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Abstract1

1. Large-scale, long-term biodiversity monitoring is essential to meeting conservation and land2

management goals and identifying threats to biodiversity. However, multispecies surveys are prone3

to various types of observation error, including false positive/negative detection, and misclassifi-4

cation, where a species is encountered but its species identity is not correctly identified. Previous5

methods assume an imperfect classifier produces species-level classifications, but in practice, partic-6

ularly with human observers, we may end up with extraspecific classifications including ”unknown”,7

morphospecies designations, and taxonomic identifications coarser than species. Disregarding these8

types of species misclassification in biodiversity monitoring datasets can bias estimates of ecologi-9

cally important quantities such as demographic rates, occurrence, and species richness.10

2. Here we develop an occupancy model that accounts for species non-detection and misclassifica-11

tion. Our framework accommodates extinction and colonization dynamics, allows for additional12

uncertain ‘morphospecies’ designations in the imperfect species classifications, and makes use of13

individual specimen with known species identities in a semi-supervised setting. We compare the14

performance of our joint classification-occupancy model to a reduced classification model that dis-15

cards information about occupancy and encounter rate on a withheld test set. We illustrate our16

model with an empirical case study of the carabid beetle (Carabidae) community at the National17

Ecological Observatory Network Niwot Ridge Mountain Research Station, west of Boulder, CO,18

USA, and quantify taxonomist identification error by accounting for classification probabilities.19

3. Species occupancy varied through time and across sites and species. The model yielded high20

probabilities (30 to 92% medians) of classification where the imperfect classifier matched the true21

species. The classification model informed by occupancy and encounter rates outperformed the22

classification that was not, and these di↵erences were most pronounced for abundant species.23

4. Our probabilistic framework can be applied to datasets with imperfect species detection and clas-24

sification. This model can identify commonly misclassified species, helping biodiversity monitoring25

organizations systematically prioritize which samples need validation by an expert. Our Bayesian26

approach propagates classification uncertainty to o↵er an alternative to making conservation deci-27

sions based on point estimates28

Keywords — carabid, imperfect classifier, morphospecies, NEON, observation error, occupancy models, semi-29

supervised, species misclassification30

1 Introduction31

Large-scale, long-term biodiversity monitoring is essential to meeting conservation and land management goals and32

identifying threats to biodiversity. Such comprehensive datasets increasingly include multispecies surveys that capture33
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information-rich co-occurrence data, enabling community-level analyses (Iknayan et al., 2014; Ovaskainen et al., 2017).34

However, multispecies surveys are prone to various types of imperfect detection, including false absences where a35

species is present but not detected (Dorazio and Royle, 2005), and misidentification, where a species is encountered36

but its species identity is not correctly recorded (Miller et al., 2011).37

Occupancy models account for observation error in biodiversity surveys that seek to understand species dis-38

tributions, track population changes, and describe mechanisms underlying population and community dynamics39

(MacKenzie et al., 2002). Latent presence/absence states are modeled explicitly, with an observation model that40

accounts for the details of the detection process, including the potential for false negatives (non-detections at occu-41

pied sites) and false positives (detections at unoccupied sites) (Royle and Link, 2006; Miller et al., 2012; Chambert42

et al., 2015; Wright et al., 2020). Disregarding false positives in biodiversity monitoring datasets can bias estimates43

of ecologically important quantities such as demographic rates, occurrence, and species richness (McClintock et al.,44

2010; Chambert et al., 2015, 2018).45

Multi-species surveys are also subject to errors in species identifications by imperfect classifiers. Imperfect classi-46

fiers include citizen scientists (e.g., North American Breeding Bird Survey (Sauer et al., 2017)), technicians trained in47

local taxonomy (e.g., invertebrate trapping by NEON (Hoekman et al., 2017)), automated methods (e.g., bat acoustic48

recording software (Wright et al., 2020) or convolutional neural networks used with camera trap data (Tabak et al.,49

