and weight.
One of the marsupial modules (royalblue; identified from Net2) was also related to eutherian skin.
For ease of comprehension, modules were labelled with the trait and direction of relationship by
superscript +/- signs. For example, the green module was designated as
LifespanWeight”'Rodentia® module The plus sign in the superscript indicates that the cytosines
in the green module tend to be hypermethylated in long living and heavy species. The minus sign
indicates that the green module CpGs tend to be hypomethylated in rodents. Collectively, the
WGCNA results demonstrate that numerous species-specific primary traits are manifested at the
level of DNA methylation; a feature that was discovered here through an unsupervised clustering
of related cytosines.

Beyond association with phenotypic traits, we sought to uncover what the modules
represent at the cellular and molecular levels. We identified genes that are adjacent to cytosines
within the clusters and ascertained the molecular and cellular activities that are associated with
them. In general, the 500 top hub CpGs of the modules were adjacent to genes associated with
a wide range of biological processes including development, immune system, metabolism,
reproduction, stem cell biology, stress response, aging, or several signaling pathways (Fig. 1c).
Thus, these modules, which were derived independent of any prior biological information, are a
rich source of information on the underlying biological processes that are associated with
characteristics and phenotypic differences between species. Modules that relate to specific
phylogenetic orders, or even species, are expected to be valuable starting points for experimental
interrogation of mammalian evolution. The modules with no relationship to any analyzed traits are
still valuable for future studies. For example, the yellow module with 895 CpGs is the largest
consensus module that is preserved in all mammalian tissues but did not relate to any of the
primary traits (Fig. 1a). Hub CpGs of this module are found to be adjacent to genes involved in
mRNA processing, cell cycle, melanocyte development and circadian rhythm (Table S3). The
prediction of the involvement of cytosines in the yellow module to circadian rhythm was tested in
using a perturbation experiment mice. After 12 months of light pollution during night time, only the
yellow module experienced a significant increase in liver methylation levels (Extended Data
Fig.2b).

Evolution and DNA methylation

The evolutionary divergence of three main mammalian clades (eutherians, marsupials,
monotremes) occurred over approximately 250 million years (Fig. 2a). Many phylogenetic trees

4


https://doi.org/10.1101/2021.03.16.435708
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.16.435708; this version posted March 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

of mammals have been constructed; based initially on morphology and later on DNA or protein
sequences. Prior to this study, it was unknown whether there are stable and consistent species
differences in DNA methylation levels at conserved CpG sites that could allow the construction of
what could be termed as a phyloepigenetic tree. The DNA methylation profiles at our disposal
presented a unique opportunity to address this issue. To avoid confounding by different tissue
types, we constructed tissue-specific phyloepigenetic trees. Strikingly, the resulting
phyloepigenetic trees parallel the evolutionary distances among taxa established genetically for
phylogenetic trees (Fig. 2b; Extended Data Fig.3). This holds true for phyloepigenetic trees
constructed from different tissues (blood, liver and skin), as well as those from hierarchical
clustering of modules based on order and species (Fig. 2c, d). This result was expected as the
mammalian methylation array is designed to measure methylation in highly conserved genomic
sequences. The close relationship between phylogenetic and phyloepigenetic trees reflects an
intertwined evolution of genome and epigenome that mediates the biological characteristics of
the different mammalian species.

