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Abstract  16 

The role of genetic regulatory variation during fetal pancreas development is not well understood. We generate a panel 17 

of 107 fetal-like iPSC-derived pancreatic progenitor cells (iPSC-PPCs) from whole genome-sequenced individuals and 18 

identify 4,065 genes and 4,016 isoforms whose expression and/or alternative splicing are affected by regulatory 19 

variation. We integrate endocrine and exocrine eQTLs identified in adult pancreatic tissues, which reveals 2,683 eQTL 20 

associations that are unique to the fetal-like iPSC-PPCs and 1,139 eQTLs that exhibit regulatory plasticity across fetal-21 

like and adult pancreas. Investigation of GWAS risk loci for pancreatic diseases shows that some putative causal 22 

regulatory variants are active in the fetal-like iPSC-PPCs and likely influence disease by modulating expression of 23 

disease-associated genes in early development, while others with regulatory plasticity can exert their effects in both 24 

the fetal and adult pancreas by modulating expression of different disease genes in the two developmental stages.  25 
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Introduction 26 

Genome-wide association studies (GWAS) have identified hundreds of genetic variants associated with pancreatic 27 

disease risk and phenotypes 1–4. However, the majority of these associations map predominantly to non-coding regions 28 

of the genome, thereby hindering functional insights to disease processes 5–7. Previous large-scale expression 29 

quantitative trait loci (eQTL) studies have made significant advancements towards understanding how genetic variation 30 

affects gene expression in various tissues and cell types, as well as their contribution to human traits and diseases 8–11. 31 

However, these analyses have been limited to adult tissues and therefore do not capture the effects of regulatory 32 

variation on gene expression under fetal conditions. In addition, integration of fetal and adult eQTL datasets will enable 33 

the investigation of regulatory plasticity of genetic variants, which refers to changes in variant function under different 34 

spatiotemporal contexts 9,12,13. Understanding how genetic variation affects gene expression during early pancreas 35 

development, and how their function changes in adulthood, could expand our understanding of the biological 36 

mechanisms underlying adult pancreatic disease and GWAS complex trait loci.   37 

Many lines of evidence from clinical and genomic studies indicate an important role of pancreatic development to the 38 

health and childhood and adult onset pancreatic diseases12,13,14,15. For example, mutations in genes critical to pancreatic 39 

development, such as PDX1, HNF4A, and HNF1A, are associated with childhood onset diabetes 18–20. Furthermore, 40 

type 2 diabetes (T2D)-risk variants map to transcription factors (TFs) that are crucial to pancreatic development, 41 

including NEUROG3 and HNF1A, and are enriched in accessible pancreatic progenitor-specific enhancers 4,21. To 42 

address the limited availability of fetal pancreatic tissues, protocols have been devised to efficiently guide the 43 

differentiation of human induced pluripotent stem cells (iPSCs) into pancreatic progenitor cells (iPSC-PPCs) as a 44 

model system to study the fetal pancreas 22–27. While this model system has expanded our knowledge of pancreatic 45 

developmental biology, an eQTL study in this fetal-like pancreatic developmental stage, which requires hundreds of 46 

well-characterized iPSC-PPCs derived from different individuals, has not yet been conducted.  47 

In this study, we derived and characterized a large resource of iPSC-PPCs and conducted an eQTL analysis to map 48 

genetic loci associated with gene expression and isoform usage in fetal-like pancreatic cells. We integrated eQTLs 49 

from adult pancreatic tissues and identified eQTL loci that displayed temporal-specificity in early pancreatic 50 

development, as well as loci that were shared with adult but displayed regulatory plasticity. Annotation of GWAS risk 51 

loci using our temporally informed eQTL resource revealed causal regulatory variants with developmental-specific 52 

effects associated with complex pancreatic traits and disease.  53 
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Results 54 

Overview of study 55 

The goal of our study is to understand how regulatory variation active in early pancreatic development influences 56 

pancreatic disease risk and phenotypes (Figure 1A). We differentiated 106 iPSC lines from the iPSCORE resource 57 

derived from 106 whole-genome sequenced individuals to generate 107 iPSC-PPC samples (one iPSC line was 58 

differentiated twice) (Figure S1, Table S1, Table S2). We characterized the fetal-like pancreatic transcriptome as well 59 

as cellular composition using single-cell RNA-seq (scRNA-seq) of eight iPSC-PPC samples. Then, we conducted an 60 

eQTL analysis on bulk RNA-seq of all 107 samples to identify regulatory variants associated with fetal-like gene 61 

expression and isoform usage. To understand the developmental-specificity and regulatory plasticity of genetic 62 

variants, we integrated eQTLs previously discovered in adult pancreatic endocrine and exocrine samples using 63 

colocalization and network analysis. Finally, using our eQTL resource of pancreatic tissues (i.e., fetal-like iPSC-64 

derived PPCs, adult endocrine, adult exocrine), we performed GWAS colocalization and fine-mapping to link 65 

regulatory mechanisms and identify putative causal variants underlying pancreatic traits and disease associations.   66 