2019)). Previous methods assume an imperfect classifier produces species-level classifications, but in practice, partic-50

ularly with human observers, we may end up with extraspecific classifications including ”unknown”, morphospecies51

designations, and taxonomic identifications coarser than species.52

If species are prone to misclassification, then samples with known species identities might be used to correct53

estimates of occupancy parameters. However, using these data presents a methodological challenge. We refer to54

this situation as “semi-supervised”: true species identities are known for some but not all individuals. Previous55

multi-species occupancy models that accommodate misclassification have used multinomial models that sum over all56

individuals (Wright et al., 2020), or site-level validation data where the occupancy state of a species is known only57

at a site- or plot-level but not at an individual-level (Chambert et al., 2018). Using individual-level validation data58

requires a di↵erent approach.59

Misclassified species identities can be dealt with using one of two contrasting approaches. A simple two step60

approach 1) uses a classifier to assign species IDs to each individual (creating one complete synthetic dataset from61

classifier output, for which species identities are treated as known), then 2) analyzes the constructed dataset using62

a downstream model (e.g., an occupancy model). This two step approach does not propagate uncertainty in species63

identity to the downstream model, and the assignment of species identities in the first stage does not use any64

information about occupancy or encounter rates. In contrast, a joint model directly uses classifier output as data,65

relating the observation process to underlying ecological states in one step. Such an approach can simultaneously66

account for uncertainty in species identities, and leverage information about occupancy and encounter rates to inform67

species identity estimates (Wright et al., 2020). However, there remains the practical question of how much value68
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is added by a joint model vs. a two-stage approach. A priori, we expect that a joint model should produce better69

estimates of true species identities by using information on occupancy and encounter rates, but this has not yet been70

tested.71

Here we develop an individual-level, semi-supervised, dynamic occupancy model that accounts for species non-72

detection and misclassification. Our Bayesian approach propagates classification uncertainty to o↵er an alternative to73

making conservation decisions based on point estimates. Our framework extends the classification occupancy model74

of Wright et al. (2020) to 1) accommodate extinction and colonization dynamics, 2) allow for additional uncertain75

”morphospecies” designations in the imperfect species classifications, and 3) make use of labeled samples with known76

species identities in a semi-supervised setting. Further, we compare the performance of a classification occupancy77

model to a reduced classification model that discards information about occupancy and encounter rate on a withheld78

test set. We demonstrate our model with an empirical case study of the carabid beetle (Carabidae) community at79

the National Ecological Observatory Network (NEON) Niwot Ridge Mountain Research Station (NIWO), west of80

Boulder, CO, USA, and quantify taxonomist identification error by accounting for classification probabilities.81

2 Materials and Methods82

2.1 Modeling occupancy dynamics with misclassification83

Consider data collected at sites i = 1, ..., N , according to a robust design (Hoekman et al., 2017) where each site is84

visited J times within primary periods t = 1, ..., T , where the occupancy states are assumed to be constant within85

primary periods.86

2.1.1 State model87

We are interested in occupancy states and encounter rates for species k = 1, ...,K. Sites are either occupied (zi,k,t = 1)88

or not (zi,k,t = 0). We assume that the occupancy states arise as Bernoulli random variables:89

zi,k,t ⇠ Bernoulli( i,k,t).

The probability of occupancy in the initial primary period is  i,k,1. Subsequent occupancy dynamics depend on90

the probability of colonization �i,k,t and persistence �i,k,t, such that for t > 1:91

 i,k,t = zi,k,t�1�i,k,t�1 + (1� zi,k,t�1)�i,k,t�1

2.1.2 Encounter model92

On any particular sampling occasion j, we encounter Li,j,k,t individuals with encounter rate �i,j,k,t. We assume93

that the number of encounters is a Poisson random variable: Li,j,k,t ⇠ Poisson(zi,k,t�i,j,k,t). In a setting with94

misclassification, the number of encountered individuals Li,j,k,t is not observed directly because of uncertainty in the95
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true species identities of encountered individuals. We do however observe the total number of individuals encountered96

on any particular occasion: Li,j,.,t =
PK

k=1 Li,j,k,t. The properties of sums of Poisson random variables allow us to97

model these observed totals as:98

Li,j,.,t ⇠ Poisson
⇣ KX

k=1

zi,k,t�i,j,k,t

⌘
.