Maximum lifespan and average adult weight

To further explore the association of modules with weight or lifespan, we categorized
modules according to how they relate to maximum lifespan and/or average adult weight of the
species. A single module positively associated exclusively with lifespan: Lifespan®
(paleturquoise, 87 CpGs), while another with adult weight in a positive direction: Weight™
(lavenderblush3, 33 CpGs). Interestingly, two modules relate simultaneously to max lifespan and
weight:  LifespanWeight®*'Rodentia” (green, 1542 CpGs), LifespanWeight”’Rodentia™
(greenyellow, 398 CpGs) (Fig. 3a,c). The LifespanWeight®’Rodentia®” (green module) is
positively correlated with maximum age (r = 0.70, p<102%) and adult weight (r = 0.57, p<102%),
i.e. the underlying cytosines tend to be hypermethylated in long-lived and larger species. This
module is enriched with genes (e.g. GPATCH2L, NOVA2, and TSHZ2) involved in development,
immune system and Wnt signaling (Table S3). Ingenuity pathway analysis (IPA) indicates
HDAC4, POU4F2, and RUNX2 as upstream regulators. The LifespanWeight’Rodentia®
(greenyellow) module correlated negatively with maximum lifespan (r = -0.71, p<10%%°) and adult
weight (r=-0.51, p<10%%). This negative association with lifespan remained even after adjusting
for phylogenetic relationships or in marginal analysis of mean methylation per species (Extended
Data Fig.4i, Fig.3b,d). Functional enrichment analysis of its hub genes (e.g. TLE3, HMGB1, and
TBCA) indicates the involvement of translation, RAS signal transduction, adipogenesis, Wnt
signaling, epithelial-mesenchymal transition, and calcium signaling. IPA analysis highlighted
POUSF1, NANOG, SOX2 and POU4F2 proteins as potential upstream regulators with roles in
stem cell biology. Lifespan'” (paleturquoise, max-age r = 0.63, p<102%) and Weight®
(lavenderblush3, adult weight r = 0.53, p<102%) are smaller modules that are related to protein
and nucleotide metabolism respectively. The identified modules and other potential weight-related
modules are shown in Fig. 3d.

Consensus modules relate to tissue type, age, and sex

The mammalian methylation dataset is an atlas of 63 tissue-types, cell-types, and tissue
regions from a wide age range of mammalian species. This allowed us to create a tissue module
atlas and gain biological insights into DNA methylation-based mechanisms of tissue differences
(Fig.4a). We related the module eigengenes to the following sample characteristics: tissue type,
sex, and relative chronological age at the time of tissue collection. DNA methylation could
distinguish the tissues with large sample sizes such as blood, skin, liver, muscle, cerebellum,
cerebral cortex, and brain. The tissue modules were largely preserved in individual phylogenetic
orders (Fig.4a, Table S3, Extended Data Fig.5¢c). For example, the top blood modules in different
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phylogenetic orders were Blood™ (magenta) and Blood"” (tan) modules. Both modules are
enriched with immune system genes such as those for B cell maturation (Table S3). The
cerebellum modules (violet, darkslateblue) on the other hand, are enriched for genes related to
neuron development, projection, and differentiation pathways. Thus, tissue-specific modules
corroborate the biological differences between tissue types.

Sex was strongly associated with two modules: Female!™ (lightsteelblue1, hyper-
methylated CpGs in female) and Female® (mediumpurple3, hypo-methylated in female) (Fig.4b).
Unsurprisingly, these modules consist mainly of X-chromosome CpGs (Fig.4c). The only
autosomal CpG is located on the POU3F2 exon in human chromosome 6. This gene showed sex-
related differential methylation in primates 8, and is also indicated to contribute to maternal
behavior differences in mammals °.

