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Abstract

It is highly challenging to obtain high performance with limited and uncon-
strained data in real time face recognition applications. Sparse Approxima-
tion is a fast and computationally efficient method for the above application
as it requires no training time as compared to deep learning methods. It
eliminates the training time by assuming that the test image can be ap-
proximated by the sum of individual contributions of the training images
from different classes and the class with maximum contribution is closest
to the test image. The efficiency of the Sparse Approximation method can
be further increased by providing high quality features as input for classi-
fication. Hence, we propose to integrate pre-trained CNN architecture to
extract the highly discriminative features from the image dataset for Sparse
classification. The proposed approach provides better performance even for
one training image per class in complex environment as compared to the
existing methods. Highlight of the present approach is the results obtained
for LFW dataset with one and thirteen training images per class are 84.86%
and 96.14% respectively, whereas the existing deep learning methods use a
large amount of training data to achieve comparable results.
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1. Introduction

The ability of humans to recognize different faces has attracted many
researchers to build machine learning models for face recognition (FR). The
FR research focuses on the process of providing machines the ability to iden-
tify and verify facial images. The face recognition models learn to map the
face image to a feature vectors and measure the distance corresponding to
the face similarity. Despite the considerable improvement in performance
of FR algorithms, good classification accuracy with limited data is still a
challenge. The efficiency of FR algorithms is severely affected due to non lin-
ear variations present in unconstrained environment such as change in pose,
expression, illumination or any additional physical variations such as scarf,
glasses and beard.

Sparse representation method for classification performs well on small
training datasets but the performance deteriorates with increase in image
complexity. The deep learning models provides high performance for con-
strained as well as unconstrained datasets but training of these models re-
quires huge amount of data and time. So the challenge emerges with real
life data having limited samples and highly nonlinear variations due to un-
constrained environment. The challenge posed by the complexity of space
and time can be tackled by using transfer learning approach. Transfer learn-
ing refers to fine-tuning of an existing model or feature extraction from the
layers of pre-trained deep neural network. In transfer learning approach the
image feature vectors are extracted using the deep pre-trained neural net-
works and these feature vectors are transfered to other networks for training
and classification.

The deep learning models such as convolution neural network (CNN) have
the capability to handle the nonlinear complex facial variations. In CNNs,
the initial layers are observed to learn the important features and the later
layers provide learning of higher level abstractions [1]. These higher level
abstractions represent facial identities with outstanding stability. Therefore,
the feature extracted from the pretrained deep learning models such as CNN
shows remarkable performance [13]. VGGF, VGG16, VGG19 [2, 3], AlexNet,
ResNet-50 [4] are few commonly used pre-trained CNN models for feature
extraction.

In this paper we propose a novel approach for FR via transfer learn-
ing that combines CNN with linear sparse approximation (LSA) for facial
recognition. We extract the features of the face datasets from the deep CNN
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architecture (Inception-ResNet-v1) [5], pre-trained on two different databases
(VGGFace2 [6] and CASIA-Webface [7]) separately and classify using linear
sparse approximation.To investigate the performance of the proposed method
the experiments are carried out systematically and extensively on six differ-
ent standard datasets. The obtained accuracy is better even for one training
image per class in unconstrained and complex environment as compared to
the existing methods.

2. Literature Survey

Over the last few years the face recognition accuracy has drastically im-
proved. Different FR methods have been evolved over time ranging from
various statistical techniques [8, 9, 10] to deep learning methods [11, 12, 13].
The sparse approximation based methods are outperforming existing tech-
niques constrained to limited training data in terms of classification accuracy
and easier implementation [14, 15, 16]. In the last decade, many sparse ap-
proximation based methods have evolved that performs very well [17, 18, 19].
In these methods, the test vectors are approximated to linear sparse combi-
nation of training vectors and final matching contribution is calculated for
further classification of test vector. The Kernel based sparse representation
algorithms [20, 21], obtained by using the transformation of input space into
high dimensional feature space, performs better than the conventional sparse
approximation based methods. Lu et al. [22] proposed weighted sparse rep-
resentation technique, which is based on combining the local information
into sparse based approximation in a unique manner. Weighted group sparse
representation technique [23], proposed by Xin et al. [23] combines the lo-
cal information with group sparse based approximation for integration of
the label information. In extended interval type-II and kernel based sparse
representation method (KBSRM) [20], extended interval type-II fuzzy mem-
bership function is combined with Kernel sparse based approximation for
FR. It extracts information that is hidden due to non-linear variation and
pixel value overlapping. Hence, sparse based approximation provides very
good results for small datasets but the performance is not satisfactory with
unconstrained complex images.