2.1.3 Observation model99

In addition to observing the total number of encountered individuals on an occasion Li,j,.,t, we assume that we100

also obtain imperfect species classifications for each encountered individual. In cases where individuals have been101

encountered (Li,j,.,t > 0), we obtain imperfect classifications of individuals l = 1, ..., Li,j,.,t and model these as arising102

from a categorical distribution with a species-specific probability vector:103

yi,j,l,t ⇠ Categorical(✓k[i,j,l,t]),

where yi,j,l,t is the imperfect classification, and ✓k[i,j,l,t] is a probability vector associated with the true species of104

individual l, which we denote k[i, j, l, t]. Element k0 in the vector ✓k[i,j,l,t] represents the probability that an individual105

is classified into category k0, conditional on the true species identity k[i, j, l, t], such that ✓k[i,j,l,t],k0 = Pr(yi,j,l,t =106

k0 | k[i, j, l, t]). If species are always misclassified as other species, then ✓k will be a vector of length K (Wright et al.,107

2020). If there are extraspecific classes (e.g. morphospecies), ✓k may have more than K elements.108

True species identities are modeled as:109

k[i, j, l, t] ⇠ Categorical

 
zi,k,t�i,j,k,tP
k zi,k,t�i,j,k,t

!
.

If ground truth species identity data are available for some individuals, then k[i, j, l, t] is partly observed and this110

model can be trained in a semi-supervised setting. In the unsupervised setting, this individual-level formulation is a111

disaggregated version of the single-season multinomial model of Wright et al. (2020) (Appendix S1).112

2.1.4 Incorporating morphospecies designations113

In some settings the imperfect classifier might assign more classes than there are unique species, so that the vector114

✓k has more than K elements. For example, in the NEON beetle data, if a parataxonomist is unable to identify a set115

of similar individuals, they will classify those individuals as a unique morphospecies associated with that sampling116

occasion. Thus, it is possible for individuals to be classified into K̃ � K classes, where K̃ is sum of the number117

of species and the total number of morphospecies designations. In such cases, the matrix ⇥ = (✓0
1, ...,✓

0
K) can be118

rectangular, with the first K columns corresponding to the classification probabilities for species 1, ...,K, and the119

remaining columns corresponding to classification probabilities for non-species classes, e.g., morphospecies:120
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⇥ =

✓1,1 . . . ✓1,K . . . ✓1,K0

...
. . .

. . .

✓K,1 ✓K,K ✓K,K0

2

66664

3

77775

True
species
identities

Species
classifications

Morphospecies
classifications

2.2 Case study121

2.2.1 Application to NEON carabid data122

We fit our model to the carabid pitfall trap sampling data collected by NEON at NIWO in 2015-2018 (National Eco-123

logical Observatory Network, 2021). Carabids are a ubiquitous and speciose family of ground-dwelling invertebrates124

that are commonly collected by passive sampling methods, like pitfall traps, as described in Hoekman et al. (2017).125

Carabids are a well-studied sentinel group that make an excellent study system for assessing community occupancy126

rates and classification accuracy. Collecting and identifying carabids is resource-intensive, but NEON lowers this127

barrier to entry by providing a public carabid dataset with three levels of classification (parataxonomist, expert128

taxonomist, then DNA barcoding). Although NEON processes carabid samples at the domain level (sites within the129

same ecoregion) (Hoekman et al., 2017), we focus our analysis on one NEON site, NIWO, to assess occupancy across130

co-occurring species. We use the 2015-2018 dataset at NIWO since carabid sampling started in 2015 and expert131

classification data were not yet fully available for 2019 at the time of analysis in 2020 due to data latency (National132