Large-scale differentiation of fetal-like pancreatic progenitor cells 67 

To assess differentiation efficiency of the 107 iPSC-PPCs, we performed flow cytometry analysis on each sample for 68 

the expression of PDX1 and NKX6-1, two markers routinely assayed for early pancreatic progenitor formation. Across 69 

the 107 samples, we observed a median percentage of PDX1+ cells of 92.1%, indicating that the majority of the cells 70 

in iPSC-PPCs had differentiated towards pancreas lineage (Figure 1B, Figure S2, Table S2). Pancreatic progenitor cells 71 

that express PDX1 further differentiate into pancreatic endoderm, which expresses both PDX1 and NKX6-1 and gives 72 

rise to both endocrine and exocrine pancreatic cell types 28. Therefore, to determine the fraction of PPCs that 73 

differentiated into pancreatic endoderm (hereafter referred to as “late PPC”), we examined the percentage of cells 74 

expressing both PDX1 and NKX6-1 across the 107 iPSC-PPCs and found that the median percentage of PDX1+/NKX6-75 

1+ cells was 74% (range: 9.4%-93.1%), whereas the median percentage of cells that expressed PDX1 but not NKX6-1 76 

(PDX1+/NKX6-1-, hereafter referred to as “early PPC”) was 18.7% (range: 3.5-59.3%, Figure 1B, Figure S2, Table 77 

S2). Consistent with flow cytometry analysis, scRNA-seq of ten derived iPSC-PPCs confirmed the presence of both 78 

early and late PPCs and that the majority of the cells were late PPCs (Figure S3-8; Table S2-4; See Methods and 79 

Supplemental Note 1). Altogether, these results show that the majority of the cells in iPSC-PPCs have differentiated 80 

into pancreatic endoderm while a smaller fraction represented a primitive PPC state. 81 

To examine the similarities between iPSC-PPC and adult pancreatic transcriptomes, we generated bulk RNA-seq for 82 

all 107 iPSC-PPC samples and inferred the pseudotime on each sample, along with 213 iPSCs 29,30, 87 pancreatic islets 83 
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31, and 176 whole pancreatic tissues 32. Because pancreatic islets consist primarily of endocrine cells, and whole 84 

pancreas samples consistent primarily of exocrine cells, we hereafter refer to these tissues as “adult pancreatic 85 

endocrine” and “adult pancreatic exocrine”, respectively. Pseudotime analysis revealed that iPSC-PPC samples 86 

represented an intermediate stage between iPSCs and the adult pancreatic tissues, confirming that iPSC-PPC 87 

corresponded to an earlier developmental timepoint compared to the adult tissues (Figure S9, Table S5).  88 

These analyses, combined with the results of previous studies 23,26,33, show that the 107 derived iPSC-PPCs represent a 89 

fetal-like state of pancreatic tissues, containing both pancreatic endocrine and exocrine progenitor cells. 90 

Identification and characterization of gene and isoform eQTLs in fetal-like iPSC-PPCs 91 

To characterize the effects of genetic variation on the fetal-like iPSC-PPC transcriptome, we performed an eQTL 92 

analysis mapping the genetic associations with fetal-like gene expression (egQTL) and relative isoform usage (eiQTL). 93 

Considering only autosomal chromosomes, we analyzed a total of 16,464 genes and 29,871 isoforms (corresponding 94 

to 9,624 autosomal genes) that were expressed in the fetal-like iPSC-PPCs (for genes ≥1 TPM in at least 10% of the 95 

samples or for isoforms ≥10% usage in at least 10% of samples). We identified 4,065 (24.7%) eGenes and 4,016 96 

(13.0%) eIsoforms with an egQTL  or eiQTL, respectively (FDR < 0.01, Figure 1C-D, Table S6). To detect additional 97 

independent eQTL signals 34, we performed a stepwise regression analysis to identify additional independent eQTLs 98 