The accuracy of recognition systems have been observed to depend heav-
ily on the image feature extraction technique [24, 25]. Various feature ex-
traction techniques are available in literature. Principal component analy-
sis (PCA) [26], independent component analysis (ICA) [27] and other low-
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dimensional representation based techniques follow certain distribution as-
sumptions and are the popular image feature extraction techniques. These
methods fail to address the facial changes in uncontrolled environment. Many
researchers attempted to address this problem using local feature extraction
methods such as Gabor [9, 28], Local Binary Pattern (LBP) [25] and their
variants -[29]. These methods provide robust performance due to the in-
variance property of local filtering but these handcrafted features display
lack of distinctiveness and compactness. Therefore, learning based feature
descriptors attracted researchers, in which learning of local filters is empha-
sized for improved distinctiveness and codebooks are learned for compactness.
However, these representations are still unable to handle nonlinear complex
facial variations.

The ability of deep learning methods to easily learn the rich and com-
pact feature vectors from very large data-sets makes them very lucrative for
face recognition applications [30, 31, 32, 33, 34, 35]. Following this, the re-
searchers have applied the transfer learning approach that makes it easier
to use these already trained deep learning models for FR [36, 37, 22]. De-
veloping a CNN network from scratch requires massive amount of time and
data. To avoid this, transfer learning approach is gaining popularity among
researchers which saves a lot of time and resources by the use of pre-trained
networks for feature extraction. In this approach the learned weights from the
pre-trained network layers are used for feature extraction [38, 39, 12, 40, 41].
The above discussion shows that the conventional machine learning methods
such as, sparse based representation method performs well with even with
limited data but only on constrained data whereas the deep learning models
perform fantastically well even on unconstrained data but the method re-
quires large amount of training data. Therefore, there is a need to develop
a model that combines both the deep learning models with the traditional
models so that the model performs well on unconstrained data even with
limited training samples.

3. Methodology

The basic framework of proposed methodology is given in Figure 1. In
this framework, FR is carried out using transfer learning approach via two
different modules: feature extraction using deep CNN and classification us-
ing linear sparse approximation. In the first module feature vectors of all
images (training and testing) for a given dataset are extracted from the deep
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layer of the CNN. The second module receives training and testing images
in the form of feature vectors and performs classification using linear sparse
approximation. The two modules of propose no training time as observed in
deep learning methods.d method are discussed in next two subsections.

3.1. Module 1: Feature Extraction method using CNN

CNN networks have the capability to automatically learn different com-
plex features from the images for different problems. The CNN architecture
is composed of many layers of convolution, ReLU and max pooling, one or
more fully connected layers and an output layer. The feature extraction is
done by the convolution layers (convolution, ReLU and max pooling). During
convolution the image is convolved with kernels/filters of same or different
sizes. The mathematical expression for the convolution operation is given by

Yl = fl(Wl ·Xl−1 + bl), (1)

where, W is the kernel weights, b is the bias, l is the layer, X is the input
feature map of l−1th layer and Y is the output feature map of lth layer. The
dimension of the obtained output feature maps after each layer is reduced
by applying the pooling layer without changing the number of feature maps.
The kernel weights W and bias b gets updated after each iteration during
the training of the network via back propagation method.

In deep CNN each input image is represented as tensor X of size [H
W C], where H, W, C is the height, width and number of color channels
of image respectively. A pre-trained convolutional neural network (CNN)
method forcan be represented as L number of functions in series f1, f2....fL

where L is the number of layers in the network. The output Yl of layer l is
given by (Eq. 1). The CNN learns layer weights and hence features through
training the network and each layer learns different features. The deeper
layers have the ability to learn complex features. The learned features are
then used to classify the images. Image features can be computed from any
layer of the pre-trained CNN by providing function fl, learned weights Wl

and image tensor X such that, Yl = fl(Xl−1 : Wl).
We use a deep pre-trained CNN architecture (Inception-ResNet-v1) (Fig-

ure 2) [5] for feature extraction that has computational cost approximately
equal to Inception-v3. Inception model architectures show high performance
at low computational cost. Training of Inception network gets accelerated
when combined with residual network. Combining Inception network with
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Figure 1: Basic framework of proposed method.