Ecological Observatory Network, 2021). NIWO is a site in the southern Rocky Mountains, spanning subalpine conifer133

forest and alpine tundra.134

We outline the relevant data collection protocol here, but Hoekman et al. (2017) o↵er more detail regarding135

NEON’s carabid pitfall trap data product. The sampling design at every NEON site consists of ten permanent plots136

across the site with four pitfall traps per plot. Traps are sampled and reset biweekly during the growing season, with137

a range of 5-7 collections per year at NIWO. Our model runs at the plot-level. In 2018 one plot was permanently138

relocated to ensure sampling was allocated proportionally to the NLCD cover types represented (NEON help desk,139

personal communication).140

All carabid samples are classified by a parataxonomist, and a subset are sent to an expert taxonomist for validation141

(Figure 1) (Hoekman et al., 2017). Species classification by parataxonomists is considered imperfect due to the brief142

taxonomic training of parataxonomists. Identification by an expert taxonomist is treated as confirmation data and143

is limited due to budget constraints. We confirmed the accuracy of the expert taxonomist classifications in finding144

that all individuals sent for DNA barcoding by NEON match the expert taxonomist’s identification for the samples145

we used. In the few cases where the expert taxonomist could not identify a specimen to species-level, we use their146

genus-level classification for the validation dataset.147

Our dataset contains 4772 individuals, 1764 of which were identified by an expert taxonomist, and 62 species148

classified by the parataxonomist, 23 of which are morphospecies. Morphospecies identifications are unique to each149
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NEON site and year. We fit our model using all individuals and used no environmental covariates. A hurdle for150

the NEON community in using the carabid pitfall trap data is reconciling parataxonomist and expert taxonomist151

classifications (Figure 1). Only one study to date has been published using the NEON carabid pitfall trap data (Egli152

et al., 2020), but Egli et al. (2020) analyze only the subset of individuals that have expert taxonomist classifications.153

Our model lowers the barrier of entry for using all imperfectly classified individuals while leveraging the available154

validation data.155

2.2.2 Model specification156

We used informative priors for the species classification probability vectors ✓1, ...,✓K that placed higher probability157

density on the correct species classification. In the case of NEON beetle data, this is reasonable given the training158

that parataxonomists receive in beetle identification. Because all elements of each ✓k vector need to sum to one,159

and each element is bounded between 0 and 1, we used a Dirichlet prior: ✓k ⇠ Dirichlet(↵k). We chose the160

Dirichlet concentration values ↵k by comparing draws from the Dirichlet prior distribution to our prior intuition161

about parataxonomist skill, using 200 along the diagonal (the element corresponding to the correct species identity),162

and 2 elsewhere.163

We used multivariate normal priors at the species and site level, which allowed for correlations among param-164

eters. These priors share information among initial occupancy, persistence, colonization, and encounter rates. The165

motivation for this stemmed from a prior expectation that these parameters could be related. For example, species166

that are more abundant might be more likely to occur initially, persist, or colonize new sites. Similar arguments167

could be made about relationships among parameters at a site level.168

Each species is associated with a vector ↵k of length 4, where ↵k,1, ↵k,2, ↵k,3, and ↵k,4 are species-specific169

adjustments on initial occupancy, persistence, colonization, and encounter rates respectively. We assume that the170

species-specific adjustments are drawn from a multivariate normal prior with mean equal to zero, and an unknown171

covariance matrix: ↵k ⇠ Normal(0,⌃(↵)). Similarly, site-specific adjustments ✏i were drawn from a di↵erent multi-172

variate normal prior. These adjustments were added together on a transformed scale to compute initial occupancy,173

persistence, colonization, and encounter rates, e.g., logit( i,k,1) = ✏i,1 + ↵k,1. A full model specification for the case174

study is available in Appendix S2 (Plummer et al., 2003).175

To evaluate how the occupancy and encounter rate components of the full model informed classification probability176

estimates, we also developed a reduced model that discards all information about occupancy and abundance, using177