(i.e., conditional eQTLs) for each eGene and eIsoform, and yielded 368 egQTLs (mapping to 338 eGenes) and 216 99 

eiQTLs (mapping to 198 eIsoforms), totaling to 4,433 independent egQTL associations and 4,232 independent eiQTL 100 

associations (Figure 1C-D, Table S6). We next predicted candidate causal variants underlying each eQTL (egQTL and 101 

eiQTL) association using genetic fine-mapping 35 (Table S7) and tested their enrichments in transcribed regions and 102 

regulatory elements. We observed an enrichment of egQTLs in intergenic and promoter regions while eiQTLs were 103 

enriched in splice sites and RNA-binding protein binding sites (Figure 1E). We additionally estimated the transcription 104 

factor (TF) binding score on each variant using the Genetic Variants Allelic TF Binding Database 36 and found that, at 105 

increasing posterior probability (PP) thresholds, the candidate causal variants underlying egQTLs were more likely to 106 

affect TF binding compared to those underlying eiQTLs (Figure 1F, Table S7, Table S8). These results corroborate 107 

similar findings from previous studies 10,12,37 showing that the genetic variants underlying egQTLs primarily affect gene 108 

regulation and and eiQTLs primarily affect coding regions or alternative splicing.   109 

To further characterize the function of genetic variants associated with the fetal-like iPSC-PPC transcriptome, we 110 

examined the distributions of egQTLs and eiQTLs per gene. Of the 5,169 genes whose phenotype was affected by 111 

genetic variation, 1,008 were impacted through both gene expression and isoform usage (i.e., had both egQTL and 112 

eiQTLs, 17.9%) while 3,057 were impacted through only gene expression (i.e., had only egQTLs, 53.6%) and 1,554 113 

through only isoform usage (i.e., had only eiQTLs, 27.7%, Figure 1G, Table S6). For the 1,008 genes with both egQTL 114 

and eiQTLs, we examined whether the same or different genetic variants underpinned their associations using 115 
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colocalization. We identified 410 (40.7%) genes that had at least one H4 (model for shared causal variants; PP.H4 ≥ 116 

80%) or H3 (model for distinct causal variants; PP.H3 ≥ 80%) association between their egQTL and eiQTLs, of which 117 

the majority (333, 81.2%) had only overlapping signals (all H4), 38 (9.3%) had only non-overlapping signals (all H3), 118 

and 39 (9.5%) had both overlapping and non-overlapping eiQTLs (both H3 and H4; an egQTL can overlap with an 119 

eiQTL corresponding to one isoform but not with another eiQTL corresponding to a second isoform) (Figure 1G, Table 120 

S9). The remaining 598 genes had PP.H3 < 80% and PP.H4 < 80% due to insufficient power (Figure 1G). Enrichment 121 

analysis of overlapping egQTL and eiQTLs showed that these variants likely disrupt mechanisms affecting both gene 122 

expression and alternative splicing (Figure S10). These findings show that 17.9% of genes had both egQTLs, and 123 

eiQTLs and that their effects were commonly drive by the same causal variants while a fraction were driven by different 124 

causal variants. Overall, our results show that the majority of genes had either only egQTLs or eiQTLs, indicating that 125 

the functional mechanisms underlying these associations are likely independent where genetic variants affecting 126 

alternative splicing does not affect the overall expression of the gene, and vice versa.  127 

Most fetal-like and adult endocrine eGenes show developmental stage specificity 128 

Studies aimed at identifying and characterizing eGenes have been conducted in both adult pancreatic endocrine and 129 

exocrine tissues 8,10,11,31,38; however, the endocrine tissue has been more thoroughly studied because of its role in 130 

diabetes. Therefore, we focused on understanding the similarities and differences between eGenes in the fetal-like 131 

iPSC-PPCs and adult pancreatic endocrine tissues.   132 

We obtained eQTL summary statistics and intersected the 4,211 autosomal eGenes identified in 420 adult pancreatic 133 

endocrine samples 11 with the 4,065 eGenes in fetal-like iPSC-PPC. We found that only 1,501 (36.9% of 4,065) eGenes 134 

overlapped between the fetal-like iPSC-PPC and adult endocrine tissues (Figure 2A). To determine whether the small 135 

overlap was due to gene expression differences, we examined how many of the eGenes were expressed in both the 136 

fetal-like iPSC-PPC and adult pancreatic endocrine. Of the 4,065 fetal-like iPSC-PPC eGenes, 88.7% (3,605) were 137 

also expressed in adult endocrine samples; likewise, of the 4,211 adult endocrine eGenes, 78.4% (3,301) were also 138 

expressed in the fetal-like iPSC-PPCs (Figure 2A). These results suggest that most fetal-like iPSC-PPC eGenes were 139 

expressed but not associated with genetic variation in the adult endocrine samples, and vice versa. 140 