We correlated the module eigengenes with two different measures of chronological age:
age and relative age, which is defined as the ratio between age of the organism and maximum
lifespan of its species (the relative age of a 61-year-old human is 0.5, as recorded maximum
human age is 122.5). The purple module (denoted subsequently as RelativeAge™ module)
exhibits a significant positive correlation (r = 0.37, p<102%) with the relative age of all mammalian
samples (Fig. 4d). This module also relates to the chronological age of the animal at the time of
sampling (Extended Data Fig.4f). The RelativeAge"™ module was corroborated in different
consensus networks including 57 species-tissues, 35 species, and 27 species blood networks.
Thus, the RelativeAge!” module is among the most conserved modules in mammalian tissues.
The RelativeAge!” module contains 470 CpGs with hub genes such as TFAP2D, CTNNA?2,
POU3F2, TFAP2A, and UNC79. IPA implicates POUSF1, NANOG, SHH, KAT6A, and SOX2
proteins as putative upstream regulators. Functional enrichment of this module highlighted
embryonic stem cell regulation, axonal fasciculation, angiogenesis, and diabetes-related
pathways (Table S3). The CpGs in this module were adjacent to Polycomb repressor complex 2
(PRC2, EED) targets and H3K27me3 regions (Extended Data Fig.7b). The top hits from EWAS
of age in mammals '° are also enriched in PRC2 targets and similar biological processes as the
RelativeAge™ module. Additionally, we carried out an overlap analysis between module genes
and genes implicated by available large-scale genome-wide association studies (GWAS) of
complex traits in LD Hub "', OpenGWAS database API, etc. We found that genes of the
RelativeAge™ module overlapped significantly with top hits of GIANT Body fat distribution GWAS
in humans (p<107, TableS3, TableS7).

Life expectancy in pure dog breeds

As described above, five modules relate to maximum lifespan, adult weight, and age
across most phylogenetic orders in our dataset, thereby allowing us to further investigate these
associations in specific mammalian orders. Using DNA methylation data from n=574 blood
samples from 51 different dog breeds (Table S8), we assessed whether these modules correlate
with a measure of life-expectancy provided by the American Kennel Club '2. Interestingly, the
LifespanWeight”'Rodentia™ (greenyellow) module showed an inverse correlation with breed life-
expectancy (r=-0.42, p<2x107'°) but a positive correlation with breed weight (r=0.37, p<2x107°,
Fig. 5a). The correlation pattern of this module is consistent with the well-known observation that
larger dog breeds have shorter life expectancies '°. This finding is particularly interesting as this
module also relates to the general mammalian trend where larger species have longer lifespans
(Fig. 3a, 3b). The constituents and regulators of this module provide an entry point to understand
the relationship between body size and lifespan. For example, as described above,
LifespanWeight”Rodentia™*) (greenyellow) module is partially related to retinoic acid receptor

6


https://doi.org/10.1101/2021.03.16.435708
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.16.435708; this version posted March 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

signaling and adipogenesis. Interestingly, a recent study showed that sphingomyelin levels are
higher in large-short lived dogs '*. A substantially weaker correlation could be observed between
the RelativeAge™ (purple) module and dog breed lifespan (r=-0.16, p=7x107).

Interventional studies in mice

Our robust identification of epigenetic modules associated with traits such as age supports
the notion that DNA methylation can serve as a dynamic molecular read-out of variations in
individual-level phenotypes. Thus, we ascertained whether maximum lifespan, weight, and age
modules are affected by interventions that are known to modulate the lifespan of mice. Growth
hormone receptor knockout (GHRKO) mice, which have greatly increased lifespan '°, exhibited a
change in specific modules: increase in LifespanWeight¥'Rodentia® (green, p<0.05), decrease in
LifespanWeight”Rodentia™ (greenyellow, p<0.01), decrease in Weight™ (lavenderblush3,
p<0.0001), and decrease in RelativeAge! (purple, p<0.001) eigengene values (Fig. 5b). The
signs1c5>f these associations are consistent with the increased lifespan and smaller size of GHRKO
mice .

Caloric restriction (CR) and high fat diet are known to increase or reduce the lifespan of
mice, respectively. Caloric restriction increased LifespanWeight*'Rodentia® (green, p<10),
decreased Weight™ (lavenderblush3, p<0.0001), and decreased RelativeAge™ (purple, p<107)
eigengenes in the expected direction (Fig. 5¢c, d). In contrast, CR moderately increased the
LifespanWeight”Rodentia™ (greenyellow, p<0.05) eigengene in the opposite expected direction
for longevity. High-fat diet was associated with an expected increase in the RelativeAge™ (purple,
p<0.05) module but an unexpected increase in Lifespan® (paleturquoise). Collectively, these
studies demonstrate that some of the modules, especially those associated with lifespan, relative
age, and weight across mammalian species, are indeed dynamic and can be reporters of anti-
aging or pro-aging interventions within a species.