ResNet network also solves the problem of exploding/vanishing gradients
that is a very common problem in deep network architectures.

In the present no training time as observed in deep learning methods.work,
ResNet-Inception-v1 model [5] pre-trained with VGGFace2 [6] and Casia-
Webfaces [7] database is used to extract the facial features. VGGFace2 is a
large face database having a wide range of variations in pose, age, illumina-
tion, ethnicity and profession. The VGGFace2 dataset was proposed by Cao
et al. consisting of 3.31 million face images of 9131 subjects, with an average
of 362.6 images for each subject.

The feature vectors are extracted from the last layer (average pooling) of
the network (Figure 1). The extracted feature vectors are then trained and
classified using linear sparse approximation.

3.2. Module 2: Classification using Linear Sparse Approximation

Linear Sparse Approximation is a fast and computationally efficient clas-
sification method for face recognition as no previous training is required as
compared to huge training requirements of deep learning methods. It elimi-
nates the training time by assuming that the test image can be approximated
by the sum of individual contributions of the training images from different
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Figure 2: Schematic Representation of Inception-ResNet-v1 network.

classes and the class with maximum contribution is closest to the test image.
Thus, to increase the efficiency of the classification highly discriminative fea-
tures extracted from the above mentioned pre-trained CNN architecture is
provided as input to the Sparse classifier.

This module receives all images of a given dataset in the form of feature
vectors. Here, classification is implemented in three steps: in the first step,
one nearest feature vector is identified from each class which is nearest to the
test feature vector. Thus, the number of nearest feature vectors identified
is equal to the number of classes i.e.′K ′. In the second step, test feature
vector is represented as linear sparse combination of identified ′K ′ nearest
feature vectors and coefficient values required for sparse approximation are
calculated. In the third step, matching contribution for all nearest feature
vectors is calculated. And finally the test feature vector is classified in to the
class of nearest training feature vector having minimal deviation between its
matching contribution and test feature vector.

Step 1 Determination of nearest feature vector: In this step, one nearest
training feature vector is identified from each class using squared euclidean
distance. Hence, total ′K ′ nearest feature vectors are identified from complete
training set. The elements of training set are represented by tji (i.e. ith
training feature vector from the jth class, where i = 1, 2, ..., T and j =
1, 2, ..., K) and elements of testing set are represented by qr (where r =
1, 2, ..., (N − T ) × K). The K nearest training feature vectors of qr are
estimated using formula given in Equ. (2),

d(tji , qr) =‖ tji − qr ‖2 (2)
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Algorithm 1 Feature vector extraction using pre-trained CNN model

Input Gray scale � color image
For each input image, do

Resize input image to 160× 160× 3 pixels.
Extract features from pre-trained Inception-Resnet-v1
model from average pooling layer.
Convert features to a column vector

EndFor
Output Feature vector extracted from pre-trained Inception-Resnet-v1 ar-
chitecture using transfer learning approach

For each class, distance between test feature vector and ′T ′ training fea-
ture vectors is calculated which is denoted as d1, d2, ..., dT . Using these
distances one nearest training feature vector having minimum distance is
selected. Therefore, selecting one nearest feature vector from each class of
training set makes a collection of ′K ′ nearest feature vectors. Finally, all the
′K ′ nearest training feature vectors t1, t2, ..., tK are represented by a matrix
NTFV = [t1, t2, ..., tK ].
Step 2 Coefficient(α) calculation for linear sparse approximation: In this
step, test image q is approximated as linear sparse combination of selected
nearest training feature vectors. Here, it is assumed that the following equa-
tion is perfectly satisfied.

q = α1t1 + α2t2 + ...+ αKtK (3)

In Eq.(3), tm(m = 1, 2, ..., K) are K nearest training feature vectors and
αn(n = 1, 2, ..., K) are the corresponding coefficients required for sparse ap-
proximation. In other words,

q = ΣK
p=1αpNTFV (:, p) (4)

Eq.(3) can be rewritten in matrix form as

q = NTFV ∗ α (5)

Where, NTFV = [t1, t2, ..., tK ] and α = [α1, α2, ..., αK ]T . Also the value
of α is restricted to be the real number between −1 to +1 satisfying the
condition α1 + α2 + ... + αK = 1. Further, singularity test is performed on
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NTFV TNTFV . In case, it is found to be non singular, the Eq. (4) is solved
using the formula given in Eq. (5).