For eGenes that were present in both the fetal-like iPSC-PPC and adult endocrine samples, we next asked whether their 141 

expression were controlled by the same genetic variants. We performed colocalization between egQTLs for the 1,501 142 

shared eGenes in the fetal-like iPSC-PPC and adult endocrine, and found that 795 (52.3%) had either a H4 or H3 143 

association (PP.H4 or PP.H3 ≥ 80%) (Table S9). Of the 795 with an association, 701 (88.2%) had overlapping egQTL 144 

signals (PP.H4 ≥ 80%) while 94 (11.8%) had non-overlapping egQTL signals (PP.H3 ≥ 80%) (Figure 2B, Table S9). 145 

These results indicate that most shared eGenes were associated with the same genetic variants controlling their gene 146 

expressions in both fetal-like and adult pancreatic endocrine tissues, while a subset had non-overlapping genetic 147 
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variants. For example, we identified SNX29 as an eGene in both fetal-like iPSC-PPC and adult pancreatic endocrine 148 

but observed that its expression was associated with distinct eQTL signals approximately 520 kb apart (Figure 2C). 149 

SNX29 is involved in various signaling pathways 39, including TGF-𝛽, ErbB, and WNT signaling pathway, and 150 

predicted to be a causal gene for body-mass index (BMI) and T2D 40.   151 

Taken together, our results show that a minor proportion of fetal-like eGenes (1,501, 37%) were shared with adult 152 

endocrine tissues, whereas ~63% (2,564) were fetal development-specific; and, while most shared eGenes are 153 

associated with the same regulatory variants, ~12% are mediated by different eQTLs. These findings support previous 154 

observations that the chromatin landscape differs between fetal and adult involving developmental-specific enhancer-155 

promoter interactions 41–43. 156 

Identification of developmental-unique and shared egQTLs 157 

Above, we described eGenes that were unique to fetal-like or adult endocrine, or shared between both pancreatic 158 

tissues. Here, we sought to identify eQTLs (i.e., regulatory variants) that specifically affect gene expression during 159 

pancreas development, in adult stage, or both stages. Because the iPSC-PPCs give rise to both endocrine and exocrine 160 

cell fates, we included eQTLs from both adult pancreatic endocrine 11 and pancreatic exocrine 32 tissues in our analyses. 161 

Due to the many different types of eQTLs used in this study, we refer to all eQTLs as a collective unit as “eQTLs”, 162 

eQTLs that were associated with gene expression as “egQTLs”, and eQTLs associated with changes in alternative 163 

splicing (eiQTLs, exon eQTLs, and sQTLs) as “eASQTLs”. For simple interpretations, we only describe the results for 164 

the analyses conducted on the egQTLs below, however, we identified unique and shared iPSC-PPC eASQTL 165 

associations by conducting the same analyses (see Supplementary Note 2).  166 

To identify egQTLs that shared the same regulatory variants, we performed pairwise colocalization using coloc 35 167 

between egQTLs in fetal-like iPSC-PPC, in adult endocrine 11, and in adult exocrine pancreatic samples 10. We 168 

considered egQTLs that had at least one variant with causal PP ≥ 1%, outside the MHC region, and associated with 169 

genes annotated in GENCODE version 34 44 (see Methods). We retained 4,149 fetal-like iPSC-PPC egQTLs, 3,948 170 

adult endocrine egQTLs, and 8,312 adult exocrine egQTLs for downstream analyses (Table S10). We identified 7,893 171 

total pairs of egQTLs that shared the same signal (PP.H4 ≥ 80%), which comprised 7,839 egQTLs (1,630 iPSC-PPC, 172 

2,417 adult endocrine, and 3,792 adult exocrine; Figure S11A). Of the 7,893 pairs, 27.3% (2,157) were between pairs 173 

of egQTLs within the same pancreatic tissue associated with the expression of different eGenes and 72.7% (5,736) were 174 

between pairs of egQTLs active in two different pancreatic tissues (Figure S11B, Table S9). Of the 5,736 egQTL pairs, 175 

43.5% (2,496) were associated with the expression of the same eGene in the two tissues while 56.5% (3,240) were 176 

associated with different eGenes (Figure S11B). Interestingly, we observed 1,301 iPSC-PPC, 902 adult endocrine, and 177 