Additionally, we screened for any modules that showed a dynamic response to lifespan
interventions. We identified a total of six modules with such a change. Future experiments would
elucidate if these modules could serve as novel biomarkers of longevity and mortality risks in
mammals.

Discussion

This unbiased network analysis of the largest collection of DNA methylation data from 176
mammalian species facilitated the identification of methylation modules based on unsupervised
clustering of highly-conserved CpGs. Thirty-one of the 55 modules could be interpreted by their
associations with individual traits (chronological age, tissue, sex) or species traits (phylogenetic
order, maximum lifespan, average adult species weight). The module-based analysis
demonstrates that DNA methylation is a highly informative molecular read-out, not only at the
level of individual tissues and within an organism, but also across species. This is evident from
the high degree of congruence between the phyloepigenetic and phylogenetic trees. It indicates
that species-level conservation and divergence of DNA methylation profiles closely parallels that
of genetics through evolution. Moreover, several methylation modules show strong association
with life history traits (e.g. maximum lifespan, average adult species weight) across 176
mammalian species, suggesting graded methylation changes on conserved DNA elements are
robust features underlying the evolution of these quantitative traits in mammals. Overall, these
results indicate that cytosine methylation data are highly informative for understanding the
molecular basis of mammalian diversity. Although higher levels of DNA methylation are often
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associated with transcriptional silencing, a positive relationship between DNA methylation and
expression levels has been observed especially in case of bivalent chromatin °.

The disparities in aging rate and species lifespan are among the most intriguing biological
mysteries that continue to engender debate over the relative importance of different aging
theories, i.e. mutation accumulation ', antagonistic pleiotropy '®'°, and disposable soma 2°, which
are predicated on a trade-off between reproductive fitness and longevity. Factors such as food
availability, population density, and reproductive cost have been shown to impact this trade-off '
This study supports the view that cytosine methylation relates to biological processes that
underpin evolutionary differences in mammals #%°,

While the identified modules lend themselves for studying many species traits, we were
particularly interested in characterizing life history traits surrounding aging and development. In
this context, we mention the RelativeAge™ (purple) module, which demonstrates conservation of
DNA methylation aging biology across species and tissues. A decrease in the RelativeAge™
(purple) eigengene value, which is a collective decrease in the methylation level of CpGs in this
module, related to an increase in life expectancy of dog breeds, GHRKO dwarf mice and caloric-
restricted mice. In contrast, the high-fat diet increased the RelativeAge™’ eigengene. Strikingly,
the genes adjacent to the CpGs of this module are highly enriched for embryonic stem cell
regulation, include targets of Polycomb repressor complex 2 (PRC2, EED) and H3K27me3
regions (Extended Data Fig.7b). These genomic features are strongly implicated in stem cell
biology through key regulators such as SOX2 and NANOG transcriptional factors 2?7, This is
corroborated by IPA analysis, which also highlighted NANOG and SOX2 as regulators of the
RelativeAge™ (purple) module. Our findings extend similar findings from humans to other
mammals #-*°, and demonstrates the intricate connection between stem cells, development and
aging. Experimental perturbation of candidate regions in this module could elucidate if there is a
causal link between module CpGs and lifespan of mammalian species. Future studies could
evaluate whether module eigengenes associated with the RelativeAge! (purple) and five other
identified modules (Fig. 5e) lend themselves as indicators of biological age.

In summary, application of unsupervised machine learning through WGCNA-mediated
clustering of CpG methylation has unveiled the stability of DNA methylation profiles at the species
level while also identifying the responsiveness and dynamic nature of some methylation modules
to anti-aging or pro-aging interventions in mice. The unsupervised approach provides a level of
objectivity that gives a stamp of authenticity to the observation that DNA methylation is indeed a
biologically meaningful molecular readout across all levels of mammalian life, from cells to
species. The information-rich modules we have identified here form a roadmap to expand our
approach towards cross-species DNA methylation analysis, and will undoubtedly open a new
avenue to address many long-standing fundamental questions of biology, from evolution and
lifespan to aging.
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Methods
Data description

The data included 11,117 samples from 63 tissues of 176 mammalian species (167
eutherians, 9 marsupials). These samples were collected from different age ranges of most of the
species. Sample collection and ethical approval for each mammalian species is described in
separate individual papers 83, The species level characteristics such as maximum lifespan,
average weight, and age at sexual maturity were chosen from anAge database *®. This data also
includes DNA methylation from different dog breeds and mouse data from experimental lifespan
intervention. Additional data sets included 57 horse transcriptome data generated from 29
different horse tissues “¢. All DNA samples were analyzed by the novel custom-designed
mammalian methylation array *°. This new array contains 38,608 probes that also includes 1,116
control probes. Following data collection, the SeSaMe normalization method was used to define
beta values for each probe *°.

Mappable CpGs for eutherians and mammals

The conserved probes were selected based on alignment of probes to 11 mammalian
species from different phylogenetic orders “°. These species included Human (hg19), mouse
(mm10), Vervet monkey (ChlSab1.1.100), Rhesus macaque (Mmul_10.100), Cattle (ARS-
UCD1.2), Cat (Felis_catus_9.0.100), Dog (CanFam3.1), Elephant (loxAfr3.100), Bat
(Rhinolophus_ferrumequinum.HLrhiFer5), Killer whale (GCF_000331955.2_Oorc_1.1), and
Opossum (Monodelphis_domestica.ASM229v1.100). These species are selected based on a
large sample size in our data, a relatively high genome quality, and also representation from
different phylogenetic orders.

Two sets of probes were further selected from alignments in all these genomes. The first
set was the probes that mapped to these ten eutherian species, and the second set were a subset
that could also map to opossum as a marsupial representative. These two sets were additionally
filtered using calibration data generated from the array’s performance on human, mouse, and rat
synthetic DNA at different methylation levels (from 0-100% methylated) *°. Only the probes with
a linear correlation of >=0.8 in all three species calibration data were kept as a mappable probe
in mammalian species. The final number of remaining probes for the analysis were 14,705 in
eutherians, and 7,956 that also mapped to marsupials.

Unsupervised WGCNA

First, we formed two WGCNA networks based on the two sets of probes in our data. The
first network was generated from 14,705 conserved CpGs in 10,939 samples of 167 eutherian
species. The second network was a subset of 7,956 probes in 11,117 samples from 167
eutherians and 9 marsupial species. Traditionally, WGCNA is applied for transcriptome data and
uses an unsupervised clustering method to assign the co-expressed genes into modules ’. In this
study, we used the WGCNA method to define the modules of co-methylation CpGs in mammalian
samples. First, the adjacency matrix (correlations between CpGs) was converted into a scale-free
network using the soft threshold power (tuned value = 12) of the signed matrix. The result was
converted into a topological overlap matrix (TOM), and 1-TOM distance measure (dissimilarity),
which was used for Hierarchical clustering of the data. The trees were trimmed using a dynamic
tree-cut algorithm to assign the modules containing at least 30 CpGs. Module eigengenes (MEs)
were calculated as the maximum amount of the variance of the model that can be represented by
a single variable for each module, based on the singular value decomposition method. The
eigengenes in the eutherian network (Net 1) explained a range of 24-63% (average = 43%) of the
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variance in the methylation data in each module (Table S$3). The hub CpGs of the modules were
defined based on eigengene connectivity (KME) to each module. The association of module
eigengenes were examined for different traits using multivariate linear regression models. The
module colors in both networks were matched using the matchLabels() function in WGCNA
package. Module preservation for each network was estimated using the "modulePreservation”
R function in the WGCNA R package using primates as the reference for comparison.

Consensus Networks

A total of seven consensus co-methylation networks were developed to effectively remove
the confounding effects by conditioning on different species and tissue type combinations. The
constructed consensus networks are as follows: cNet3, 57 species-tissue strata (network where
tissue/species effects were removed); cNet4, 35 species but ignore tissue strata (only species
effects were removed); cNet5, 15 tissue types but ignore species (only tissue effects were
removed) ; cNet6, 27 species blood (species effects were removed in blood); cNet7, 7 species
brain (species effects were removed in brain); cNet8, 10 species liver (species effects were
removed in liver); and cNet9, 30 species skin data (species effects were removed in skin). Blood,
skin, liver, and brain were tissues with data from >7 mammalian species.

Consensus WGCNA assumes that the DNA methylation network is conserved between multiple
data strata. This network was generated following methods previously described "*'. Briefly, the
adjacency matrices (correlation) were constructed using DNA methylation beta values in each
data set. The matrices were converted into scale free networks using a tuned soft threshold power
for each dataset. Results were converted into TOM, merged, and then used to form a consensus
tree network using a hierarchical clustering of dissimilarity matrix (1-TOM). Similarly, the colors
were matched to network 1 colors.

Hierarchical clustering

DNA methylation data from tissues with more than 50 species were used for hierarchical
clustering and comparison with the evolutionary tree. The hierarchical clustering of tissue samples
(as opposed to CpGs) was based on complete linkage coupled with a dissimilarity measure
defined as 1-correlation. The distances in the hierarchical trees (i.e. the height values) were
directly compared with the evolutionary distances (based on estimated time) in a publicly available
evolutionary tree 2,

