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Abstract 
Behavioral systems, understanding it as an emergent system comprising the 

environment and organism subsystems, include spatial dynamics as a primary dimension in 
natural settings. Nevertheless, under the standard approaches, the experimental analysis of 
behavior is based on the single response paradigm and the temporal distribution of discrete 
responses. Thus, the continuous analysis of spatial behavioral dynamics has been a scarcely 
studied field. The technological advancements in computer vision have opened new 
methodological perspectives for the continuous sensing of spatial behavior. With the 
application of such advancements, recent studies suggest that there are multiple features 
embedded in the spatial dynamics of behavior, such as entropy, and that they are affected by 
programmed stimuli (e.g., schedules of reinforcement), at least, as much as features related 
to discrete responses. Despite the progress, the characterization of behavioral systems is still 
segmented, and integrated data analysis and representations between discrete responses and 
continuous spatial behavior are exiguous in the Experimental Analysis of Behavior. Machine 
Learning advancements, such as t-SNE, variable ranking, provide invaluable tools to 
crystallize an integrated approach for analyzing and representing multidimensional 
behavioral data. Under this rationale, the present work: 1) proposes a multidisciplinary 
approach for the integrative and multilevel analysis of behavioral systems, 2) provides 
sensitive behavioral measures based on spatial dynamics and helpful data representations to 
study behavioral systems, and 3) reveals behavioral aspects usually ignored under the 
standard approaches in the experimental analysis of behavior. To exemplify and evaluate our 
approach, the spatial dynamics embedded in phenomena relevant to behavioral science, 
namely water-seeking behavior, and motivational operations, are examined, showing aspects 
of behavioral systems hidden until now. 
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The spatial dimension: a relevant feature neglected by regular behavioral science 
paradigms  
 
The main objective of Behavioural Science is to account for the principles that underlie the 
Behavioural System, understanding it as an emergent and complex system comprising an 
environment and organism (Gibson, 1979; Kantor; 1970; Kuo, 1976; Skinner, 1938; 
Timberlake, 1994; Turvey, 2018). In simple words, the principal goal of Behavioural Science 
is to describe the principles and processes of natural behavior. The foundational works of 
behavioral science showed that natural behavior includes the Spatio-temporal dynamic as a 
fundamental dimension (e.g., approach-withdrawal patterns; Schneirla, 1959). 

Nevertheless, for various reasons, in the history of experimental behavioral science, 
the temporal distribution of discrete-response analysis gained prominence over the analysis 
of spatial patterns and their dynamics. One reason for this was the affordable technology 
available at the end of the first half of the last century to make reliable and automatized 
behavior records and measures. These records were made primarily through the use of 
mechanical and electronic switches (Escobar, 2014). Thus, the methodological approach 
focused on computing the frequency and temporal distribution of the activation or 
deactivation of switches (e.g., the total number of responses to an operand, number of 
responses per unit of time, inter-response times, etc.). This approach was called the single-
response paradigm (Henton & Iversen, 1978). Until now, it has been the standard in the 
experimental analysis of animal behavior (e.g., operant and pavlovian paradigms).  

The predominance of apparatus, measures, data analysis, and data representations 
based on discrete responses (e.g., lever press, food dispenser entrance) resulted in the spatial 
dimension of behavior being generally neglected.  It follows that standard approaches in 
experimental behavioral science do not account for the natural behavior associated with the 
organism's movement and its embedded dynamics (León et al., 2020b). 
 
Computational Animal Behavior Analysis (CABA) and integration of the spatial 
dimension to the Experimental Analysis of Behavior (EAB) 
 

Under operant and pavlovian paradigms, behavioral systems include complex 
interactions between Spatio-temporal patterns, discrete responses, and programmed stimuli, 
challenging to apprehend with the methodological standard approaches of the single-
response record (see Henton & Iversen, 1978; Pear, 1985). Although this issue was pointed 
out a long time ago, it has not been easy to solve for the Experimental Analysis of Behavior 
(EAB). Developing an integrative approach between environmental features, discrete 
responses, and Spatio-temporal dynamics is still challenging.  

 Computational advances made in the last decade (i.e., computer vision, machine 
learning, and deep learning techniques) have made the recording, measurement, and analysis 
of spatial patterns of behavior affordable (Dell et al., 2014; Mathis & Mathis, 2020; Pérez-
Escudero et al., 2014). Moreover, these technological advances to facilitate accurate and 
objective analysis of behavior have opened new methodological perspectives in behavioral 
science (Menaker et al., 2020), such as Computational Ecology and Computational Animal 
Behavior Analysis (CABA).  Nevertheless, the EAB has so far benefited little from these 
developments. 

Current computational methods (Datta, 2019; Mathis et al., 2018; Marshall et al., 
2020; Torabi et al., 2020) provide invaluable tools to crystallize an integrative EAB approach 
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for the analysis and understanding the Spatio-temporal dynamics (Loveless & Webb, 2021; 
Maekawa et al., 2020) associated with relevant behavioral phenomena (León et al., 2020a; 
León et al., 2020b). This multidisciplinary approach could show behavioral features and 
processes, hidden until now to behavioral science and, more specifically, to EAB. Hence, 
this emergent multidisciplinary approach could name Computational-Experimental Analysis 
of Behavior (CEAB). 
 
How the integrative approach of CEAB could extend the scope of behavioral science 
and Experimental Analysis of Behavior (EAB) 
 
EAB could be positively affected by CEAB in recording, measuring, analyzing, and 
representing the behavioral systems. In addition, CEAB could help to identify features or 
variables embedded in the Spatio-temporal continuum of behavior under well-established 
methodological paradigms (e.g., operant and pavlovian conditioning), hidden until now. If it 
is the case, the revealed features could extend our understanding of behavioral processes and 
the scope of behavioral science and eventually open new research possibilities.  

Recording. The relevance of accurate and objective records to any empirical science 
is well known. It is established that one of the main reasons for the success of the operant 
paradigm was its objective record of behavior (Escobar, 2014; León et al., 2020b). Under the 
single-response paradigm (e.g., pressing the lever or entering the dispenser) was possible to 
identify ordered functional relations between different variables and procedures (e.g., 
schedules of reinforcement; deprivations or motivational operations) and temporal patterns 
of discrete responses. CEAB, recording multiple responses and spatial behavior, could close 
the gap to identify new interactions and determinants between environmental events and 
Spatio-temporal patterns of behavior.  
Measuring and data analysis. There is a strong relation between recording, measuring, and 
data analysis. Under the single-response paradigm, the primary measure has been the 
response rate (Skinner, 1966; see any current issue of Journal of Experimental Analysis of 
Behavior). The analysis has focused on unidimensional changes in this measure. The 
multidimensional data obtained through CEAB (e.g., through sensing of discrete responses 
and spatial behavior with tracking systems based on computer vision) extend measurements 
and analyzes coherently with an approach that assumes behavior as a Spatio-temporal 
continuous system (Gibson, 1979; Henton & Iversen, 1978;  Kantor; 1970; Leon et al., 
2020b; Pear, 1985; Timberlake, 1994). Given the vast possibilities of behavior measuring 
and the considerable amount of data associated with the continuous Spatio-temporal 
recording of behavior, the central issue is what we should measure and analyze and why 
(Menaker et al., 2020). 