α = (NTFV TNTFV )−1NTFV T q (6)

Otherwise, if NTFV TNTFV is nearly singular, α can be solved using Eq.
(6).

α = (NTFV TNTFV + µI)−1NTFV T q (7)

Here, I is the identity matrix and µ is a positive real number. Following the
previous applications of sparse representation in face recognition, value of µ
is set to 0.01. Therefore, coefficient α values are obtained using Eq. (5) and
(6).

Algorithm 2 Classification algorithm using linear sparse approximation

Divide the complete image feature database into training and testing image
feature sets

For each test image feature, q, do
Determine one nearest image feature from training image
features of each class having minimum distance with q,
Equation(1).
Calculate approximation coefficient vector [α],
Equation(2),(5) and (6).
Calculate matching contribution for each class, Equation(7).
Final classification of test image feature,q, to the class having
minimal deviation Dr, Equation(8).

EndFor
Test image feature q successfully classified to the class of nearest image
feature with minimal deviation.

Step 3 Calculation of matching contribution and classification: It is clear
from previous discussion that each nearest training feature vector present in
NTFV is taken from a different class. For final classification, matching con-
tribution of each class (or nearest training feature vector present in NTFV )
is calculated. For ith nearest training feature vector, matching contribution
is calculated using Eq. (7) as,

MCi = αi ∗NTFV (:, i) (8)
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Matching contribution is obtained for each nearest training feature vector
present in NTFV . The deviation between matching contribution of rth
nearest training feature vector and the test feature vector q is calculated
using norm-2 distance as given in Eq. (8).

Dr =‖ q −MCr ‖2 (9)

Here, it is clear that smaller value of Dr represents greater matching of
rth nearest training feature vector with test feature vector.

Hence, the test feature vector is classified into the class of nearest training
feature vector having appropriate matching contribution and least deviation
with test feature vector q. The complete algorithm of proposed method
including sufficient programming details is given in Algorithm 1 and 2.

4. Experiments and results

In the present study we evaluate the performance of the proposed method
with limited number of training images in unconstrained environment. by
performing two different experiments. These experiments examine the vari-
ation in FR performance on various datasets and highlight the performance
differences when CNN architecture (Inception-ResNet-v1) is pre-trained with
VGGFace2 and CASIA-Webface. In the first experiment , the classifica-
tion accuracy of the proposed model is evaluated on different datasets when
image features vectors are extracted from Inception-ResNet-v1 pre-trained
with VGGFace2 database. The second experiment evaluates the performance
when Inception-ResNet-v1 is pre-trained with CASIA-Webface.

To perform the experiments, the extracted feature vectors are divided into
mutually exclusive training and testing feature sets. One feature vector cor-
responds to one image. For each dataset, T feature vectors out of N feature
vectors per class are selected as training features and remaining as (N − T )
feature vectors per class are testing features, with a total number of possible
training sets as N

T !(N−T )!
. The details of total number of tests conducted for

each dataset is given in Table 1. Here, it is to be noted that the test and
training data being used in different experiments are mutually exclusive that
avoids any possibility of overfitting. The results are expressed in terms of
mean percentage classification accuracy (MPCA), maximum accuracy, mini-
mum accuracy and standard deviation for all possible combination of training
images per class (TIPC). To calculate the MPCA, if q1, q2, ...q(N−T ) are the
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Table 1: Details of total tests conducted for each dataset.

Dataset
Training images
per class (TIPC)

Number of
test sets

Number of
tests/ set

Total number
of tests conducted

ORL 1 10 360 3,600
2 45 320 14,400
4 210 240 50,400
6 210 160 33,600
9 10 40 400

YALE 1 11 15 1,650
2 55 135 7,425
4 330 105 34,650
6 462 75 34,650
10 11 15 165

AR 1 26 1,625 42,250
2 325 1,560 5,07,000
4 14,950 1,430 21,378,500
6 2,30,230 1,300 29,92,99,000
12 96,57,700 910 8,78,85,07,000
25 26 65 1,690

GT 1 15 700 10,500
2 105 650 68,250
4 1,365 550 7,50,750
6 5,005 450 22,52,250
12 455 150 68,250
14 15 50 750

FEI 1 14 650 9,100
2 91 600 54,600
4 1,001 500 5,00,500
6 3,003 400 12,01,200
12 91 100 9,100
13 14 50 700

LFW 1 14 650 9,100
2 91 600 54,600
4 1,001 500 5,00,500
6 3,003 400 12,01,200
12 91 100 9,100
13 14 50 700

members of test feature set and CL = 1, 2, ...K is the set of class labels.
Assume that, CLi

represents true class label of qi. For the proposed classifier
f, f(qi) = CLi

is the label prediction for test feature vector qi where, CLi
is

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435457doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435457
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2: Detailed Description of Standard Datasets Used in Our Experiments

Database Details ORL YALE AR Georgia Tech FEI LFW

No. of Classes 40 15 65 50 50 50

No. of Images
per Class

10 11 26 15 14 14

Image Size 92× 112 220× 175
165× 120
×3

131× 176
×3

640× 480
×3

250× 250
×3

Total Instances 400 165 1690 750 700 700

a number from set CL. The mathematical expression for MPCA is given as:

MPCA =
1

N − T

N−T∑
i=1

Wi × 100 (10)

where,

Wi =

{
1 if |[f(qi) = CLi

]|
0 else.

Description of datasets used: The details of all datasets used in the
present work are given in this section. The brief specifications of datasets
used are found in Table 2.

• ORL dataset: The ORL dataset [42] has a total of 400 face images
with 10 images per class. The image resolution is 92 × 112 pixels.
The dataset contains grey scale images with dark background, upright
frontal position and a slight difference in facial expressions, lighting
and pose.

• YALE dataset: The YALE dataset [43] has total 165 images with 15
subjects and 11 images of each subject. The images vary in expressions
and with and without glasses. Image resolution is 220× 175 pixels and
are in gray scale.

• GT dataset: Georgia Tech dataset [44] consists of 750 images of 50
subjects and 15 colour images of each subject. Each image resolution
is 640 pixels by 480 pixels. The images are captured at Centre for
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Signal and Image Processing at Georgia Institute of Technology with
fussy background. We used the cropped images with resolution 131
pixels by 176 pixels. The images are captured with upright frontal and
tilted pose with varying illumination condition,facial expressions and
scale.

• AR dataset: AR dataset [45] has total of 1690 colour images of 65
subjects with 26 images per subject. The images vary in gender, facial
expressions, illumination and occlusion. The image resolution is 165
pixels by 120 pixels. The database also contains images with black
glasses and face scarf.

• FEI dataset: The FEI dataset [46] used in the present paper contains
700 Brazilian faces of 50 subjects with 14 persons per subject. The
images are in color with resolution 640 pixels by 480 pixels. The images
vary in facial expressions and pose and have a homogeneous white
background.

• LFW dataset: Labelled Faces in the Wild (LFW) [47] is a large image
dataset collected from internet consisting of total 13000 images with
5749 subjects. The number of images per subject is variable. The
images in the dataset has large variability in pose, expression, age,
origin, background and resolution. We randomly selected 700 images
from 50 subjects with 14 images per subject from the original dataset
and resized all the images with resolution 250 pixels by 250 pixels.

4.1. Experiment 1: CNN architecture (Inception-ResNet-v1) pre-trained with
VGGFace2

The comparison of classification accuracy in terms of MPCA for the model
pre-trained with VGGFace2 for all datasets is given in Table 3 (Figure 3).
The MPCA for the proposed model with 1 and 2 TIPC is very high as com-
pared to existing sparse based methods and CNN algorithms. It is observed
that MPCA increases with increase in number of TIPC for all datasets. The
highest MPCA 100%, is obtained for ORL, YALE and GT datasets with 9,
6 and 9 TIPC respectively. The high accuracy for these datasets is due to
constrained face images with homogeneous background. The highest MPCA
for AR and FEI datasets is 99.88% and 95.14% with 25 and 13 TIPC repec-
tively. It is observed that MPCA for FEI dataset is better than AR dataset
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Table 3: Mean classification accuracy (%) of proposed method with VGGFace2 as pretrain
dataset for feature extraction.

Number of Training Images Per Class (TIPC)

Dataset 1 2 4 6 9 10 12 13 14 25
ORL 99.56 99.83 99.94 99.95 100 NA NA NA NA NA

YALE 99.82 99.92 99.99 100 100 100 NA NA NA NA
AR 75.71 86.25 92.77 93.71 – – 98.78 – – 99.88
GT 99.34 99.79 99.96 99.98 100 100 100 100 100 NA
FEI 82.67 90.44 93.15 93.96 94.57 94.68 94.95 95.14 NA NA

LFW 84.86 90.75 93.71 94.66 95.37 95.41 95.99 96.14 NA NA

Table 4: Mean classification accuracy (%) of proposed method with CASIA-Webface as
pre-train dataset for feature extraction.

Number of Training Images Per Class (TIPC)

Dataset 1 2 4 6 9 10 12 13 14 25
ORL 99.14 99.52 99.88 99.98 100 NA NA NA NA NA

YALE 97.82 98.94 99.66 99.91 100 100 NA NA NA NA
AR 71.65 82.6 90.77 94.35 – – 98.39 – – 99.94
GT 99.53 99.92 99.96 99.96 99.92 99.92 99.97 99.97 99.97 NA
FEI 67.29 80.44 87.28 89.60 91.31 91.61 92.24 92.57 NA NA

LFW 36.01 45.47 55.32 61.04 66.46 67.77 69.67 70.29 NA NA

at low TIPC whereas the performance of AR dataset improves in compar-
ison to FEI at large number of TIPC. This degradation in performance is
due to presence of large occluded image portions present in AR dataset. The
highest MPCA for LFW dataset is 96.14% with 13 TIPC which is higher
than FEI. The reason for lower performance with FEI dataset is presence of
relevant information in small portion of total image area. It is notable that
the performance of proposed method with LFW dataset is higher than the
performance of existing CNN architectures available in literature [4].

The statistical analysis of classification accuracy for all the tests con-
ducted on datasets is performed in terms of maximum accuracy, minimum
accuracy and standard deviation, shown in Figure 4 and Figure 5. From the
plot, it is observed that for VGGFace2 the value of minimum accuracy is
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Figure 3: Variation in mean classification accuracy with number of TIPC for (a) ORL
dataset (b) YALE dataset (c) AR dataset (d) Georgia Tech face dataset(e) FEI dataset
(f) LFW dataset.

100% at 9 TIPC for ORL, 5 TIPC onwards for YALE and 9 TIPC onwards
for GT dataset. For AR, FEI and LFW datasets value of minimum accu-
racy is never achieved 100% for any number of TIPC. Similarly, the value of
maximum accuracy is 100% for all possible number of TIPC of YALE and
GT datasets and the value is 100% for 2 TIPC onwards for ORL, 12 TIPC
onwards for AR and 13 TIPC onwards for FEI and LFW datasets.

4.2. Experiment 2: CNN architecture (Inception-ResNet-v1) pre-trained with
CASIAWebface

The comparison of classification accuracy in terms of MPCA for the model
pre-trained with CASIA-Webface for all datasets is given in Table 4 (Fig-
ure 3). The highest MPCA (100%) is obtained for ORL and YALE datasets
at 9 and 10 TIPC respectively. The highest MPCA for AR, GT, FEI and
LFW datasets is 99.94%, 99.97%, 92.57% and 79.29% with 25, 14, 13 and 13
TIPC respectively. It is observed that MPCA for LFW dataset is very low as
compared to MPCA obtained in experiment 1, for all possible combinations
of TIPC.
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Figure 4: Statistical analysis of classification accuracy for (a) ORL dataset (b) YALE
dataset (c) Georgia Tech dataset.
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Figure 5: Statistical analysis of classification accuracy for (a) AR dataset (b) FEI dataset
(c) LFW dataset.
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Table 5: Comparison of the proposed method (S. Bajpai et al. (2020)) accuracy with
other face recognition models.

References Datasets Models TIPC MPCA

S. Bajpai et al. (2020) ORL
InceptionResnet-v1

+ LSA
6 99.95%

S. Y. Wang et al. (2020) [38] ORL SAMPSR 5 94.14%
S. Almabdy et al. (2019) [4] ORL ResNet-50 + SVM 8 100%

S. Guo et al. (2016) [38] ORL CNN+SVM 7 97.5%

S. Bajpai et al. (2020) YALE
InceptionResnet-v1

+ LSA
6 100%

S. Zhu et al. (2017) [48] YaleB-Extended
histogram based

feature representation
99.37%

S. Bajpai et al. (2020) Georgia Tech
InceptionResnet-v1

+ LSA
12 100%

S. Bajpai et al. (2020) AR
InceptionResnet-v1

+ LSA
6 94.35%

S. Y. Wang et al. (2020) [38] AR SAMPSR 8 72.49%

S. Bajpai et al. (2020) AR
InceptionResnet-v1

+ LSA
4 92.77%

N. Zhu et al. (2014) [20] AR KSR method 4 91.61%

S. Bajpai et al. (2020) FEI
InceptionResnet-v1

+ LSA
13 95.14%

S. Bajpai et al. (2020) FEI
InceptionResnet-v1

+ LSA
1 82.67%

J. Cai et al. (2015) [49] FEI Sparse representation 1 61.31%
S. Almabdy et al. (2019) [4] FEI Transfer learning (AlexNet) 11 98.7%

S. Bajpai et al. (2020) LFW
InceptionResnet-v1

+ LSA
13 96.14%

S. Bajpai et al. (2020) LFW
InceptionResnet-v1

+ LSA
10 95.41%

S. Almabdy et al. (2019) [4] LFW ResNet-50 + SVM 11 94%

S. Almabdy et al. (2019) [4] LFW
Transfer learning

(AlexNet)
11 95.63%

The statistical analysis of classification accuracy for all the tests con-
ducted on datasets is shown in Figure 4 and Figure 5. Plot shows that for

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435457doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435457
http://creativecommons.org/licenses/by-nc-nd/4.0/


CASIAWebface the value of minimum accuracy is 100% at 8 TIPC onwards
for ORL and 9 TIPC onwards for YALE dataset. Also, for AR, GT, FEI
and LFW datasets value of minimum accuracy is never achieved to be 100%
for any number of TIPC. Similarly, the value of maximum accuracy is 100%
for all possible number of TIPC of ORL and GT datasets and the value is
100% for 2 TIPC onwards for YALE, 12 TIPC onwards for AR and 13 TIPC
onwards for FEI datasets. The value of maximum accuracy could not be
achieved 100% for LFW dataset.

From the above experiments, it is observed that the overall performance
in terms of MPCA for all datasets is better for model pre-trained with VG-
GFace2 database. Furthermore, in case of GT dataset performance is better
at limited number of TIPC for model trained with CASIA-Webface whereas
it is better at higher TIPC for model trained with VGGFace2. Also, the re-
sults obtained by the proposed model outperforms the existing methods for
face recognition application (Table 5). One major constraint in comparing
our results with the other published results in area of FR is the variability
of training and testing datasets. The training dataset used in existing works
using deep learning CNN models is extensively large as compared to our
experiment training dataset.

5. Conclusion

The paper presents an effective transfer learning approach for face recog-
nition application combining pre-trained InceptionResnet-v1 deep CNN ar-
chitecture and linear sparse approximation. The proposed method imple-
ments FR by extracting image features using InceptionResnet-v1 architec-
ture and classifying using linear sparse approximation. The use of pre-trained
CNN architecture for feature extraction improves the overall performance
drastically by learning the higher level abstractions which represents facial
identities with outstanding stability. Moreover, the classification using sparse
based approximation presents less time complexity, ease of implementation
and good accuracy with limited training data even with one and two TIPC.
To examine the the performance of the proposed model two experiments
are conducted on six different standard datasets using CNN architecture
(Inception-ResNet-v1) pre-trained with two different datasets VGGFace2 and
CASIA-Webface.

The experiment shows that the method performs better even in uncon-
strained environment with 1 and 2 TIPC as compared to the existing meth-
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ods. In addition to that, the overall performance of the proposed method is
better for the model pre-trained with VGGFace2 database.
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