Gene ontology enrichment

The genomic region level enrichment was performed using GREAT analysis *® and the
mappable probes as the background. The analysis used human hg19 annotations, a 50kb window
for extending the gene regulatory domain, and default settings for the other options. For each
module, the input included up to 500 hub CpGs. The biological processes were reduced to parent
ontology terms using the “rrvgo” package. The larger ontology category was defined manually.
The intra-module hub CpGs were also statistically tested for overlap with human GWAS results,
in which gene p values were calculated by MAGENTA algorithm. Additionally, the hub genes were
analyzed by ingenuity pathway analysis to identify the enriched canonical pathways and potential
upstream regulators.
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Fig.1 | DNA methylation network relates to species and individual characteristics in mammalian
species. a, the WGCNA network of 14,705 conserved CpGs in 167 eutherian species (Network 1). The
data include around 63 tissue types, from all age ranges of most of the species. The identified modules
related to species characteristics (e.g. phylogenetic order, maximum lifespan), or individual sample
characteristics (e.g. tissue type, age, sex). Network 1 modules were compared to eight additional networks:
based on subsets of probes that map to eutherians and marsupials (Extended Data Fig. 1); and seven
consensus networks based on species and tissues (Extended Data Fig. 1). The modules with strong
associations with species and sample characteristics were labeled below the dendrogram. b, summary of
the modules that showed strong association with species and individual sample characteristics. Analyzed
traits: age, sex, tissue type, species max age, species average adult weight, and different mammalian
orders. The edge labels are the direction of association with each trait. ¢, Top defined functional biological
processes related to network 1 modules. The gene level enrichment was done using GREAT analysis and
human Hg19 background limited to 14,705 eutherian probes. The biological processes were reduced to
parent ontology terms (Extended Data Fig. 6), and the larger ontology category was defined manually for
this summary heatmap. Detailed enrichment results are reported in the supplementary excel file. Images of
animals are from Phylopic (“http:/phylopic.org”) or Wikimedia, which are under public domains or CC BY
3.0 license (“https://creativecommons.org/licenses/by/3.0/”).
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Fig.2 | DNA methylation networks parallels the evolutionary tree in mammals. a, the schematic
representation of the evolutionary tree in mammals %*. The numbers indicate the time of evolutionary
divergence (million years ago) between different orders. The red and blue phylogenetic orders are included
in this study. The blue indicates small sample size (<4) in our study. b, hierarchical clustering of DNA
methylation profiles highly matches the evolutionary distance of mammalian species (Extended Data
Fig.3a,b). Distances: 1-cor. ¢, Heatmap of phylogenetic order specific modules. * indicated the top two
modules related to each phylogenetic order with minimum absolute correlation of 0.5. The marsupial
modules were identified in Network 2, which was based on the conserved CpGs in both eutherians and
marsupials. d, DNA methylation modules associated with individual species. The top two modules for each
species are labeled by *. The marsupial modules are identified in network 2. The color code of the rows
shows the phylogenetic order of each species. The rows are clustered based on hierarchical clustering of
Euclidean distances and complete method. The species with weak module association were not shown in
the heatmap. e, The correlation distances of hierarchical clustering of blood DNA methylation and
evolutionary tree. Additional analyses are reported in the supplement (Extended Data Fig. 4). Images of
animals are from Phylopic (“http://phylopic.org”), which are under public domains or CC BY 3.0 license
(“https://creativecommons.org/licenses/by/3.0/”).
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Fig. 3 | Modules with strong association with maximum age and average adult weight of the species.
Associations were tested using both multivariate models and marginal association of mean eigengene. (a)
Modules associated with log maximum age in the multivariate module (p<10-2%). covariates: relative age,
tissue, and sex. (b) Modules associated with log maximum age in marginal association (p<10%°). (c)
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principal component of the module that positively correlates with DNA methylation levels.
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Fig.4 | DNA methylation modules related to individual sample biological differences. a, the Heatmap
of tissue specific modules. The tissues with no modules were excluded from the heatmap. * indicated the
top two modules related to each tissue, cell type, or tissue region with minimum absolute correlation of 0.5.
b, Sex-specific modules in different phylogenetic orders. ¢, Distribution of sex module CpGs on sex
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Fig.5 | Defined DNA methylation modules are novel tools to study specific aging related and
biological questions. a, DNA methylation modules corroborate the paradoxical inverse relation of life
expectancy and average weight of dog breeds. Strikingly, the greenyellow module positively correlates with
dog breeds’ weight, which is the opposite direction of the general pattern in mammalian species. b,c,d,
DNA methylation modules are sensitive to lifespan-related intervention experiments and relate to the life
expectancy of the animals. b, Changes in lifespan, weight, and age modules of liver parallels smaller size
and longer life expectancy of growth hormone receptor mouse models (GHRKO). Sample size: GHRKO,