First, it is relevant to measure and analyze discrete responses (e.g., lever presses, 
dispenser entrances, 'correct' responses, among others, depending on specific behavioral 
phenomena) to have a comparative and parsimonious approach covering the standard 
paradigms in the EAB.  

On the other hand, given that some very plausible proposals on the relevant functions 
of spatial behavior (Berlyne, 1955; De Valois, 1954; Duffy, 1957; Elliot, 1934; Henton & 
Iversen, 1978; Pear, 1985; Schneirla, 1959) were gradually abandoned due to the lack of 
record systems, due to the technology available at the time and the predominance of the 
single-response paradigm. It could be fertile to recover past insights about spatial behavior 
with current technology (Spruijt et al., 2014). The primary dimensions identified in those 
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proposals were the direction, intensity (or vigor), and variation of behavior. The recording 
of both discrete responses and spatial behavior makes it possible to account for these 
dimensions. Thus, in second place, it could be relevant to measure and analyze the direction, 
for example, as approach-withdrawal patterns to relevant areas and stimuli (Schneirla, 1959; 
Duffy, 1957); intensity, for example, as traveled-distance, velocity, and rate of response; and 
variation of spatial behavior, for example, as recurrence patterns and entropy. Considering 
these dimensions in the CEAB could be a bridge to close the gap between the EAB and other 
paradigms of behavioral science, facilitating seeing multiple aspects of behavioral 
phenomena more fully. In addition, these dimensions could be helpful to identify 
behaviorally meaningful patterns. 

Data representation. An additional challenge is to conduct an analysis and data 
representation that integrates, in a perspicuous way, both discrete responses and spatial 
behavior as a whole behavioral system. This integrative analysis should identify and 
represent the participation and relevance (e.g., ranking variables) of different behavioral 
features or dimensions in the system (e.g., comparing the weight between variables based on 
discrete responses and continuous spatial behavior). Until now, this is a challenging task that 
could be resolved with methods for multidimensional analysis based on machine learning, 
such as t-SNE. 

 
A first approach of the CEAB 
 
Figure 1 shows the scheme of the general procedure used in this work. Each colored row 
depicts a component of our approach, assisted by different computational tools and 
procedures, namely, sensing/recording, measuring, data analysis, and representation. 
Columns depict continuous spatial behavior and discrete responses, respectively. The 
intersection between rows and columns exemplifies some applications of computational 
tools, in a given component, for each kind of response (discrete or spatial).  

The proposed approach integrates a) recording for continuous spatial behavior (based 
on machine vision) and discrete responses of the organisms; b) multiple measures for each 
record (first-order -such as velocity, distance to focal points- and non-first order - entropy 
and divergence-); c) multilevel data analysis (within-subject, within-session; between 
subjects, between sessions); and d) multidimensional and integrative representations of the 
system, made up Spatial behavior and discrete responses, based on machine learning. 

Under the CEAB approach, we present two examples using a subset of datasets from 
our laboratory (Leon et al., 2020a; Hernandez et al., 2021) related to relevant behavioral 
phenomena: a) water-seeking behavior under temporal schedules and b) motivational effects 
of water and food deprivation. These phenomena have well-documented dynamics of 
discrete responses but scarcely findings concerning spatial dynamics, and even less an 
integrative analysis between discrete responses and spatial behavior patterns.  

The purposes of the present work are a) to provide behavioral measures based on 
spatial dynamics sensitive to paradigmatic procedures with well-known effects on discrete 
responses (e.g., stimulus schedules and motivational operations); b) to reveal spatial 
behavioral features usually hidden under standard approaches based on single-discrete  
response paradigm; c) to illustrate helpful multidimensional representations, based on 
machine learning, for the integration of discrete responses and spatial behavior for a more 
comprehensive study of behavioral systems. 
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Figure 1. Graphical representation of the proposed integrative, multilevel, and multidimensional 
approach. It integrates recordings for continuous spatial behavior (based on machine vision), 
discrete responses of the organisms with multiple measures for each one, multilevel data analysis 
(within-subject, within-session, between subjects, between sessions), and a multidimensional 
characterization of the unitary system between Spatio-temporal dynamics and discrete responses. 
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Although the general approach based on the CEAB is the same for both examples, given the 
experiments correspond to different phenomena, a specific justification, methods, and results 
are presented for each one. Finally, a general discussion related to both examples and the 
purposes of the work is presented. The hypotheses in this work are the following: 1) the 
proposed measures based on spatial behavior will be sensitive to EAB paradigmatic 
procedures; 2) the CEAB, assisted by Machine Learning, will reveal that spatial features are 
at least as relevant as behavioral features based on discrete responses; 3) the CEAB will show 
that discrete responses and spatial behavior integrate a whole behavioral system, even under 
different experimental procedures, and phenomena.   

 
Example 1 

Water-seeking behavior: Behavioral dynamics under fixed and variable temporal 
schedules 
One of the most significant contributions of the Experimental Analysis of Behaviour to 
comprehend the variables underlying behavioral phenomena are stimuli schedules (e.g., 
schedules of reinforcement; Ferster & Skinner, 1957). A stimuli schedule is a rule, defined 
in a systematic and parametric way, to present stimuli (e.g., water, food; Reynolds, 1975). 
The stimuli schedules can be categorized according to several criteria; one of the most 
common and useful is contingent vs. non-contingent schedules. The first one, in 
methodological terms, is usually associated with operant contingencies and the second one 
with pavlovian contingencies. The difference between contingent and non-contingent 
schedules is that in the first one, the occurrence of a given stimulus is dependent (or 
contingent) on a given response of the organism (e.g., lever presses). In contrast, in non-
contingent schedules, the presentation of the stimuli does not depend on any organism's 
response but only on the temporal relation between the stimuli. These last are named time-
based schedules.  

There is a vast corpus of research, with both kinds of schedules, with several species 
and apparatus (Boren et al., 1978; Lachter et al., 1971; León et al., 2020a; Hernandez et al., 
2021; Zuriff, 1970). Most of this research is based on the recording and data analysis of a 
single discrete response, especially with 'appetitive' stimulation. The primary data are head-
entries to a food or water dispenser and food pellets or drops of water consumed, in other 
words, the temporal distribution of a given discrete response. Only in a few studies, the data 
was extended to time spent in zones near a dispenser (Baum, & Rachlin, 1969). Different 
behavioral phenomena have been studied with time-based schedules, such as 'superstitious 
behavior' (Reberg et al., 1977; Skinner, 1948), 'timing' (Drew et al., 2005; Sanabria et al., 
2009), among others. These different phenomena could be characterized as behavioral 
systems and their corresponding spatial-temporal dynamics from a systemic and parametric 
approach. The effects of the two time-based schedules, fixed and variable, on behavior have 
been scarcely studied comparatively. On the other hand, no comparative studies explicitly 
included the spatial dimension of behavior and its dynamics. Under these fixed and variable 
temporal schedules, neither integrates the standard data based on discrete responses with 
continuous data based on locomotion. 

Under this rationale, we evaluated the spatial dynamics of behavior in Wistar rats 
under two temporally water-delivery schedules (fixed and variable-time schedules) in a 
Modified Open Field System (MOFS) from a multidimensional analysis, using machine 
learning tools. 
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Method 
Subjects 

Four experimentally-naïve female Wistar rats were used, two rats were assigned to a 
Fixed-Schedule Condition and two rats to a Variable-Schedule Condition. All rats were three 
months old at the beginning of the experiment. Rats were housed individually with a 12-hr 
light and dark cycle and maintained under a daily schedule of 23 hours of water deprivation 
with free access to water 1 hr. after experimental sessions. Food was freely available in their 
home cages. One session was conducted daily, seven days a week. All procedures were 
conducted according to university regulations of animal use and care and followed the official 
Mexican norm NOM-062-ZOO-1999 for Technical Specification for Production, Use, and 
Care of Laboratory Animals. 
Apparatus 

A Modified Open Field System (Model WEOF by Walden Modular Equipment) was 
used. A diagram of the apparatus can be found in León et al. (2020a). Dimensions of the 
chamber were 100 cm x 100 cm. All four walls of the chamber and the floor were made of 
black Plexiglas panels. A water dispenser (by Walden Modular Equipment), based in a servo 
system, when activated, delivered 0.1cc of water on a water cup that protruded from the 
center of the MOFS. The MOFS was illuminated by two low-intensity lights (3 watts) located 
above the chamber and on opposite sides of the room to avoid shadowed zones. Once 
delivered, the water remained available for 3 s. A texturized black patch, 9x9 cm with 16 
dots/cm, printed in a 3d printer, was located close to the water dispenser to facilitate its 
location. 

The experimental chamber was located in an isolated room on top of a table of 45 cm 
in height. The room served to isolate external noise. All programmed events were scheduled 
and recorded using Walden Tracking System (v.0.1). In addition, a Logitech C920 web 
camera recorded rats' movement at the center, located at the center, 1.80m above the 
experimental chamber. Tracking data was analyzed using Walden Tracking System (v.0.1). 
This software recorded rats' location, by the center of mass, every 0.2s in the experimental 
space using a system of X, Y coordinates. Data files obtained from this software were then 
analyzed using MOTUSâ and Orange 3.26 Software. 
Procedure 

Subjects were exposed to one of both conditions of water delivery: a) Fixed Time 
(FT) 30 s schedule or b) Variable Time (VT) 30s schedule. Each condition lasted 20 sessions. 
Each session lasted 20 minutes. Rats were directly exposed to the conditions without any 
previous training. Two rats were assigned to Condition 1 (FT) and two to Condition 2 (VT). 
Data analysis 

To have a complete representation of the behavioral system, we analyzed different 
dimensions and levels based on the record of spatial behavior in a bi-dimensional space at 5 
frames/s; these are described below. Formal and computational descriptions of the 
measurements and methods of analysis are found in the supplementary material. 

Analysis between subjects within-session. This level of analysis was conducted, with 
representative subjects, thorough visual inspection of the data to identify changes in the 
spatial dynamics, moment to moment, related to water deliveries and the water dispenser 
location,  through the sessions. The measures and representations used to account for the 
changes in direction and variation of spatial behavior under the different experimental 
conditions (FT vs. VT). In addition, they allow depicting the evolution and process of the 
spatial behavior to compare the experiment's initial, intermediate, and final session. The 
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specific analyses for this level were: Bidimensional routes and rat's location at the moment 
of water delivery per session; Distance to the dispenser, moment to moment (5 frames/s), 
and smoothed distance to the dispenser with a moving average of 200 frames (for a formal 
description, see supplementary material); Recurrence plot, this plot depicts the change of 
regions of each rat in a matrixial configuration of 10 x 10 virtual zones (for a description, see 
supplementary material). 

Analysis between subjects throughout the experiment. This level of analysis was 
conducted, through visual inspection, to identify the stability or variation of spatial behavior 
throughout the whole experiment. The used measures were entropy to indicate the variability 
of the organism's location and divergence to indicate the consistency or inconsistency in such 
variability between consecutive sessions (for a formal description of entropy and divergence, 
see supplementary material). 
 Analysis between conditions by feature for all sessions. This analysis and data 
representation level was conducted to identify the experimental condition's global effect on 
each spatial and discrete feature (FT vs. VT). The representation and analysis were based on 
measures of central tendency and variance. The analyzed features were: traveled distance, 
entropy, divergence, maximum velocity, coincidence index, mean distance to the dispenser. 
These features account for intensity, direction, and variation of behavior. 

Multidimensional and integrative analysis based on Machine Learning. The main level 
of analysis allows the integration of a complete comparison and representation of all features 
in a whole behavioral system. Ranking variables, t-SNE, and linear projection were 
conducted (for a formal description, see supplementary material) to identify the weight of 
each feature and the effect of the experimental condition on the multidimensional system as 
a whole. Data of all subjects and sessions were used.  

Results 
We conducted an integrative and multilevel analysis to characterize the behavioral 
continuum and compare the spatial dynamics of behavior under fixed and variable time 
schedules. First, we present representative within-subject results of the behavioral continuum 
within sessions, for the first, intermediate, and last session of the experiment, for one 
representative subject for each condition. Second, we show summary results for measures 
based on spatial behavior of first and non-first order (entropy and divergence) and a measure 
based on discrete responses (coincidence index). Third, we present a multidimensional 
analysis and integrative representation based on Machine Learning. 

Figure 2 shows routes (Panel A), relative distance to the dispenser (Panel B), and 
recurrence plots (Panel C) for one rat under Fixed Time Schedule (Rat 1, left section) and 
one rat under Variable Time Schedule (Rat 4, right section). Each column corresponds to a 
given session (1, 10, and 20). In Panel A, in a bi-dimensional representation of the MOFS, 
the routes of the rat (grey lines) for the whole session and the rat's location at the moment of 
water delivery (Location at Water Delivery, LWD) are presented (black dots). Three findings 
are worth mentioning: 1) routes were more extended under Fixed Time (FT) than with 
Variable Time (VT); 2) for both conditions, a progressive change in the direction of the routes 
was observed, toward the water-delivery zone, as the sessions progressed; and 3) the LWD 
gradually got closer to the water dispenser as the experimental sessions progressed. Panel B 
shows the relative value of the distance from the rat to the dispenser every 0.2 s (grey dots). 
In addition, to show the tendency of the distance function, we performed a smoothing of it 
(red line) by using a moving average of 200 frames (i.e., 40 seconds, see equation in the 
supplementary material). Values close to 1 indicate that the rat's distance to the dispenser  
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Figure 2. Representative within-subject results of the behavioral continuum for the initial (Session 
1), intermediate (Session 10), and last session (Session 20) for one rat under Fixed Time (R1, left 
panels) and one rat under Variable Time (R4, right panels). Each column depicts a session. Panel A 
shows the routes of the rat (grey lines) and the rat's location at the moment of water delivery (black 
dots) in a bi-dimensional representation of the experimental chamber. Panel B depicts the relative 
distance to the dispenser (Y-axis) moment-to-moment (X-axis). Finally, panel C shows recurrence 
plots. See the text for a complete description. 
 
was the maximum possible; values close to zero indicate that the rat was located in a close 
location to the dispenser in a given time (frame). Under both conditions, a back-and-forth 
pattern was observed (grey dots), but this was more pronounced and had shorter periods 
under FT than in VT. In addition, the moving average (red line) suggests a tendency, under 
both conditions, to reduce the distance to the dispenser as the experiment progresses.  

Finally, Panel C shows recurrence plots. This plot depicts the change of regions of 
each rat (in a matrixial configuration of 10 x 10 virtual zones) as the session progresses (see 
supplementary material). Both axes show time on a time frame of 0.2 s. If a rat was on a 𝑅! 
region in a	𝑇 time and 𝑇 + 𝑛 was in the same region; a black mark represented the recurrence 
in a given location. On the contrary, on 𝑇 + 𝑛 the rat was on a different location, a white 
mark would be shown. The densification and alternation of black-white checker patterns 
indicate high recurrence to a given region; a higher proportion of continuing black zones 
would mean higher permanence. A higher proportion of white zones would mean extended 
transitions among regions. Panel C shows a perspicuous difference between both conditions, 
higher recurrence under FT than in TV, and higher permanence in zones under VT than FT. 
Figure 3 shows the entropy (Panel A) and divergence (Panel B) values per session for each 
rat for both conditions. The entropy is helpful in the context of this experiment as a 
measure of the variation of locomotion patterns and the dynamic of behavior (see 
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Figure 3. Entropy (Panel A) and Divergence (Panel B) measures for subjects R1 and R2 under 
Fixed Time schedules (left) and subjects R3 and R4 under Variable Time (right).  
 
methodological and mathematical description in the supplementary material). For our subject 
matter, higher entropy represents high variation and dynamics of spatial behavior. In Panel 
A, the similarity between entropy plots within the condition and the difference between 
conditions are clear. The entropy was higher under FT than VT. A divergence index was 
calculated to determine the variations of spatial behavior between consecutive sessions 
(Panel B). This index was calculated by comparing the distribution of the organism's 
locomotion into the arena between two consecutive sessions (e.g., 1 and 2; 2 and 3, etc.). A 
value close to zero indicates no difference in the distribution of locomotion between sessions; 
a value far from zero indicates a difference in the distribution of locomotion between 
complete sessions (see mathematical description in supplementary material). Panel B shows 
that the divergence was lower and more stable under FT than VT; this implied more variation 
of spatial behavior between consecutive sessions under VT. 
Figure 4 shows summary results of all sessions and subjects related to the spatial dimension 
of behavior. The traveled distance per session (Panel A), entropy (Panel B), and maximum 
velocity in a given frame per session (Panel D) were higher under FT than VT. In contrast, 
the divergence (Panel C) was significantly higher under VT than FT. On the other hand, the 
mean distance to the water dispenser per session (Panel F) was more dispersed under VT 
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than TF and slightly higher, but the difference between both conditions was not robust. 
Finally, the coincidence index (Panel E) of the location of the organism in the dispenser zone 
(10 cm radio around to the dispenser allocation) at the time when water 

 
Figure 4. Summary results of spatial-behavior measures for all sessions and subjects under Fixed 
Time (FT) and Variable Time (VT) schedules. Panel A, traveled distance per session; Panel B, 
entropy; Panel C divergence; Panel D, maximum velocity per session; Panel E, coincidence Index; 
and Panel F mean distance to the dispenser. Each box depicts the mean (dark blue vertical line), the 
median (yellow vertical line), the standard deviation (thin blue line), and the values between the first 
and the third quartile (blue highlighted area). 

 
was available (3 s) was higher under FT than VT. The coincidence index is relevant because 
it is closely related to standard paradigms based on discrete and single response recording 
(e.g., entries to the dispenser).  

To identify the relevance of each dimension or variable in the emergent behavioral 
system, understanding it as the functional interdependent relationship between variables 
concerning each condition, we conducted a variable-ranking analysis based on Machine 
Learning. The variable ranking consists of ordering a set of features by the value of a scoring 
function (measuring the relevance of each feature) given a target as a predicting tool, in our 
case, the experimental condition. Variable ranking allows knowing the importance or 
relevance of the features that better explain a target variable (for a complete description, see  
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Figure 5. Ranking variable analysis, under information gain, mean decrease impurity Gini index and 
𝝌𝟐 procedures, for the features: traveled distance per session (Trav Dist), entropy, divergence, 
maximum velocity per session (Max Vel), coincidence index (Coinc index), mean distance to the 
dispenser (Mean Dist to Disp), and session. The length of the bar ranks the features by the scoring 
value that measures the relevance of each feature to differentiate the behavioral system as a function 
of a given time based-schedule (Fixed vs. Variable Time). 
 
supplementary material). Specifically, we used filter algorithms, the most used given the low 
computing resources used for applying them even on high dimensional datasets. Given our 
subject matter, the integrative analysis of spatial dynamics of behavior with discrete 
responses under two different time-based schedules (FT vs. VT) and our datasets, we applied 
three theoretical information filter algorithms for single variable-ranking, namely 
information gain, mean decrease impurity Gini index and 𝝌𝟐 (for a complete description 
concerning these algorithms, see supplementary material), for coincidence Index, mean 
distance to the dispenser, traveled distance, maximum velocity, entropy, and divergence.  

Figure 5 shows that according to the variable-ranking procedures, the most relevant 
features were related to the spatial dimension of behavior. These were traveled distance, 
entropy, and divergence. On the other hand, the coincidence index, the most closely variable 
related to the measures of the standard paradigms based on discrete response recording, was 
less relevant than the other features related to the spatial dimension of behavior.   

To have a perspicuous representation that would allow identifying if the data, given 
its multiple dimensions, are articulated or grouped as a function of the kind of time-based 
schedule employed, we conducted t-distributed Stochastic Neighbor Embedding (t-SNE). t-
SNE is a machine learning algorithm for the visualization of high-dimensional datasets into 
a bidimensional or three-dimensional space. t-SNE performs a non-linear dimensionality 
reduction task for embedding datasets and obtaining low dimension transformations as a 
result. Relations between high dimensional data, which might be impossible to observe due 
to a considerable amount of variables, could be distinguished after transforming them into a 
space with reduced dimension by t-SNE. Furthermore, the representation obtained by t-SNE 
is perspicuous because the data with similar values are closer to each other (in a low 
dimensional space, 2D or 3D) than data with dissimilar values (for a complete description of 
t-SNE, see supplementary material).  
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Figure 6. Representation with TSNE for the data of all experimental sessions and subjects. Each point 
represents multidimensional data for a session, considering: the distance traveled, entropy, 
divergence, maximum velocity, coincidence index, mean distance to the dispenser, and session 
number into the experiment as dimensions, with time based-schedule, Fixed Time (FT), and Variable 
Time (VT), as a target feature. The data with similar values, given the multiple features or input 
variables taken as a whole, is simply closer to each other than data with dissimilar values. 

 
Figure 6 shows a representation, using t-SNE, for the data of all experimental sessions 

and subjects. Each point could be seen as multidimensional data for a session, considering 
the distance traveled, entropy, divergence, maximum velocity, coincidence index, mean 
distance to the dispenser, and session number into the experiment as dimensions, with the 
condition, FT vs. VT, as target feature. FT data (blue points) tended to be closer to each other, 
and the same was observed concerning VT data (red points). Color regions are shown in the 
figure to facilitate the visualization of groupings. The conformation of only two predominant 
and well-delimitated regions is clear, and FT and VT data are separated, except for a few dots 
inserted in the colored region of the opposite condition. Given that the multidimensional 
space of t-SNE could be seen as behavioral system representation, as a whole, the main 
finding is that emerged well-differentiated behavioral system under each condition or 
schedule. 
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Figure 7. Representation with Linear Projection, by Principal Component Analysis, of 
multidimensional data of all sessions and subjects for six dimensions: coincidence index, divergence, 
mean distance to the water dispenser, entropy, traveled distance, and maximum velocity, with time 
based-schedule, Fixed Time (FT) and Variable Time (VT), as a target feature. The direction of each 
vector points out the direction to increasing values for a given dimension.  

 
Figure 7 shows the linear projection (for a full description, see the supplementary 

material) of the multidimensional data of all sessions and subjects for six dimensions: 
coincidence index, divergence, mean distance to the water dispenser, entropy, traveled 
distance, and maximum velocity. The direction of each vector points out the direction to the 
increasing values for a given dimension. Colored regions related to each condition are added 
to facilitate the visualization of the data tendency. The prevalence of a colored region in a 
given dimension represents higher values for the correspondent experimental condition to 
such color compared to the other experimental condition. Thus, the linear projection showed 
higher maximum velocity, traveled distance, and entropy values under FT than VT. While 
showed values nearby for mean distance to the dispenser for both conditions, a red shadow 
suggests higher values for VT. 

On the other hand, the projection clearly showed higher divergence values for VT and 
nearby values for the coincidence index for both conditions; nevertheless, the blue shadow 
in this last vector pointed out higher values for FT. One relevant difference of this 
representation with other reduction dimension procedures is that it has specific 
representations for each relevant dimension of the data in the orthogonal space. The linear 
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projection representation confirms the relevance of the spatial dimensions of behavior related 
to the programmed time-based schedules.  

 
Example 2 

Motivational operations: Behavioral dynamics under different deprivations in 
concurrent schedules. 
A procedure that is conducted in most studies of the experimental analysis of behavior that 
uses 'appetitive' stimulus is the deprivation of a given commodity (e.g., water or food) that it 
is later used to be delivered contingent to some response or behavioral pattern in contingent 
schedules (Skinner, 1938). In non-contingent schedules, the delivery of such commodity is 
presented in conjunction with given stimuli (e.g., pavlovian conditioning procedures) or 
simply presented according to a specific time rule (e.g., time-based schedules). The 
deprivation procedure, in methodological terms, has the purpose of establishing the relevance 
or dispositional value of the delivered commodity as stimulus (Michael, 1982; Reberg et al., 
1978). This dispositional value is crucial to explaining behavioral systems, seen as 
articulating behavioral patterns, responses, and other stimuli. The study of the relevance or 
dispositional value of a given stimulus, por mor of the deprivation operation, has been related 
to the field of motivation, under the terms of 'motivational operations' (Laraway et al., 2003), 
'establishment operations' (Michael, 1982, 1993), among others.  

Several years ago, it was established that the ‘motivational' function of a given 
stimulus could be characterized based on direction, intensity, and variation of the spatial 
behavior (Berlyne, 1955; De Valois, 1954; Duffy, 1951; 1957; Maier & Schneirla, 1964; 
Schneirla, 1959). Nonetheless, this characterization has been restricted only to the rate 
response of the discrete responses under the single response paradigm. Thus, the spatial 
dimension of the behavior and its dynamics has been ignored in the contemporary study of 
the EAB (e.g., Lewon et al. 2019). 

On the other hand, generally, the effect of food or water deprivation is evaluated by 
removing access to them to the experimental subjects outside the experimental sessions and 
then presenting one or the other, either contingent or non-contingent, to a given response 
(Skinner, 1938; Bolles, 1975) during the session. The effect of presenting food and water 
concurrently when subjects are food or water-deprived has been less studied (Fallon et al., 
1965, Lewon et al., 2019). Under this rationale, the objective of this study was to evaluate 
the effects of food and water deprivation conditions on the behavioral continuum in 
conditions where food and water are concurrently delivered. A multidimensional and 
multilevel analysis and data representation was conducted using machine learning tools to 
integrate standard discrete responses and spatial dynamics. 

 
Method 

Subjects 
Five female and one male (Subject 3) Wistar rats (5 months old) were used. According 

to the current phase of the experiment, rats were housed in individual home cages and placed 
on a water or food-deprivation schedule for 22 hrs before every experimental session. All 
procedures were conducted according to university regulations of animal use and care and 
followed the official Mexican norm NOM-062-ZOO-1999 for Technical Specification for 
Production, Use, and Care of Laboratory Animals. 
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Apparatus 
An experimental chamber of 92 cm width x 92 cm long and 33 cm height was used. 

2 cm above the grid floor and in the center of opposed walls, two dispensers were located, a 
liquid dipper (Coulbourn E14-05,) and a modified food receptacle with a pellet dispenser 
(Coulbourn E14-24). The dipper allowed access to 0.1cc of water for 3s, while the pellet 
dispenser delivered a 45 mg. pellet with limited availability of 3 s. Entries to both 
dispensers were detected by Head Entry Detectors (MED ENV-254-CB). In addition, above 
both dispensers, a yellow light was used as a visual stimulus (MED ENV-222M) to indicate 
food or water delivery (for a diagram of the apparatus, see Hernández, León, and Quintero, 
2021). 

Water and food deliveries were programmed and registered with the Software MED 
PC IV, and head entries were also registered using this software. Rat's displacement in the 
experimental chamber was recorded using a video camera Topica TP-505D/3, 1m above 
the chamber. The video camera was connected to a PC with software Ethovision 2.3. With 
this software were obtained records of rats' displacement in X, Y coordinates every 0.2 s. 
Procedure 

Experimental phase 
After an initial training phase to the food and water dispenser (see Hernández et al. 

for a complete description), subjects were exposed to two deprivation conditions: 1) Water-
Deprivation (WD) and 2) Food-Deprivation (FD). Each deprivation consisted of three days 
with the corresponding food or water restriction and one experimental session per day. After 
each condition, subjects were allowed unrestricted access to both commodities for 24 h 
before the following deprivation condition to avoid a drastic decrease in weight and separate 
the effect of each deprivation (Lewon et al., 2019). Subjects were assigned to one of two 
deprivation sequences to control for the potential effect of the first deprivation condition on 
the following condition. The specific order of deprivations for each sequence is shown in 
Table 1. All experimental sessions consisted of presenting a CONC FT 30s FT 30s schedule 
of food and water with limited availability of 3s. A yellow light above both dispensers was 
turned on with every delivery and remained during food or water availability. All 
experimental sessions lasted 30 min. 
 
Table 1. Sequence of deprivation conditions for each group.   
 

Sequence Deprivation Condition 

1 WD FD 

2 FD WD 

 
Note. WD: Water Deprivation, FD: Food Deprivation. Each condition lasted three sessions, 
and each session lasted 30 minutes. Three rats were assigned to Sequence 1 and three rats 
to Sequence 2. 
 
Data analysis 
The same analytical approach of Experiment 1 was used in Experiment 2, only with 
appropriate settings due to the differences in methods, apparatus, and records. Specifically,  
measures related to water and food dispensers were added, such as entrances and derivated 
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measures (intensity, precision to dispensers, and proportion to commodities contacted). Each 
measure is described in the following section. 

Results 
We conducted a multilevel analysis to characterize the behavioral continuum and compare 
the spatial dynamics of behavior under water and food deprivation. In the same way of 
Example 1, first, we show representative within-subject results of the behavioral continuum 
within-session, for the initial, intermediate, and last session of the experiment, for one 
representative subject. Second, we show summary results for measures based on spatial 
behavior, first and non-first order, and measures based on discrete response in water and food 
dispensers. Third, we conducted a multidimensional analysis and integrative representations 
based on Machine Learning. 

 
Figure 8. Representative within-subject results for all sessions of the behavioral continuum for one 
rat (R5). Each column depicts a session, and rows depict deprivation conditions (FD and WD, 
respectively). Panel A shows the routes of the rat in a bidimensional representation of the 
experimental chamber; red circles represent Food Dispenser location, blue circles represent Water 
Dispenser location. Panel B depicts the distance to the dispensers (Y-axis) moment-to-moment (X-
axis); the red line represents the distance to Food Dispenser; the blue line represents the distance to 
Water Dispenser. Finally, panel C shows recurrence plots; this changes regions of each rat (in a 
matrixial configuration of 10 x 10 virtual zones) as the session progresses.  

 
Figure 8 shows the continuum spatial-behavioral data for the complete initial, 

intermediate and final sessions for a representative experimental subject. Panel A represents 
the routes of the subject. There was a higher variation of spatial behavior at the arena under 
Water Deprivation (WD) than under Food Deprivation (FD) for the intermediate and final 
sessions. In addition, higher spatial behavior in the food dispenser zone (top of the plot) under 
FD and a distributed densification between both dispenser zones (top and down of the plot) 
under WD were observed. Panel B shows the distance to the food dispenser (red line) and 
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water dispenser (blue line), moment to moment (each .02 sec). For the intermediate and final 
sessions under FD, a small distance to the food dispenser and a long distance to the water 
dispenser was observed, with only a few alternations between high and low distance values 
to both dispensers. 

In contrast, under WD, for the intermediate and final sessions, a significant alternation 
between high and low values of distance to the dispensers and, then, a clear back and forth 
pattern between dispensers was observed. Panel C depicts the recurrence plots (see Figure 2 
description and supplementary material). High permanence (extended black zones), with 
only some transitions, under FD and high recurrence (black-white mosaic patterns) under 
WD were observed in these plots. Thus, the three panels (A, B & C), as a whole, suggest a 
robust difference in the spatial dynamics by Food Deprivation vs. Water Deprivation, under 
the same concurrent schedule and for the same experimental subject. 

Figure 9. Summary results of spatial-behavior measures for all sessions and subjects under Food 
Deprivation (FD) and Water Deprivation (WD) schedules. Panel A, Distance to food dispenser; Panel 
B, Distance to water dispenser; Panel C, Distance to center; Panel D, Entropy; Panel E, Divergence. 
Each box depicts the mean (dark blue vertical line), the median (yellow vertical line), the standard 
deviation (thin blue line), and the values between the first and the third quartile (blue highlighted 
area). 

 
Figure 9 shows summary results for the measures based on the spatial dimension of 

behavior: mean distance to the food dispenser, mean distance to the water dispenser, mean 
distance to the center of the experimental arena, entropy index, and divergence index, under 
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Food Deprivation (FD) and Water Deprivation (WD), for all sessions and experimental 
subjects, independently of the sequence in which they were exposed. All measures were 
sensitive to the deprivation condition, except the divergence index. The distance to the food 
dispenser had low values under FD and relatively high values under WD. In contrast, the 
opposite effect concerning the water dispenser was observed, with relatively low distance 
values under WD and high values under FD. The data of distance to the dispensers was more 
spread under WD than under FD. The mean distance to the center was higher under WD than 
FD, and the entropy index too. All the previously mentioned findings were robust and point 
out a significant differential spatial dynamic of the behavior related to deprivation conditions. 

Figure 10. Summary results of measures based on discrete responses, for all sessions and subjects 
under Food Deprivation (FD) and Water Deprivation (WD) schedules: Intensity to food dispenser 
index (Panel A), intensity to water dispenser index (Panel B), Precision to food dispenser index (Panel 
C), Precision to water dispenser index (Panel D), Proportion of food contacted (Panel E) and 
Proportion of water contacted (Panel F). Each box depicts the mean (dark blue vertical line), the 
median (yellow vertical line), the standard deviation 
 

Figure 10 shows a summary results for measures based on discrete responses, namely 
a) intensity to food dispenser index, b) intensity to water dispenser index, c) precision to food 
dispenser index, d) precision to water dispenser index, e) proportion to food contacted, and 
f) proportion of water contacted. These measures are relevant because they are related to 
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those employed in the standard paradigms based on single discrete responses. Panel A and 
Panel B depict the intensity related to the dispensers; the intensity index was obtained by 
dividing the total number of head entries in one dispenser of each session by the maximum 
number of entries in any session on the whole experiment for a particular subject and 
dispenser. Then this procedure was carried on for each subject and session, always using this 
within-subject and within-dispenser comparison. The intensity to the food dispenser was high 
under FD and low under WD, while the intensity to the water dispenser was high, though 
spread, under WD and very low under FD. Panel C and Panel D show the precision to the 
dispensers. Precision index was obtained by dividing the number of entries to each dispenser, 
when the commodity was available (water or food), by the total number of head entries in 
that session and in that dispenser. The data below percentile 5 for each subject on each 
dispenser were eliminated to palliate possible ceiling or floor effects in sessions. The 
precision related to the food dispenser was lower under FD than under WD, and there was 
no difference in precision to water dispenser between deprivations (FD and WD). Finally, 
Panel E and Panel F depict the proportion to food and water contacted from the total 
available. The proportion to food contacted was higher under FD than WD, while water 
contacted was lower under FD than WD. The measures based on discrete responses, as a 
whole, show interesting findings. First, the intensity and effectiveness (i.e., proportion to food 
contacted) to each dispenser clearly depend on the deprivation condition; this is, high values 
of intensity and effectiveness to food dispenser was observed under FD, and vice versa, high 
values of intensity and effectiveness to water dispenser was observed under WD. 

Nevertheless, the modulating effect of each deprivation condition over the behavior 
related to the correspondent dispenser and commodity delivery to such deprivation is not 
precisely the same for both deprivations. On the one hand, the modulating effect of FD, for 
all behavioral measures based on discrete responses, is most robust for the food dispenser 
than the effect of WD over the same measures related to the water dispenser. On the other 
hand, the data under FD tends to extreme values (very low or very high) related to intensity 
and effectiveness, while under WD tends to intermediate and spread values. Finally, it is 
remarkable that the precision of behavior related to food delivery was negatively affected 
under FD. This effect for water delivery under WD was not observed. 

Figure 11 shows the variable-ranking under three procedures, namely Information 
gain, impurity Gini index and 𝝌𝟐, for all measures, those based on continuum spatial 
dimension of behavior and those based on discrete responses (for a complete description 
concerning these algorithms, see the supplementary material, and for suggested use in 
behavior analysis, see the description of Figure 5). The variable ranking allows identifying 
the relevance of each variable (i.e., behavioral measure or dimension) into the whole 
multidimensional system. Given our subject matter, the modulating effect of two different 
deprivations (FD and WD) into the multidimensional behavioral system, the variable ranking 
suggests that the most relevant variables were the distance to the dispensers, intensity to the 
dispensers, and entropy. These findings suggest that the spatial dimension of behavior was 
as relevant as discrete responses into the behavioral systems that emerge by modulation under 
food deprivation and water deprivation. 
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Figure 11. Ranking variable analysis, under information gain, mean decrease impurity Gini index 
and 𝝌𝟐 procedures, for the features: Distance to food dispenser (Dist FDisp), distance to water 
dispenser (Dist WDisp), intensity to food dispenser (Intensity FDispenser), Proportion of food 
contacted (Proportion FContacted), Entropy, Intensity to water dispenser (Intensity WDisp), 
Proportion of water contacted (Proportion WContacted), Precision to water dispenser (Precision 
WDisp), distance to the center of the experimental arena (Dist Center), Precision to food dispenser 
(Precision FDisp), Divergence, Session, Sequence. 

 

Figure 12. Representation with TSNE for the data of all experimental sessions and subjects. Each 
point represents multidimensional data for a session, given all features (see Figure 11), with 
deprivation condition, Food Deprivation (FD-red), and Water Deprivation (WD-blue), as a target 
feature. The data with similar values, given the multiple features or input variables taken as a whole, 
is simply closer to each other than data with dissimilar values. Panel A, additionally, shows clustering 
under the K-means procedure and two well-delimitated colored regions, with a clear separation 
between FD and WD data, and corresponding each one with a cluster (C1 -circles- and C2 -crosses-
). On the other hand, Panel B depicts the deprivation sequence (Sequence1 -Circle- and Sequence2 -
crosses-).  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.03.17.435751doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435751
http://creativecommons.org/licenses/by/4.0/


 22 

Figure 12 shows a representation by t-SNE (for a complete explanation, see 
supplementary material and description of Figure 6) for the data of all the experimental 
sessions and subjects. Each point could be seen as multidimensional data for a session, 
considering both measures based on spatial behavior continuum and discrete responses (see 
Figure 11) and deprivation condition (FD and WD) as the target feature. Data tends to be 
closer by condition for both FD (red dots) and WD (blue dots). Two well-delimitated colored 
regions were formed, with a clear separation between FD and WD data. Additionally, two 
clusters were conformed under the K-means clustering procedure (for a description, see 
supplementary material), see Panel A. The coincidence of each cluster data with a deprivation 
condition data was very robust. This analysis could be taken as an explicit confirmation of 
the differential modulation by each deprivation condition (FD vs. WD) over the emerged 
multidimensional behavioral system under the same concurrent schedule and within-subject 
design. Finally, in Panel B, another complementary representation was conducted. In this 
panel, the circles point out the deprivation sequence 1 (WD-FD), and the crosses sign out the 
deprivations sequence 2 (FD-WD). The representation shows that the data clustering by 
deprivation was robust to the sequences (that is, there are well-delimited regions for each 
deprivation regardless of the sequence), but also suggests that the data tended to be close by 
sequence within deprivation. In addition, the representation suggests a contrast effect on 
deprivation conditions by Sequence 1; this is, the FD data and WD data were more distant 
from each other than the data for the same deprivation conditions in Sequence 2. 

Discussion 
The purpose of the present work was threefold: 1) to propose an integrative and 
multidimensional approach for the analysis of behavioral systems; 2) to show novel 
behavioral aspects revealed under a multidimensional approach based on the integration of 
discrete and continuous data assisted by Machine Learning tools; and 3) to provide relevant 
and novel behavioral measures and data representations based on the integration of spatial 
dynamics and discrete responses, for the study of behavioral systems related to relevant 
research areas in behavioral science such as water-seeking behavior and motivational 
operations. 

In the first example, concerning behavioral dynamics under FT and VT, marked 
differences in routes, rat’s location at the moment of water delivery, distance to the 
dispenser, back and forth to the dispenser, and recurrence patterns were observed. These 
findings suggest a considerable difference in emergent spatial behavior (direction and 
variation) under both temporal schedules (Fixed vs. Variable Time). In addition, they 
confirm our hypothesis that the proposed first-order measures based on spatial behavior will 
be sensitive to EAB paradigmatic procedures.  

Furthermore, the entropy, a non-first order measure, was sensitive to the programmed 
contingencies, with higher values under FT than VT; the behavioral meaning of this finding 
is that the distribution of the organism location presents more variability under FT than VT. 
This finding is interesting because the temporal variation in water delivery was associated 
with lower variability of organism location, and temporal constancy or fixation was 
associated with higher variation of the organism location. On the other hand, the organism’s 
location variability distribution showed a low divergence between sessions under FT and not 
under VT. As far as we know, the use of entropy and divergence to characterize the spatial 
variability of behavior is scarce. Nevertheless, our findings revealed that entropy and 
divergence are embedded features of spatial behavior with a higher sensitivity to the temporal 
schedules.  
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The findings together, of first and non-first-order measures, with data of direction of 
behavior, such as routes, back and forth patterns; and others about the variation of behavior, 
such as checker recurrence patterns, and higher values of entropy under FT, could be seen as 
an objective measure of the idiosyncratic spatial patterns reported anecdotally in the literature 
as superstition behavior under FT (Skinner, 1948). Thus, in our perspective, the analysis 
carried out and its behavioral meaning shows the plausibility and parsimony of the CEAB 
approach.  

On the other hand, the analysis of the different features and its ranking variable 
assisted by Machine Learning confirmed our hypothesis, related to the relevance of spatial 
features over standard discrete responses (e.g., water contacted or coincidence index) in the 
behavioral systems under temporal schedules. The ranking variable analysis shows that 
traveled distance, entropy, divergence, and maximum velocity were more sensitive to the 
programmed schedules than the standard feature of water contacted, measured as a 
coincidence index. Finally, t-SNE and Linear Projection were helpful to represent 
multidimensional-behavioral systems in a perspicuous way (e.g., in bi-dimensional space). 
These representations allow confirmation that each schedule (FT and VT) gives place to well-
differentiated behavioral systems based on spatial behavior and a discrete response. 

In the second example, concerning behavioral dynamics in concurrent schedules 
under different deprivation conditions (WD vs. FD), more extended routes, back and forth 
patterns alternated between dispensers, and recurrence patterns were observed under Water-
Deprivation than under Food Deprivation. Again, findings suggest these representations were 
sensitive to the deprivation condition.  

Furthermore, all measures related to spatial behavior were markedly affected by 
deprivation conditions (e.g., distance to both dispensers; distance to the center of the arena 
and entropy), except divergence. The latter indicates consistency between sessions related to 
the variability values of the organism’s location distribution under both deprivations. As in 
Example 1, the findings show that entropy is a relevant feature embedded in spatial behavior 
that is significantly affected by a standard procedure with well-known effects. In simple 
words, the findings suggest spatial behavior is very sensitive to namely ‘motivational 
operations’ under choice situations (e.g., concurrent schedules). A relevant aspect is that 
these features are indicators of direction and variability of the behavior that could be used as 
an alternative indicator to identify the motivational function of a given procedure aside from 
discrete responses.  

On the other hand, all measures based on discrete responses were sensitive to 
deprivation conditions, except the precision to the water dispenser. In general terms, each 
deprivation condition affected the direction of behavior, both spatial and discrete responses, 
to correspondent commodity. Although, the effect was not exactly symmetrical. These 
findings are consistent with the expected under the standard paradigm and the literature. This 
point is crucial because it increases the validity of our findings and conclusions concerning 
spatial behavior (as a simile of concurrent validity in a non-statistical way).  
The ranking variable analysis, assisted by Machine Learning, considered eleven features 
(five based on spatial behavior and six on discrete responses). It reveals that three are related 
to the spatial behavior of the five most relevant features: distance to the food dispenser, 
distance to the water dispenser, and entropy. These findings confirm our hypothesis related 
to the CEAB will reveal that spatial features are at least as relevant as behavioral features 
based on discrete responses, but now concerning other behavioral phenomena and paradigms, 
‘motivation’ and ‘motivational operations under concurrent schedules’ respectively. Finally, 
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t-SNE showed that each deprivation condition gives well-differentiated behavioral systems 
based on spatial behavior and a discrete response under the same concurrent schedules.  

As our examples show, the general proposed approach in this work helped integrate 
a multiple-level analysis to coalesce discrete and continuous dimensions of behavior (and 
derivate first and non-first order measures) as a whole system. It also proved fruitful to 
provide a broad characterization of the continuum of behavior in which the spatial dynamics 
are on the first plane. The proposed approach appears promising to characterize and integrate 
different behavioral features as a whole behavioral system, pointed to as relevant throughout 
the development of behavioral science. Among these features are direction (Schneirla, 1959; 
in our work distance to the dispenser), intensity (Duffy, 1957; in our work speed, 
acceleration), variation (Antonitis, 1951; Berlyne, 1955; Iversen, 2017; Mowrer & Jones, 
1943; in our work entropy), preference (Irwin, 1958; in our work time spent in a given zone), 
persistence (Bolles, 1975; in our work dispenser entries). So, with the proposed 
multidisciplinary methodological approach, the purpose of overcoming the segmented 
characterization of the behavioral continuum and its derived paradigms, for example, the 
single response paradigm (Henton & Iversen, 1978), could go beyond the theoretical level 
that has been maintained up to now (Kantor, 1958). 
 The findings of both experiments, presented to exemplify our approach, show that the 
recording and analysis of the continuum of spatial-behaviour of the organisms is of primary 
importance to account for the principles that underlie in behavioural systems, and suggest 
that:  a) moment-to-moment analysis and representations of locomotion-based data, across 
complete sessions, are helpful to identify, and characterize, the behavioral dynamics under 
different stimuli-schedules and deprivation conditions (see routes, distance to the dispensers 
and recurrence plots); b) the proposed non-first order variables (i.e. entropy and divergence), 
based on locomotion data, are relevant and sensible to stimuli-schedule and deprivation 
conditions; c) the variables based on locomotion-data could be more sensible, than variables 
based on discrete responses, to stimuli schedules and deprivation conditions (see variable-
ranking analysis based on Machine Learning); d) discrete responses and the continuum of 
spatial behaviour comprise an unitary and whole system, that could be apprehend and 
represent, in a perspicuous way, with Machine Learning tools like t-SNE, clustering based 
on K-means, linear projection, among others.  
 Our examples and findings suggest that the proposed multidisciplinary approach 
(CEAB) allows going forward on explaining behavioral systems and reveals an integration 
of spatial dynamics and discrete responses hidden until now for the behavioral science. In 
addition, new empirical relations and insights were revealed under the CEAB related to 
water-seeking behavior (Leon et al., 2020a) and motivational operations (Hernandez et al., 
2021; Michael, 1982, 1993). 
  Although the proposed approach appears to be promising, to confirm its heuristic and 
parsimonious value, it should be evaluated under a) other relevant phenomena; b) other kinds 
of schedules (e.g., contingent schedules); c) different stimulating conditions (e.g., aversive 
stimulation); d) different organization of behavior (e.g., behavior under stimulus control; 
relational behavior); e) different species, including humans.  

Finally, the proposed approach could be strengthened by integrating additional first 
and non-first-order measures pertinent to apprehend and characterize the dynamics of 
relevant dimensions of behavior (such as direction, variation, vigor, among others). On the 
other hand, additional Artificial Intelligence tools, like predictive analysis, could be explored 
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to extend the scope of our approach for behavioral science, specifically for the experimental 
analysis of behavior. 

As a corollary, the fast-paced development of contemporary computational tools of 
fields as Artificial Intelligence has rapidly changed the landscape of some fields of behavioral 
science in the last decades, for example, ethology (Dell et al., 2014) and neuroscience (Datta 
et al., 2019; Mathis et al., 2019; Mathis & Mathis, 2020; Wiltschko et al., 2015).  It is time 
the non-mediational, systematic, parametric (Henton & Iversen, 1975; Schoenfeld & Cole, 
1972; Skinner, 1938) and ecological (Silva & Timberlake, 1997; Timberlake, 1994) 
approaches in the experimental analysis of behavior start to profit from these tools (Turgeon 
& Lanovaz, 2020). 
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