just the expert and para-taxonomist species classifications to estimate the classification matrix ⇥. This comparison178

reveals the extent to which occupancy and encounter rates inform classification probabilities. If there are no di↵erences179

in the estimates of classification probabilities, then a two-stage model which first models misclassification and then180

passes the posterior on as a prior for an occupancy/encounter model should perform as well as the joint model in181

which the classification model is integrated with the occupancy model. In addition to comparing posterior estimates182

for ⇥, we withhold a randomly selected 20% of the imperfect classifications to evaluate which model (full or reduced)183
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better predicts the data generated by the parataxonomist. All models were fit using JAGS (Appendix S3, dclone, and184

R v4.0.2 (Plummer et al., 2003; Sólymos, 2010; R Core Team, 2020) and visualized with ggplot (Wickham, 2016).185

3 Results186

3.1 Dynamic occupancy model187

The occupancy model was designed to allow correlation between parameters across sites and species. Occupancy,188

growth, and turnover rates also varied through time. Sites with high encounter rates tended to have low initial189

occupancy and colonization probabilities and high persistence probabilities (Figure 2). Further, sites with high190

colonization rates tended to have high initial occupancy probabilities and low persistence probabilities. At the species191

level, we saw positive correlations among many of the model components, but in particular, species’ encounter rate192

was positively correlated with species’ initial occupancy, persistence, and colonization rates (Figure 2). Species varied193

in their detection success by the imperfect classifier, from ones that were common and consistently identified correctly194

(e.g. Calathus advena) to ones that were not identified at all (e.g., Dicheirotrichus mannerheimii) but were caught195

by the expert taxonomist.196

3.2 Classification model197

The model yielded high probabilities of classification along the diagonal of the ✓ confusion matrix where the expert198

and para-taxonomist identifications match (Figure 3). The model favors the parataxonomist’s skill by giving more199

weight in the theta prior to diagonal values, making morphospecies classifications less probable. Individuals with200

morphospecies classifications make up a sizeable portion of the community, 811 out of the total 4772 total individuals201

identified by the parataxonomist. Despite the dirichlet priors favoring parataxonomist accuracy, some species had202

nontrivial probabilities of being classified as morphospecies than as the true species by the parataxonomist. For203

example, the parataxonomist was more likely to classify Pterostichus (Hypherpes) sp. as D13.2016.MorphBT than as204

the true species (Figure 3). However, no species had more than 3% probability (median) of being classified as another205

species (i.e., our model results indicate that the parataxonomist is most likely to identify a species either correctly206

or as a morphospecies).207

To evaluate the value added by informing the classification model with occupancy and encounter rates, we com-208

pared the full model to a reduced classification model that discards all information about occupancy and abundance.209

Most ✓k probability vectors do not di↵er between the full and reduced model results. However, we see di↵erences for210

a few species where there are non-overlapping ✓ posterior density distributions between the full and reduced models211

(i.e., Theta[46,46] and Theta [48,48], Figure 4). These di↵erences are found most notably for the abundant species.212

The full model yielded higher classification probabilities for the abundant species. Further, the reduced model has213

wider 95% credible intervals compared to the full model for many theta indices (Figure 5). Thus, we find that a joint214

occupancy-classification model outperforms a two-stage model (classification, then occupancy).215
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We evaluated the performance of the full and reduced models by withholding a randomly selected 20% (352216

individuals) of the imperfect classifications that have an expert identification (1764 individuals). For the withheld217

individuals, the validation metric macro-averages are listed in Table 1. For every validation metric, the full model218

yields better results than the reduced model. The validation metrics calculated to the species level highlighted219

substantial di↵erences between the models for common species. This confirms the result that occupancy dynamics220

improve classification model performance compared to using classification data alone.221

4 Discussion222

We developed a statistical approach to improve classification in multispecies datasets that leverages occupancy dy-223

namics. Our probabilistic framework can be applied to datasets with imperfect species detection and also errors224

in classification of samples. This approach builds on recent work on classification in occupancy models (Devarajan225

et al., 2020, and references therein) by evaluating the advantage of a joint occupancy-classification model, allowing226

imperfect classifications to outnumber species, and leveraging individual-level confirmation data in a semi-supervised227

setting. While analyses targeting species richness may be shielded to a certain extent from imperfect classification228

(Egli et al., 2020), any population- or community-level analyses with taxonomic specificity require an understanding229

of classification uncertainty in the data. Whereas imperfect classifiers o↵er classification point-estimates, our model230

provides a vector of probabilities for every species.231

This is the first model to consider how occupancy and encounter rates contribute to improving classification.232

We found that our joint occupancy-classification model outperformed a reduced model that disregarded occupancy233

dynamics in estimating imperfect classification (Figure 6, Table 1). When looking at the validation metrics at the234

species level, the joint model surpasses the reduced model even more for abundant species. In Figure 5, we see235

that the full model posteriors have smaller CI widths than the reduced model for many species, which visualizes the236

superior precision of the full model.237

False positive and negative species classifications are inevitable in any field collection, due to time and money238

constraints or imperfect classifiers (Royle and Link, 2006; Miller et al., 2012; McClintock et al., 2010; Hoekman239

et al., 2017). Accounting for false identifications is important to reduce bias in occupancy dynamics estimated from240

multispecies biodiversity monitoring datasets (McClintock et al., 2010; Miller et al., 2011; Chambert et al., 2015;241

Miller et al., 2015). Alternative models that account for false positives may consider data from only the focal species242

(Chambert et al., 2015) or from binary observations (Chambert et al., 2017). Like Wright et al. (2020), we use243

available counts from an imperfect classifier (Figure 1). However, we use all species detected, no matter how rare.244

By allowing taxonomic uncertainty propagation for multispecies datasets where imperfect classifications outnumber245

species (e.g., unknown, morphospecies, to the family level) by using a rectangular classification matrix ✓ (Figure246

3), we remove an assumption that previous occupancy modeling methods have used (Chambert et al., 2018; Wright247

et al., 2020).248

Our model is semi-supervised and makes use of data at the individual-level. Whereas alternative models use249
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data pooled at the site- or occasion-level (Chambert et al., 2018; Wright et al., 2020), our model leverages the rich250

information at the individual-level to reveal which species are commonly mistaken by the imperfect classifier and how251

often. Individuals identified by the expert taxonomist we know as true positives so can be used as partially-observed252

occupancy data in our semi-supervised model. In contrast, the model by Wright et al. (2020) is unsupervised, but253

also at the individual-level. Because our analysis is done at the individual-level, we can use species counts to inform254

classification (Chambert et al., 2017). Although the model priors favor parataxonomist accuracy, the model found255

high probability of classification for a couple of morphospecies that were abundant in the data (D13.2015.MorphO256

and D13.2016.MorphBT) (Figure 3).257

Despite its innovations, our model has limitations. For NEON’s carabid data from NIWO, which we used to fit our258

model, the parataxonomists were skilled and had high identification agreement with expert taxonomist classifications.259

The model may yield unexpected results when applied to a NEON site with lower parataxonomist accuracy. This260

raises the question of how much validation data is necessary to fit the model for varying degrees of imperfect classifier261

accuracy. This could be answered with simulations to identify what percentage or which type of samples should be262

prioritized for expert taxonomist classification to yield desired results.263

We tried various iterations of the model before coming to the final disaggregated, semi-supervised, individual-264

level model. Using an aggregated data approach, we found the model either would not converge or struggled with265

identifiability, yielding multimodal posteriors for ✓. Changing the Dirichlet priors to favor parataxonomist accuracy266

helped but did not eliminate the problem. Future work could more explicitly incorporate false positives by informing267

the ✓ priors with a list of species commonly misidentified by the imperfect classifier.268

A model assumption is that samples were selected at random for verification. In reality, NEON prioritizes samples269

that were not classified to the species level by the parataxonomist. The model outlined here could be extended to270

represent processes such as this, by which samples are selected for verification by a more accurate classifier. Such271

extensions could take advantage of information contained in whether or not samples are selected for verification (e.g.,272

the fact that a sample was not chosen for verification is informative, as it may indicate higher confidence in the initial273

classification).274

Large-scale, long-term biodiversity surveys are critical to inform land management and conservation policy275

(Hughes et al., 2017) and require a↵ordable and e�cient species classifications to stay on track and within budget.276

Egli et al. (2020) make a case for better training of parataxonomists to improve classification error rates. However,277

training people is expensive and sta↵ can be transient, calling for a more systematic solution. This probabilistic278

approach can model species occupancy while accounting for imperfect classification, without additional training.279

Innovations in occupancy models in general, are rapidly being made to consider an expanding variety of study sys-280

tems and experimental designs (Bailey et al., 2014). Our results support the concept that ecological dynamics (i.e.281

occupancy and encounter rates) inform classification probabilities and lays a foundation for future work to build282

upon.283
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5 Figures370

Figure 1: Classification scenarios in NEON carabid data. Each column is an imperfect classifier label. Each

species is either present or absent, and morphospecies don’t have an occupancy state. In some cases, the

imperfect classifier (parataxonomist) matches the error-free classifier (expert taxonomist) (black arrow), in

other cases the imperfect classifier was wrong (red arrow), while in other cases still, the error-free classification

is unknown due to lack of validation data. For example, the Morphospecies 1 individual with no error-free

classification must belong to a di↵erent column, but this species identity is unknown in the raw data.
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Figure 2: Random e↵ects at the site and species levels. Rows correspond to the rows in the random e↵ect

covariance matrix: initial occupancy (row/col 1), persistence (row/col 2), colonization (row/col 3), and

encounter rate (row/col 4). Along the diagonal are marginal histograms of posterior medians. Below the

diagonal are pairwise scatterplots (each point is a site or species). Above the diagonal are posterior density

plots of the pairwise correlation.
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Figure 3: ⇥ confusion matrix for the full model (classification with occupancy). Heat map of posterior

median values where a value is interpreted as the probability that the species in that row is identified as a

species in that column. Values along the diagonal are where the species is correctly identified. Values in

each row sum to 1. The ✓ posterior distributions for the 3x3 cells outlined in red are illustrated in Figure 4,

along with the posteriors for the reduced (classification alone) and prior models.
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Figure 4: Comparison of ✓ density distribution between prior, full model posterior (classification with oc-

cupancy), and reduced model posterior (classification alone) for select ✓ confusion matrix indices. For

non-abundant species, ✓k probability distributions look like the second row. Here the three models’ proba-

bility distributions overlap on the o↵-diagonal (Theta[47,46]/[47,48]) and the posterior distributions overlap

but di↵er from the prior along the diagonal (Theta[47,47]). In contrast the top and bottom rows reflect prob-

ability distributions for abundant species. The posterior distributions overlap and are narrower and smaller

than the prior on o↵-diagonal values (Theta[46, 47]/[46,48], Theta[48,46]/[48,47]). Along the diagonal, we

see a di↵erence in posterior probability distribution between the reduced and full models (Theta[46,46],

Theta[48,48]), visualizing how the full and reduced models perform di↵erently.
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Figure 5: Comparison of precision between theta posterior 95% credible intervals (CI) of full model (occu-

pancy with classification) and reduced model (classification alone). The full model is more precise for points

above the line, indicating that the reduced model has a larger CI than the full model for that species.
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Figure 6: Validation metric macro-averages across posterior draws for accuracy, F1 score, and holdout

log-likelihood.

Full model Reduced model

Accuracy 0.65 0.56

Precision 0.23 0.19

Recall 0.37 0.35

F1 score 0.65 0.59

Holdout log-likelihood -84.7 -110

Table 1: Validation metric macro-averages
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