2,574 adult exocrine egQTLs that did not colocalize and were not in LD (r2 ≥ 0.2 and within 500 Kb) with nearby 178 

egQTLs, suggesting that the underlying genetic variants were associated with a single eGene and active only either 179 
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during early pancreas development or in a specific adult pancreatic tissue (Figure 3A, Table S10). Hereafter, we refer 180 

to eQTLs that did not colocalize with another eQTL and were not in LD with nearby eQTLs as “singletons” (i.e., such 181 

as the 1,301 iPSC-PPC, 902 adult endocrine, and 2,574 adult exocrine egQTLs described above) and those that 182 

colocalized with another eQTL (same or different tissue) as “combinatorial” (i.e., such as the 7,839 egQTLs described 183 

above). Given that singleton egQTLs were active in only the corresponding pancreatic tissue, singleton egQTLs were 184 

by-definition tissue-unique.   185 

To identify combinatorial eQTL signals that were unique or shared between the three pancreatic tissues, we performed 186 

network analysis using the 7,893 pairs of colocalized egQTL associations to identify modules of egQTLs, which we 187 

defined as an eQTL signal that was either associated with multiple genes in a single tissue, or one or more genes in at 188 

least two of the three different pancreatic tissues. We identified 1,974 egQTL modules in total, of which 1,023 (51.8%) 189 

were composed of two egQTLs while the remaining 951 (48.2%) had an average of four egQTLs per module (range: 3-190 

20 egQTLs) (Table S10, Table S11). We found that 237 (12.0% of 1,974) modules were tissue-unique (i.e., contained 191 

only egQTLs from one tissue and not in LD [r2 ≥ 0.2 and within 500 Kb] with nearby eQTLs in the other two tissues), 192 

of which 17 were fetal-like iPSC-PPC-unique, 37 adult endocrine-unique, and 183 adult exocrine-unique, and 193 

altogether comprised 35, 77, and 415 combinatorial egQTL associations, respectively (Figure 3A, Figure 3B, Table 194 

S10, Table S11). In contrast, the remaining 1,737 (88.0% of 1,974) modules were associated with multiple pancreatic 195 

tissues, of which 702 were shared between only adult pancreatic endocrine and exocrine tissues (referred to as “adult-196 

shared”), 74 were shared between only iPSC-PPC and adult endocrine (“fetal-endocrine”), 309 between only iPSC-197 

PPC and adult exocrine (“fetal-exocrine”), and 652 between all three pancreatic tissues (“fetal-adult”) (Figure 3B, 198 

Table S10, Table S11). Together, the 1,035 (74 + 309 + 652) modules shared between iPSC-PPC and an adult 199 

pancreatic tissue were composed of 1,241 iPSC-PPC, 945 adult endocrine, and 1,440 adult exocrine egQTLs (Table 200 

S10, Table S11). 201 

Altogether, we identified 1,336 (32.2% of 4,149) egQTLs that were unique to fetal-like iPSC-PPC, of which 1,301 202 

functioned as singletons and 35 in modules, while 1,241 (29.9% of 4,149) egQTLs were shared with adult pancreatic 203 

tissues (Table S10, Table S11). The remaining iPSC-PPC egQTLs (1,572, 37.9% of 4,149) were annotated as 204 

“ambiguous” and excluded from downstream analyses due to potential associations with adult egQTLs based on LD 205 

and/or not meeting thresholds for module identification (see Methods, Table S10, Table S11). Our results show that 206 

the vast majority of iPSC-PPC-unique regulatory variants were singletons while combinatorial egQTLs tended to be 207 

shared across pancreatic issues and sometimes were associated with different eGenes. For eASQTLs, we observed 208 

similar trends in which the majority of iPSC-PPC-unique eASQTLs were singletons and that combinatorial eASQTLs 209 

were likely shared and potentially with different genes (see Supplemental Note 2; Figure S12, Table S9, Table S10). 210 

Functional validation and characterization of tissue-unique egQTLs 211 
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To functionally characterize singleton and combinatorial tissue-unique egQTLs, we examined their enrichments in 212 

chromatin states defined in all three pancreatic tissues 7,21,45. We observed that all three tissue-unique singleton egQTLs 213 

were enriched in active chromatin regions in their respective tissues, including enhancers, promoters, and the sequences 214 

corresponding to flanking promoters (Figure 3C, Figure S11C, Table S12). Adult endocrine-unique and exocrine-215 

unique combinatorials were also enriched in active chromatin states but had stronger preferences for enhancers, which 216 

is consistent with the characteristic of enhancers in regulating multiple genes (Figure 3C, Figure S11C, Table S12). