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ABSTRACT 9 

Diverse complex systems, ranging from developing embryos to systems of locally 10 

communicating agents, display an apparent capability of “programmable” pattern formation: 11 

They reproducibly form a target pattern, but this target can be readily changed. A 12 

distinguishing feature of such systems, as compared to simpler physical pattern forming 13 

systems, is that their subunits are capable of information processing. Here, we explore 14 

schemes for programmable pattern formation within a theoretical framework, in which 15 

subunits process discrete local signals to update their internal state according to logical rules. 16 

We study systems with different update rules, different topologies, and different control 17 

schemes, to assess their ability to perform programmable pattern formation and their 18 

susceptibility to errors. Only a small subset of systems permits local organizer cells to dictate 19 

any target pattern. These systems follow a common principle, whereby a temporal pattern is 20 

transcribed into a spatial pattern, reminiscent of the clock-and-wavefront mechanism 21 

underlying vertebrate somitogenesis. An alternative scheme employing several different rules 22 

can only form a fraction of patterns but is robust with respect to the timing of organizer cell 23 

inputs. Our results establish a basis for the design of synthetic systems, and for more detailed 24 

models of programmable pattern formation closer to real systems.  25 
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INTRODUCTION 26 

Programmable pattern formation is impressively exemplified in developmental biology, where 27 

relatively minor changes in the cis-regulatory regions of genes can reprogram the developmental 28 

process to yield dramatic changes in the morphology of the adult organism1,2. In these systems, the 29 

individual cells have internal states, but do not know the global state of the system. They process 30 

local cues according to their genetic program to determine how and when to change their internal 31 

state. Local organizers can induce changes in the internal states of other cells3, but there is no global 32 

agent overseeing the pattern formation process. Similar behavior can also emerge on a higher level, 33 

when e.g. groups of robots4,5 or humans6 coordinate their motion by local communication. These 34 

examples motivate the conceptual question: Which general schemes allow the same agents to 35 

produce different complex patterns by following rules to coordinate their behavior with their 36 

neighbors? 37 

While natural systems consist of subunits that are already very complex, it is interesting to 38 

ask for the simplest model systems capable of programmable pattern formation. Such models would 39 

provide a conceptual framework for programmable pattern formation, and could reveal design 40 

principles, e.g., for synthetic molecular systems. DNA-based molecular systems, in particular, are 41 

readily programmable via the sequence-dependent interaction between DNA strands, which has 42 

been exploited to design self-assembling dynamic DNA devices7, neural network-like molecular 43 

computation8, coupled regulatory circuits9, and schemes for constructing molecular-scale cellular 44 

automata10. Here, we use a minimal model to study the concept of programmable pattern formation 45 

using theoretical and computational tools. While the intention is not to model any particular system, 46 

DNA-based implementations of the model are an interesting perspective (see `Discussion’).    47 

We consider a system consisting of spatial subunits with fixed locations on a regular grid. 48 

Pattern formation requires the subunits to have at least two distinguishable states. We perform most 49 

of our analysis with such minimal subunits, but also present a generalization to subunits with more 50 
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internal states. The essential model assumptions are that subunits communicate only with their 51 

immediate neighbors and that they update their internal states at discrete time steps. The dynamics 52 

of a subunit is then governed by update `rules’ that depend on its state, as well as on the state of its 53 

neighbors. This framework of so-called `cellular automata' is sufficiently flexible to describe a 54 

broad range of pattern formation processes that do not depend on long-range signaling between 55 

cells11,12. Furthermore, cellular automata are not solely abstract computational models, but can 56 

faithfully describe the dynamics of real systems, also in developmental biology13. For our analysis, 57 

a useful feature of cellular automata is that the number of possible update rules is finite – each rule 58 

is a different scheme for local information processing – and there are no additional model 59 

parameters.   60 

Using this modeling framework, we focus on a scenario in which pattern formation is 61 

controlled by `organizer cells’, inspired by the Spemann-Mangold organizer in developmental 62 

biology3. The underlying biological concept is inductive signaling, whereby one cell can change the 63 

fate of another cell14. For instance, in Caenorhabditis elegans vulval patterning, the `anchor cell’ 64 

controls the cell fate pattern of six vulval precursor cells, involving three different cell fates15. 65 

Within the conceptual models that we consider, organizer cells can emit time-dependent signals into 66 

their neighborhood, affecting the pattern formation process of the remaining `bulk cells’. 67 

Programmability of pattern formation then refers to the ability of the organizer cells to reproducibly 68 

steer the system towards different target patterns, using different signaling sequences. We define a 69 

given model to be completely programmable, if organizers can direct the system to all different 70 

target patterns from any initial pattern. We consider programmability of pattern formation to be a 71 

desirable property, since it is reminiscent of the ability of developmental systems to work with only 72 

a small number of signaling systems, which are highly homologous between morphologically very 73 

different animals14. 74 
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Our analysis shows how the dynamics of the bulk cells, as specified by their update rule, 75 

affects the programmability of pattern formation. For the minimal system with 2-state cells, only 76 

ten update rules enable complete programmability. However, the number of such “programmable 77 

rules” increases strongly with the number of internal states. Patterning errors, incurred by cells that 78 

do not always follow their update rule, can be strongly reduced by an error correction scheme. The 79 

robustness against the timing of organizer inputs can be increased at the expense of a reduction in 80 

the extent of programmability if organizer cells are also able to induce changes in the update rules 81 

of bulk cells. 82 

 83 

RESULTS 84 

A minimal model for programmable pattern formation controlled by organizer cells 85 

To explore the programmability of global pattern formation from local sites, we combine concepts 86 

from control theory with a class of models for pattern formation. Multiple modeling frameworks for 87 

pattern formation processes are available, which treat time, space, and patterning state either as 88 

discrete or continuum quantities, and differ also with respect to the level of detail of the 89 

description12. Here, we choose the most coarse-grained level of description, known as cellular 90 

automata (CA) models. Within this framework, a system consists of localized subunits referred to as 91 

‘cells’. The patterning state of cell 𝑖 at time 𝑡 is denoted by 𝑥!!, which can only take on a finite 92 

number k of different values, 𝑥!! ∈ {0,… , 𝑘 − 1}. In the simplest case of elementary CA, there are 93 

only two different states, 𝑥!! = 0 or 1 and the cells are arranged in one dimension (1D). The 94 

dynamics of a CA model is governed by local rules specifying how the state of a cell is updated 95 

depending on the state of the cell itself and the states of the surrounding cells, see Fig. 1. For 96 

elementary CA, only the immediate neighbors of a cell affect its update, via an update rule of the 97 

form 𝑥!!!! = 𝑓 𝑥!!!! , 𝑥!! , 𝑥!!!! . Depending on the update rule, patterning information emerging from 98 

a localized source can propagate through the system to affect the global patterning process.  99 
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 A familiar example of global pattern formation from local rules is the performance of large 100 

groups of dancers, where the performers produce dynamic patterns by following complex rules for 101 

moving in coordination with their immediate neighbors. A global acoustic or optical signal can 102 

facilitate the pattern formation process by synchronizing the dynamics. In molecular systems, 103 

synchronization can arise from a collectively produced long-range signal, or from a local coupling 104 

between oscillators9. CA models also typically assume synchronous updates of all cells, and we will 105 

follow this convention here. Note that the updates do not need to occur at constant time intervals in 106 

real time. Furthermore, the synchronous update assumption is not strictly required, since our model 107 

could also be based on an asynchronous CA system with subunits capable of local synchronization 108 

via interactions with their neighbors16.  109 

 Our model systems consist of `bulk cells' and `organizer cells' (Fig. 1a). Bulk cells simply 110 

follow their update rules, taking input signals from their neighbor(s), regardless of whether these are 111 

other bulk cells or organizer cells. Organizer cells do not take inputs but exert control on the pattern 112 

formation process by changing their internal state according to a specified protocol, which depends 113 

on the target pattern. We do not specify the origin of this protocol - it could be the result from an 114 

internal developmental program or could be the result of external manipulation. Since both natural 115 

and engineered patterning systems come in a variety of topologies, and the topology may affect the 116 

pattern formation process and its control, we consider two different topologies, linear and circular 117 

(Fig. 1b). In a circular topology, a single organizer cell is embedded in a ring of L bulk cells, while 118 

a linear array of bulk cells can be controlled by an organizer cell at one or both ends, or at any 119 

position within the array. We collectively denote the time-dependent patterning state of all bulk 120 

cells as 𝑋! , and the time-dependent state of the organizer cells as 𝑂! . The global patterning 121 

dynamics then follows 𝑋!!! = 𝐹(𝑋! ,𝑂!) with a global update function 𝐹.  122 

 We consider a patterning system of this type to be completely programmable, if (i) the 123 

organizer cells can steer any initial pattern 𝑋! towards any desired target pattern Y in a finite time 124 
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with a suitable time-dependent organizer input  𝑂!, and (ii) the time needed to reach the target 125 

pattern scales at most polynomially with the system size L. For instance, if the time to reach the 126 

target pattern increases linearly with L, we say that the system is completely programmable in linear 127 

time. In contrast, if the system would randomly generate different patterns, the expected time to 128 

produce a specified target pattern would increase exponentially with L. If complete 129 

programmability is not obtainable, we also consider partial programmability, where only a subset of 130 

target patterns is reachable. In either case, the sequence of organizer inputs, 𝑂!, may depend on the 131 

initial pattern 𝑋!. We first focus on the question of whether target patterns can be reached and will 132 

then consider the issue of stabilizing target patterns.  133 

 Note that while some cellular automata, including the paradigmatic `Game of Life’ 134 

introduced by Conway17, are well known to be universal computing devices, the question of  135 

programmable pattern formation is distinct from universal computing: In the context of computing, 136 

both the `program’ and the `input data’ are specified by the initial state of the CA. In contrast, for 137 

programmable pattern formation the initial state is arbitrary, while the target pattern is encoded in 138 

the state transitions of the organizer cells, and the patterning algorithm is specified by the update 139 

rule and the topology of the system.  140 

 141 

Some update rules enable complete programmability. 142 

The discrete model facilitates an efficient computational test for complete programmability, which 143 

relies on the representation of the patterning dynamics by a directed graph (Fig. 2a-c). In this 144 

`patterning graph’, each patterning state of the system is represented by a node. A connecting arrow 145 

from node X to node Y indicates that an input signal B exists that takes the system from state X to 146 

state Y in one step, i.e., 𝑌 = 𝐹(𝑋,𝐵). The arrow is labeled with this input signal B (if multiple 147 

signals exist, the arrow gets multiple labels).  Complete programmability is then equivalent to the 148 
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statement that there is a path from every node to every other node in the patterning graph, i.e., that 149 

the graph is strongly connected18 (Fig. 2). Strong connectivity of directed graphs with tens of 150 

thousands of nodes can be rapidly tested with standard algorithms (Suppl. Notes S1.1).  151 

We applied this test in systems with different sizes and topologies, for the minimal model of 152 

𝑘 = 2 states, where the number of possible update functions 𝑓 is only  2 !! = 256. Given that our 153 

underlying model is symmetric with respect to the spatial directions `left’ and `right’, and also with 154 

respect to the internal states `0’ and `1’, the set of 256 rules can be split into 88 equivalence classes, 155 

which we refer to as `distinct rules’. We tested all rules and found that there are several which 156 

enable complete programmability of pattern formation. The number of such rules depends on the 157 

topology and decreases with the system size L (Fig. 2d). Strikingly, however, for systems of size 158 

𝐿 ≥ 9 the numbers no longer decrease, and the set of remaining rules is unchanged up to the 159 

maximum size that we were able to test numerically. This observation suggests that a subset of 160 

`programmable rules’ enables complete programmability of pattern formation for systems with a 161 

fixed topology but any size. This subset contains ten distinct rules for linear topology and seven 162 

distinct rules for circular topology (Fig. 2d,e). In the linear topology, the optimal placement of 163 

organizer cell(s) with respect to the number of programmable rules is at the boundaries (Suppl. 164 

Notes S1.2 and Fig. S1). The ten distinct rules for linear topology were also independently19 165 

identified by another study20,21. 166 

While complete programmability, as defined above, is a global property of the patterning 167 

graph (strong connectivity), the ten rules of Fig. 2e also stand out in a local property of the 168 

patterning graph, the in-degree distribution. In a directed graph, the in-degree of a node corresponds 169 

to the number of incoming arrows. Fig. 2f shows histograms of the in-degrees of all nodes in the 170 

patterning graphs of one programmable and two non-programmable rules. For comparison, Fig. 2f 171 

also shows the in-degree distribution of a randomized graph, in which the outgoing links from each 172 

node are randomly reassigned to any target node. These examples illustrate an empirical property 173 
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(Fig. S2 and Suppl. Notes S2): Whereas programmable rules have an in-degree distribution with 174 

only a single peak at in-degree two (for one organizer cell) or four (for two organizer cells), non-175 

programmable rules display a broad in-degree distribution, which depends on the specific rule and 176 

differs from the distribution for a randomized graph. This indicates that one can distinguish 177 

programmable from non-programmable rules already based on the local structural statistics of the 178 

patterning graph, which for large systems could also be sampled from a randomly chosen subset of 179 

nodes. We will see further below that the number of programmable rules increases rapidly with the 180 

number k of states.  181 

  182 

Different mechanisms for complete programmability of patterning 183 

To illustrate the mechanisms by which complete programmability is achieved, Fig. 3 displays the 184 

spatio-temporal dynamics for several rules, topologies, and target patterns. The simplest mechanism 185 

is that of Fig. 3a, where a single organizer cell feeds its changing state into a linear array of bulk 186 

cells, in this case from the left edge. The bulk cells propagate the received information to their 187 

neighbors, effectively writing a temporal signal into a spatial pattern. This mechanism is 188 

reminiscent of the clock-and-wavefront mechanism in vertebrate somitogenesis, which relies on a 189 

temporal oscillation that is converted into a spatial stripe pattern22–25. 190 

The examples in Fig. 3b-e display more complex behavior, suggesting alternative modes of 191 

programmable pattern formation. Fig. 3b displays a variant of the mechanism in Fig. 3a, which 192 

updates a cell to the inverted state of its left neighbor. Thereby, this rule produces a dynamics where 193 

the pattern oscillates as it is pushed from the organizer cell into the bulk. In both cases, the initial 194 

state of the system is completely erased during the patterning process, such that the sequence 𝑂! of 195 

organizer inputs is independent of the initial pattern 𝑋!. In contrast, a third rule (Fig. 3c) generates 196 

the same target pattern partially from the initial state, exploiting the computational power of the 197 
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update rule. As a consequence, the target pattern is reached more rapidly. Figs. 3d and e illustrate 198 

programmable pattern formation with simultaneous input from two organizer cells. Only update 199 

rules that are affected by input signals from both the left and the right side can simultaneously 200 

process information from two organizer cells. In the case of Fig. 3d, rule 90 produces the target 201 

pattern by symmetrically using information from both organizer cells, while Fig. 3e illustrates an 202 

asymmetric pattern formation process with rule 30, where information from the left side is 203 

preferentially used. Finally, Fig. 3f-h display kymographs for cases where a single organizer cell is 204 

embedded in a ring of bulk cells. In Fig. 3f, the information from the organizer cell is pushed only 205 

in one direction, such that the patterning process is analogous to that of Fig. 3a for the linear cell 206 

array. In contrast, Fig. 3g illustrates a case where the target pattern is computed (by rule 30) from 207 

the initial pattern. The most complex example is that of Fig. 3h, where rule 30 propagates 208 

information from the organizer cell to both sides, producing an ‘interference’ phenomenon when the 209 

two signals meet, which results in a much longer time required to reach the target pattern.  210 

The unifying principle underlying these examples is linear transport of patterning 211 

information from one or multiple sources, with concurrent processing of this information by the 212 

bulk cells. The behavior is visually simple only if the bulk cells merely pass on the information they 213 

receive, while additional signal integration with their internal states typically generates complex 214 

spatio-temporal dynamics.  215 

 216 

Time to reach the target pattern  217 

The examples in Fig. 3 suggest that systems with programmable rules are completely programmable 218 

in linear time. With simple unidirectional transport of patterning information (as in Fig. 3a, b, and 219 

f), the maximum number of update steps in an optimal path is equal to the number 𝐿 of bulk cells. 220 

With two organizer cells, this maximum can be cut in half, as seen in Fig. 3d. Furthermore, in some 221 
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cases the update rule can construct a portion of the target pattern from the initial pattern to speed up 222 

the pattern formation process (Fig. 3c and g).  223 

We obtain a global view of the patterning dynamics by considering the ensemble of all 224 

possible initial states of the system and monitoring how this ensemble progressively shrinks 225 

towards a single point in state space (the target pattern). A convenient observable to characterize 226 

these dynamics is the time-dependent “entropy” 𝑆(𝑡) = log! Ω(t) , where Ω(t) denotes the number 227 

of points in state space occupied by the ensemble at time 𝑡. As the patterning process proceeds from 228 

every possible initial state along every possible shortest path to the target state, 𝑆(𝑡) decreases from 229 

𝐿  to zero. The computed time traces 𝑆(𝑡)  for a system of size 𝐿 = 8  with the different 230 

programmable rules are shown in Fig. 3i (circular topology) and Fig. 3j (linear topology with 231 

organizer cells at both ends). In the latter case, 𝑆(𝑡) decreases roughly linearly for all rules, 232 

corresponding to an exponentially shrinking volume of the pattern ensemble in state space. The 233 

velocity of this “entropy reduction” is either ∆!
∆!
= −1 or −2 (dashed and solid line, respectively). In 234 

the circular topology, 𝑆(𝑡) either decreases linearly with slope −1, or displays a slower decrease 235 

with variable slope. Taken together, the dynamics of 𝑆(𝑡) is consistent with the spectrum of 236 

behaviors observed in the examples of Fig. 3a-h. It is also consistent with the behavior of the 237 

average shortest path length in the patterning graph (Suppl. Notes S3).  238 

 239 

Conservation principle and programmable rules for k-state systems 240 

Intuitively it is clear that faithful transport of patterning information from organizer cells into the 241 

bulk requires a conservation principle. This notion is formalized by the concept of bijectivity. We 242 

define a rule 𝑓 to be left-bijective, if the mapping 𝑥 → 𝑦 with 𝑦 = 𝑓 𝑥, 𝑥!! , 𝑥!!!!  is bijective for 243 

each combination of 𝑥!!, 𝑥!!!!  values (Fig. 4a,b). For a left-bijective rule every possible output 𝑥!!!! 244 

can be reached by choosing an appropriate left input 𝑥!!!! , irrespective of 𝑥!! and 𝑥!!!! . This property 245 
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suffices to guarantee that one can find a series of inputs 𝑂! from an organizer cell on the left to 246 

produce any target pattern in the bulk cell array (Fig. 4c and Suppl. Notes S1.3, S1.4). Similarly, if 247 

an update rule is right-bijective, it permits complete programmability of pattern formation from an 248 

organizer cell on the right. The argument of Fig. 4c is constructive in the sense that it not only 249 

guarantees the existence of a suitable organizer sequence 𝑂! to reach the target pattern, but it 250 

provides a recipe to explicitly construct 𝑂!, given the update rule as well as the initial and the target 251 

pattern (Suppl. Notes S1.5). This recipe confirms the distinction between the simple rules of Fig. 252 

3a, b and the other programmable rules with more complex behavior: For the simple rules, the 253 

organizer sequences 𝑂! can be chosen independent of the initial state of the system, whereas for the 254 

complex rules, the construction of 𝑂! requires knowledge of the initial state (see the classification 255 

of rules in Fig. 2e). Rules that are both left- and right-bijective can faithfully transport information 256 

from both sides, which can speed up the patterning process with two organizer cells, as seen in Fig. 257 

3d and e. However, in the circular topology, rules that are both left- and right-bijective do not 258 

enable complete programmability, since they are unable to convert initially symmetric patterns into 259 

an asymmetric one (Suppl. Notes S1.6). 260 

 Importantly, the argument of Fig. 4c is valid for any length 𝐿 of the system, for any number 261 

k of cell states, and it can also be generalized to obtain a constructive recipe for update rules that 262 

depend on larger neighborhoods of cells (Suppl. Notes S1.7). The bijectivity property can be used to 263 

show that with k cell states there are at least 𝑘!!! programmable rules before taking into account 264 

symmetries, but that the fraction of bijective rules within all rules decreases rapidly with k (Suppl. 265 

Notes S1.8). Furthermore, it follows (Suppl. Notes S1.9) that the maximal length of the shortest 266 

path from a given initial pattern to a desired target pattern is L in the case of one organizer cell, and 267 

!
!
 for two organizer cells and both left- and right-bijective rules (or !!!

!
 when !

!
 is not an integer), as 268 

we had empirically seen above.   269 

 270 
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Robustness against errors and error correction 271 

In real systems, the communication between subunits, as well as the information processing within 272 

subunits, are exposed to noise, causing some level of stochasticity in the dynamics. How sensitive 273 

programmable pattern formation is to such stochasticity is therefore a crucial question. To explore 274 

this question, we extend our model by introducing an error process. After executing the 275 

deterministic update rule, each cell stochastically switches to the opposite state with probability 𝑝, 276 

or remains in its state with probability 1− 𝑝, independent of the state of its neighbors. This 277 

stochastic update models effects such as loss of memory (of the prior cell state), noise in the internal 278 

regulatory circuit that encodes the update rule, unreliable signal transmission from neighboring 279 

cells, and noise in the exact timing of state transitions. Since we consider a spatially and temporally 280 

homogenous system, we take 𝑝 to be constant in time and space.  281 

To monitor the impact of the stochasticity, we measure the reliability of the pattern 282 

formation process as a function of 𝑝. Specifically, we determine the probability that the final pattern 283 

has no error, i.e., that it matches the desired target pattern (Suppl. Notes S4.1). For programmable 284 

rules that take input from only one neighboring cell, this probability can be estimated as   285 

Prob no error  ~ 1− 𝑝
!
!! !!! = 1−

𝐿
2 𝐿 − 1  𝑝 + 𝒪 𝑝!  , 

since a system of size 𝐿 reaches its target state after at most 𝐿 steps, and errors in 𝐿 𝐿 − 1 /2 286 

individual cell updates can have an influence on the final pattern (see Fig. 4). This error estimate 287 

helps to interpret our simulations of the model (Fig. 5). The reliability as a function of the error rate 288 

𝑝 in a system of fixed size is shown in Fig. 5c for all programmable rules (red symbols), confirming 289 

that the estimate (solid red line) captures the essential behavior of the model. In particular, the 290 

reliability decreases linearly with 𝑝 for small error rates (dashed red line), implying that all 291 

patterning schemes considered so far are very sensitive to errors.  292 
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 The root cause of the high sensitivity to errors is the one-dimensional geometry of our 293 

model systems: A single failure breaks the “chain of command” from the organizer cells to the 294 

distant bulk cells. Given that most real systems have two- or three-dimensional arrangements of 295 

subunits, it is natural to extend the spatial dimension of our model. We focus on a two-dimensional 296 

extension of our model, in which 𝐾 parallel cell lanes, each of length 𝐿, are connected to form a 297 

tube (see Fig. 5a, where periodic boundary conditions are applied in the vertical direction). The 298 

parallel lanes offer redundancy, which the cells can leverage to increase the reliability: They 299 

communicate with their lateral neighbors and apply a majority voting rule for their update (Fig. 5b), 300 

which in tissues could be mediated by diffusible signaling molecules. Along the axis of the tube 301 

cells follow the same rules as in the one-dimensional model above. The blue symbols in Fig. 5c 302 

show the reliability as a function of 𝑝 for a tube with the same length 𝐿 as the one-dimensional 303 

system (see caption for parameters and Suppl. Notes S4.1 for the numerical procedure). We observe 304 

a dramatic increase in reliability, caused by the ability of the lateral majority voting rule to correct 305 

isolated errors. The error correction changes the scaling of the reliability with 𝑝 from linear to 306 

quadratic (dashed blue line). In fact, the observed behavior can be captured by an estimate (solid 307 

blue line) based on counting the number of arrangements of errors that cannot be corrected (Suppl. 308 

Notes S4.2). The expansion of this estimate for small 𝑝 shows that 309 

Prob no error  ~ 1− 2𝐿!𝐾𝑝! + 𝒪 𝑝!  

for the tube. The rules which only shift the state of the cell to the next cell perform best, since they 310 

spread errors the least (Suppl. Notes S4.3).  311 

 312 

Robustness against variable timing of organizer signals  313 

The above analysis showed that local organizers can steer the bulk cells into any one-dimensional 314 

target pattern using only local signals processed according to simple rules. However, this requires 315 
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precise timing in the switching of the organizer signals. Precise timing is also needed for the arrest 316 

of the patterning process when the target pattern is reached, because the target pattern is generally 317 

not a fixed point of the dynamics (programmable rules have only trivial stationary patterns). To 318 

explore the degree of programmability that can be achieved with less precise timing, we consider an 319 

alternative scheme, which uses update rules with nontrivial stationary patterns: For each organizer 320 

input, we let the system evolve until the pattern no longer changes before applying a new input. 321 

Together with each input, we also allow a global change of the update rule (same for all cells). In a 322 

developmental system, this would amount to a change in the interpretation of intercellular signals in 323 

different developmental stages, which is a known phenomenon, e.g. for the Toll signaling pathway 324 

of Drosophila1. The change could be triggered by a global signal, which does not need to be timed 325 

precisely, since the system runs into a stationary pattern at which it can stay for an extended time. 326 

Global changes of the update rule could in principle also be implemented in a synthetic DNA-based 327 

system (Suppl. Notes S5).  328 

 For simplicity, we refer to the combination of an input with an update rule as an 329 

`instruction'. We only use instructions that lead the system to a stationary state, avoiding those that 330 

lead to limit cycles. To construct an efficient search method for a protocol that steers the system 331 

from a given initial pattern to a desired target pattern, we first analyze the patterning graphs of all 332 

CA rules. For each rule and organizer input, we identify all attractors and their basins of attraction, 333 

which consist of all configurations from which the attractor is reachable (Fig. 6a). We then 334 

construct a single `attractor graph' from all basins of attraction, by adding a directed link 𝑋 → 𝑌 for 335 

each pattern 𝑋 in the attraction basin of pattern 𝑌. Each link has an associated instruction. Using the 336 

attractor graph, we determine the instruction sequence by extracting the shortest path connecting 337 

two patterns (Suppl. Notes S3). This recipe minimizes the number of instructions, but other 338 

objective functions, such as minimizing the number of changes in the rule or the total time needed 339 

to reach the final attractor, could be implemented with similar methods. 340 
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 We only consider the homogeneous initial condition (all cells in state `0') with no prior 341 

spatial information that could seed the generation of patterns. Not all patterns can be reached by this 342 

scheme for larger system sizes (Suppl. Notes S6.1). We performed an exhaustive analysis to 343 

determine the reachable patterns for grid sizes up to length 𝐿 = 16. We fit the resulting data in the 344 

saturated range 𝐿 ∈ 8, 16  and determined the number of reachable patterns to scale as 1.89! 345 

(circular and linear topology with two organizer cells) and 1.82!  (linear topology with one 346 

organizer cell), showing that even if not all patterns are reachable, an exponentially growing 347 

number is (Fig. 6c). Interestingly, approximately the same scaling applies for the linear topology if 348 

we weaken the assumption that the cellular automata can distinguish left from right, i.e., include 349 

only outer-totalistic rules in the attractor graph, which are agnostic to the directionality of the 350 

signals (Suppl. Notes S6.2). These empirical observations are consistent with the results of an 351 

analytical approach to determine the number of attractors of finite CA, which also indicates that the 352 

number of attractors for individual rules (except the identity rule 204) grows more slowly with 𝐿 353 

than the total number 2! of possible patterns26. 354 

 To characterize the patterning dynamics, we calculated the average shortest path length in 355 

the attractor graph, i.e., the average minimal number of required instructions, to reach the accessible 356 

target patterns as a function of the system size 𝐿. The empirically observed linear dependence (Fig. 357 

6d) indicates that, even as the number of reachable patterns increases exponentially, the time, 358 

measured in number of instructions, to reach a target pattern increases only linearly with system 359 

size, as in our original scheme for programmable patterning (Fig. 3i,j).  360 

 Models for pattern formation processes can also be regarded as a means to compress the 361 

information required to specify a pattern. This notion is formalized by the concept of Kolmogorov 362 

complexity of a pattern, defined as the length of the shortest program for a Turing machine which 363 

outputs that pattern and halts27. Within our scheme, we can say that the complexity of a pattern is 364 

measured by the number of instructions needed to generate it starting from the homogeneous initial 365 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435764doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435764


 16 

condition. Empirically, the patterns which require the fewest instructions exhibit some periodicity, 366 

which makes them amenable to compression, while there is no obvious visible difference between 367 

the most complex reachable patterns and the unreachable patterns (Suppl. Notes S6.3, Fig. S15).  368 

 369 

DISCUSSION 370 

Programmable pattern formation in cellular systems is a remarkable phenomenon in biology, and a 371 

long-term goal for the design of synthetic multicellular systems28. Here, our objective was not to 372 

study any specific system, but to identify general schemes whereby local signals from organizer 373 

cells can direct global pattern formation. We chose a cellular automata-based modeling framework, 374 

which is sufficiently general to encompass a broad class of model systems, yet simple enough for 375 

explorative studies. For elementary cellular automata, in which cells have only two states and two 376 

neighbors, we performed an unbiased exhaustive analysis of all dynamical rules. We were then able 377 

to generalize some of our results to more complex systems. In particular, our approach led to the 378 

following findings: (i) Complete programmability of pattern formation by isolated organizer cells is 379 

possible only with a small fraction of distinct rules (Fig. 2), which fulfill a conservation principle 380 

for the transmission of patterning information (Fig. 4). (ii) While the detailed patterning dynamics 381 

implemented by each programmable rule is different (Fig. 3), the unifying principle can be 382 

interpreted as a generalization of the `clock-and-wavefront’ scheme underlying vertebrate 383 

somitogenesis, where a temporal signal is converted into a spatial pattern. (iii) Global pattern 384 

formation controlled by isolated locally acting organizers is intrinsically susceptible to errors, but 385 

the accuracy of pattern formation can be substantially improved with a simple error-correcting 386 

scheme based on local majority voting (Fig. 5). (iv) Programmable pattern formation controlled by 387 

organizer cells is generally sensitive to the timing of organizer inputs, but robustness against 388 

variable timing is achievable with organizers that have the additional ability to change the update 389 

rule of bulk cells, i.e., the way in which bulk cells interpret the received signals (Fig. 6). 390 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.17.435764doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435764


 17 

Our results contribute towards a conceptual framework for constructing molecular or 391 

cellular systems with the ability of programmable pattern formation. DNA-based systems form a 392 

promising platform for molecular realizations of programmable pattern formation due to their 393 

programmability and information processing ability29,30. An elementary CA with the programmable 394 

rule 90 has already been implemented with DNA tiles31,32 albeit not in a way that permits inputs 395 

from an organizer. Other DNA-based implementations, which are more complex but offer more 396 

flexibility, have also been proposed10. On the basis of these proposed designs, a biomolecular CA 397 

that allows for input signals controlling its patterning process could be implemented as described in 398 

Suppl. Notes S5.  399 

 Synthetic cell-like systems with the capability to communicate and process information 400 

have also been implemented, based on emulsion droplets9 and liposomes33. Information processing 401 

within such synthetic cells is realized with artificial gene circuits, based on in vitro transcription or 402 

transcription-translation systems, whereas communication between neighboring cells is enabled, for 403 

instance, by dedicated protein pores28. A complementary path to achieve programmable pattern 404 

formation in cellular systems is to equip biological cells with engineered sensing and response 405 

systems34,35.   406 

Given that our model was not designed to mimick any specific system, it is noteworthy that 407 

it led us to a principle of programmable pattern formation, which can be regarded as a 408 

generalization of the clock-and-wavefront scheme underlying vertebrate somitogenesis22–24. The 409 

basic principle is the same as that of a tape recorder, where a temporal audio signal is written into a 410 

spatial magnetic pattern. In the case of the clock-and-wavefront scheme, a periodic gene expression 411 

signal generates a stripe pattern via a determination front, which sweeps the tissue and arrests cells 412 

in their current state. The patterning dynamics displayed in Fig. 3 generalizes the clock-and-413 

wavefront scheme by allowing for (i) any target pattern, not just regular stripes, and (ii) 414 

simultaneous transport and processing of patterning information. While our model does not 415 
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implement a determination front, we considered an alternative scheme, in which the update rule of 416 

the bulk cells is also controlled by the organizers and the target pattern is stabilized dynamically. 417 

CA with changing update rules are interesting also from the computational perspective, since they 418 

were previously found to display capabilities linked to the computational problem of open-ended 419 

evolution36. 420 

The simplicity of our model was key to obtaining rigorous results, but also poses limitations. 421 

One important limitation is the restriction to discrete internal cell states. Pattern formation processes 422 

are typically described by nonlinear dynamical systems with multistable behavior, such that 423 

qualitatively distinct patterning states, e.g., gene expression `on' or `off', can emerge in spatially 424 

adjacent regions. Our model adopts a coarse-grained level of description, which already assumes 425 

the existence of such discrete states and ignores all intermediate states. For a biological system, 426 

discrete update rules represent logic-based models of a biochemical signaling network37. For other 427 

types of systems, discrete update rules typically also represent `digital’ approximations of the 428 

underlying `analog’ dynamics.  429 

Another limitation is the one-dimensional arrangement of cells within our model, which 430 

permits only linear propagation of patterning information in space. This restriction is somewhat 431 

relaxed in our quasi-1D extension of the model (Fig. 5), where lateral signaling between cells is 432 

used for error correction. However, this extension does not address the more general question of 433 

programmable pattern formation in two or more dimensions, which remains open for future work.  434 

We also did not include biological processes like cell growth, cell division and death, but 435 

assumed that the patterning process occurs in a group of cells with a static arrangement, as for 436 

example in caenorhabditis vulva development15. Finally, we limited our study to a patterning 437 

scenario based on organizer cells. However, we found that the dynamical update rules of the bulk 438 

cells can also generate parts of the target pattern (Fig. 3), and considered an alternative scheme for 439 

programmable pattern formation, which combines patterning information from local organizers 440 
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with “distributed computation” of patterning information (Fig. 6). Bulk cells with more states, or 441 

larger neighborhoods for the update rule, will have more computational ability and will therefore 442 

enhance the potential for programmable pattern formation via distributed computation. Indeed, it is 443 

well known that cellular automata can serve as computing devices, with some even shown to be 444 

computationally universal38. In those cases, the initial state of the cellular automaton serves both as 445 

the program and the input data, while the update rule specifies the mechanism of the computer and 446 

the result of the computation is obtained from the state after time evolution. The situation is 447 

different for programmable pattern formation: In our “organizer scenario”, the initial state of the 448 

system can be simple, e.g., homogeneous, while the input data (patterning information) is supplied 449 

as a time-dependent local signal. Bijective update rules enable universal pattern formation with this 450 

scenario. Interestingly, these bijective rules were among the “illegal” rules excluded in Wolfram’s 451 

pioneering study on the statistical mechanics of cellular automata11,  due to their violation of the 452 

quiescence and isotropy conditions.  453 

Our question of programmability is closely related to the question of `controllability’ in the 454 

field of control theory. Control theory provides a general mathematical framework to analyze the 455 

control of dynamical systems39. It formalizes the intuitive notion of `controllability’ as the ability to 456 

steer a dynamical system to any desired state from any initial state by appropriate signals. A focus 457 

of recent research has been on the control of complex networks40,41, a broad class of dynamical 458 

systems ranging from networks of protein interactions42 and neurons43 to power grids44. Application 459 

of control theory concepts to linear dynamics on networks with complex topologies led to insights 460 

about the relation between network topology and the controllability of its dynamics40,41. Here, we 461 

focused instead on systems with simple topologies but more complex dynamics and studied how the 462 

ability to control pattern formation depends on the dynamical rules that propagate patterning 463 

information into the system.  464 
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In conclusion, programmable pattern formation connects the experimental fields of synthetic 465 

and systems biology to theoretical research on self-organization, computation, and control. We 466 

established simple scenarios for programmable pattern formation in cellular systems based on local 467 

organizers. Our results provide a rigorous basis for the analysis of more complex patterning 468 

scenarios, and for a conceptual framework to design synthetic molecular and cellular systems.   469 
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FIGURES & FIGURE LEGENDS 591 

 592 

Figure 1. Programmable pattern formation within a cellular automaton (CA) model. (a) The model features bulk 593 
cells (spheres) and organizer cells (marked by red arrow). The state of cells is represented by their color. Fixed 594 
boundary cells (boxes) can also be regarded as organizer cells that never change their state. (b) We consider three types 595 
of cell arrangement: Linear, with either one or two organizer cells, and circular. (c) The patterning dynamics of bulk 596 
cells follows a cellular automaton rule. The time-dependent state 𝑥! 𝑡  of each of the 𝐿 bulk cells is updated according 597 
to 𝑥! 𝑡 + 1  =  𝑓(𝑥!!! 𝑡 , 𝑥! 𝑡 , 𝑥!!! 𝑡 ), with a rule 𝑓 that maps every triple of input states (𝑥!!! 𝑡 , 𝑥! 𝑡 , 𝑥!!! 𝑡 ) to 598 
an output state 𝑥! 𝑡 + 1 , as specified by a transition table (small spheres). The rules are enumerated by translating the 599 
pattern of output states, ordered by the descending binary equivalent of the input states, into a binary number (here: 600 
01010110!, i.e., rule 86). The patterning process is controlled by the local dynamics of the organizer cells, which 601 
supply the patterning input. Programmable pattern formation in a cell arrangement with a given update rule refers to the 602 
ability of the organizer cell(s) to reproducibly steer the bulk cells to different target patterns, using appropriate 603 
sequences of signals (see main text).  604 

  605 
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 606 

Figure 2. Patterning graph. (a) Illustration of the patterning dynamics of a small system (𝐿 =  3), steered from initial 607 
pattern 101 to target pattern 011 with two-sided control under rule 86 (cf. Fig. 1). (b) Part of the corresponding 608 
patterning graph, with nodes representing patterns and arrows possible transitions. The organizer inputs that can trigger 609 
a transition are indicated next to the corresponding arrow, e.g., 0,0  when the left and right organizer cell both supply a 610 
`0’ signal (sometimes multiple input combinations are possible). The path corresponding to (a) is highlighted in red. (c) 611 
A system with a given update rule permits programmable pattern formation, if the full patterning graph is strongly 612 
connected, i.e., there is a path from every node to every other node (regardless of the required inputs). (d) The number 613 
of distinct programmable rules decreases monotonically with the system size and reaches a plateau-value (10 for linear 614 
topology, 7 for circular topology). (e) The update rules that remain programmable for all system sizes with circular 615 
(first 7) and linear topology (all shown rules), listed in their algebraic form, decimal rule number, and update map. 616 
Different shades indicate properties of the rules that are discussed in the main text. (f) Statistical characterization of 617 
patterning graphs by their in-degree distribution (linear systems with two organizer cells, 𝐿 = 16 bulk cells, and three 618 
different exemplary rules; distributions shown up to in-degree 20). All programmable rules have the same distribution 619 
as the shown rule 240, whereas the distribution of non-programmable rules is broad (shown examples: rule 233 and 58), 620 
except for the identity and complement rule (distributions for all rules shown in Fig. S2). For comparison, the in-degree 621 
distribution of a randomized graph is also shown (random redirection of arrows to any node with equal probability).  622 
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  623 

Figure 3. Patterning dynamics. Exemplary kymographs show the patterning dynamics of different systems, each with 624 
𝐿 = 8 bulk cells, but different cell arrangements and update rules: (a) linear system with one organizer cell and rule 625 
240, (b) rule 15, and (c) rule 105, (d) linear system with two organizer cells with rule 90, (e) two-sided control with rule 626 
30 and a different target pattern, (f) circular system with embedded organizer cell and rule 240, (g) rule 30 starting from 627 
a non-homogeneous initial state, and (h) from a homogeneous initial state. (i) Characterization of the patterning 628 
dynamics by the entropy-like observable 𝑆(𝑡), a logarithmic measure of the number of different patterns that remain 629 
after t update steps, if the patterning process is started from the ensemble of all possible initial states (see main text). 630 
The data shows the time-dependence of 𝑆(𝑡) for different update rules (symbols) in a circular topology with the same 631 
target pattern as in (f). The dashed line marks 𝑆 = −𝑡 + 𝐿 for comparison. The symbols for the rules are chosen 632 
according to the four categories introduced in Fig. 2e. (j) As in (i), but for linear topology with two organizers. The 633 
solid line additionally marks 𝑆 = −2𝑡 + 𝐿 for comparison. The behavior shown for this particular target pattern is 634 
generic, as can be seen from Figs. S3 – S5, which show the minimum, maximum and average 𝑆(𝑡) over all patterns. 635 
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 636 

Figure 4: Construction of the organizer sequence for a left-bijective update rule. (a) Illustration of a left-bijective 637 
rule for an elementary two-state cellular automaton. The eight possible input configurations are grouped into four pairs 638 
(light blue background) according to the states of their middle and right-hand cells (dark boundaries). For each of these 639 
pairs, the rule establishes a one-to-one mapping between the state of its left input cell (light boundary) and its output 640 
(dark blue background). Fig. S6 illustrates the bijectivity of all programmable rules in a similar way. (b) In contrast, a 641 
rule that maps at least one pair of input states onto the same output state is not left-bijective (first and second pair in the 642 
shown example). (c) Illustration of the construction scheme for the organizer sequence 𝑂 𝑡  that steers an initial pattern 643 
to a desired target pattern. In this example, the system has 𝐿 = 5 bulk cells and an organizer cell on the left (red 644 
boundary). The construction scheme determines the organizer sequence by backward propagation from the target 645 
pattern, and explicitly demonstrates that bijectivity implies programmability. All white cells are not influenced by the 646 
organizer sequence 𝑂 𝑡 , so their states can be computed from the initial pattern with the update rule. Back propagation 647 
then begins by setting the value of the rightmost cell in the final pattern to the desired value 𝑥! 5 . Since 𝑥! 4  and 648 
𝑥! 4  are known, left-bijectivity guarantees that there is a value 𝑥! 4  such that 𝑥! 5  has the desired value. Similarly, 649 
it is possible to set 𝑥! 3  such that 𝑥! 4  takes on the required value determined in the previous step. Iterating along the 650 
diagonal with the lightest blue shade then fixes the first organizer input, 𝑂 0 . Back propagation of 𝑥! 5  then fixes 651 
𝑂 1  and so forth. Thus, bijectivity of the update rule suffices to construct an organizer sequence 𝑂 𝑡  to steer a given 652 
initial pattern into any desired target pattern. 653 
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 654 

Figure 5: Robustness against errors and error correction. (a) To explore a mechanism for error correction, we 655 
consider a cylindrical system with an array of organizer cells along the left edge and a fixed boundary condition along 656 
the right edge. The update rule now takes input from a 9-cell neighborhood (shaded blue). (b) Given a 9-cell 657 
neighborhood, the update rule applies “majority voting” in the vertical direction (index j), establishing a consensus 658 
triplet to which one of the 1D programmable rules f is applied, yielding the final output. (c) Computer simulations 659 
(symbols) and analytical theory (lines) for systems with error correction by majority voting (red) compared to the case 660 
without error correction (blue). As in Fig. 3, the symbols for different rules are chosen according to the four categories 661 
introduced in Fig. 2e. In each case, a system of size 𝐿 = 𝐾 = 9 was used. Sufficient simulation runs were performed to 662 
estimate the plotted probability of arriving at the correct final pattern with a statistical error smaller than the symbol size 663 
(see Suppl. Text S4). Convergence is demonstrated by the observation that rules for which the same error behavior is 664 
expected (Rules 15 and 240) yield data points lying on top of each other. See Suppl. Text S4 for the analytical 665 
approximations.   666 
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 667 

Figure 6: Robustness against variable timing of organizer signals. (a) To explore a mechanism for programmable 668 
pattern formation that is robust against variable timing of organizer signals, we consider an alternative scheme for 669 
programmable pattern formation, which uses all update rules with nontrivial stationary patterns (see main text). Left: 670 
Example of a patterning graph of rule 40 with 𝐿 =  3 in a linear topology with two organizer cells. In dark red a sample 671 
path is shown leading from pattern `101` to the fixed point `001` using the instruction (rule 40, [1, 1]) – i.e., left and 672 
right organizer cell have both state 1. The light red shaded areas show the attraction basins of the instruction (rule 40, 673 
[1, 1]) with the attractors ‘000’ and ‘001’. Using also the other possible instructions with rule 40 all configurations are 674 
in the attraction basin of `000', while only the right shaded subset is in the attraction basin of `001'. Right: The 675 
contributions of rule 40 with all possible inputs to the attractor graph are calculated by adding a directed edge towards a 676 
node if the pattern corresponding to the origin of the arrow is in the attraction basin of the target node. The red arrow 677 
corresponds to the red path on the left. The other contributions shown are from rule 86 depicted in Fig. 2. All 678 
contributions from all rules generate the attractor graph. (b) Example for 𝐿 =  10. The target pattern is reached with 5 679 
instructions. After each instruction, the system is allowed to reach its steady state which may last as long as desired 680 
(dots in timeline). (c)  Number of reachable patterns as a function of L compared to the total number of patterns 2!. The 681 
number of reachable patterns is determined by calculating how many nodes (patterns) of the attractor graph can be 682 
reached on a directed path from the 0 pattern. (d) Average number of instructions necessary to generate reachable 683 
patterns, with standard deviation as error bars, as a function of L, with a linear fit in the range 𝐿 ∈ 8, 16  to exclude 684 
finite size effects. 685 
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