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11 (5 female, 6 male); Wt, 18 (9 male, 9 female). The age range: 6-8 months. ¢, Caloric restriction (CR)
DNA methylation module signature predicts longer lifespan in this treated group. This experiment only
included male mice and the samples were collected at 18 months of age. Sample size: CR, 59; control,
36. d, High fat diet accelerates aging in the age module. Sample size: high fat diet, 133 (125 females, 8
males); control (ad libido), 212 (202 females, 10 males). Samples were collected throughout the lifespan
from 3 to 32 months of age of both groups. e, Modules with dynamic responses to lifespan interventions.
These modules are candidates for biomarkers of longevity. Only the modules with dynamic changes are
labeled by * in the heatmap. * p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. Eigengene: 15 principal
component of the module that positively correlates with DNA methylation levels. Images of animals are
from Phylopic (“http://phylopic.org”) or Wikimedia, which are under public domains or CC BY 3.0 license
(“https://creativecommons.org/licenses/by/3.0/”).
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Extended Data Fig.1 | Constructed WGCNA networks from mammalian DNA methylation
data. A total of nine WGCNA networks were constructed and compared for module association
with species and individual sample characteristics. Network 1, an unsupervised network of 14,705
conserved CpGs in 167 eutherian species, showed the strongest module-trait associations. An
additional unsupervised network was developed based on subsets of probes for future study
applications: Network 2, 7,925 probes that map to both eutherians and marsupials. Additionally,
seven consensus networks of 14,705 eutherian probes by different tissue and species
combinations were formed to identify the most conserved modules for studying individual sample
characteristics. All module colors were matched to network 1 for comparison.
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Circadian rhythm disruption (light pollution) effects in Liver
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Extended Data Fig.2 | DNA methylation Module-trait association in mammals. a, Association
of different individual and species-level traits with network 1 modules. Network 1 consists of
14,705 conserved CpGs in 167 eutherian species. The data include around 62 tissue types, from
all age ranges of most of the species. b, Long term exposure to light pollution increases the yellow
module eigengene. Control group, N = 8, standard light/dark cycles of 12 hours light (100 lux)
followed by 12 hours dark. Circadian rhythm disrupted group, N = 8, the light cycle included12
hours light (100), followed by 12 hours dim light (20 lux). Cohorts were exposed to these
conditions from three months of age, for a period of 12 months.
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Extended Data Fig.3 | DNA methylation is a good indicator of mammalian evolution. a,
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Extended Data Fig.5 | DNA methylation modules relate to mRNA changes and are
preserved in different phylogenetic orders. a,b, DNA methylation modules and mRNA
networks are canonically correlated in horse tissues. The mRNA and DNA methylation data
originated from 57 samples from 29 different horse tissues. Canonical correlation is done for the
10 hub CpGs of each module and mRNA changes of their neighboring genes in the horse genome
(EquCab3.0.100). The red lines indicate p<0.05. ¢, The DNA methylation modules are highly
preserved in different phylogenetic orders. Module preservation is estimated with permutation of
networks in each order and comparison with primates. The figures show the summary z score of
preservation, summary p value of preservation, and median rank of preservation for each module.
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Extended Data Fig.6 | Gene ontology enrichment of the hub CpGs in each module. The
gene level enrichment was done using GREAT analysis and human Hg19 background. The
background probes were limited to 14,705 conserved probes in eutherians. The biological
processes were reduced to parent ontology terms, and the top 10 parent terms with p<10~ for
each module were reported in the heatmap. The larger ontology category was defined manually
and was used to arrange the ontology terms in the heatmap. * indicates the top ontology category
for each module. The input includes the gene neighbors to up to 500 hub CpGs for each module.
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Enrichment analysis, modules related to Age, max age, and weight
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Extended Data Fig.7 | Enrichment analysis of modules associated with phylogenetic
orders, age, max age, and average weight. The gene level enrichment was done using GREAT
analysis and human Hg19 background. The background probes were limited to 14,705 conserved
probes in eutherians. The input includes the gene neighbors to up to 500 hub CpGs for each
module. a, Enrichment analysis of phylogenetic order modules. The plot shows the top unique
enriched terms among the modules. b, Enrichment analysis of modules associated with max age
and species weight. In addition to the unique enriched terms for each module, additional terms
were mined based on specific keywords: ‘mortality’, ‘aging’, ‘survival’, ‘perinatal lethality’, and
‘weight’. The plot shows the top unique and top 20 overlapped enriched terms among the
modules.
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Extended Data Fig.8 | Enrichment of gene regions for CpGs in each module. The CpGs are
annotated relative to the nearest transcriptional start site in the human Hg19 genome. The
changes are estimated by proportion test (chi?) of each genomic region compared to the
background. Only the regions with a significant difference than background are indicated in the
dot-plot. The p-values are reported at 5% FDR for multiple test correction.
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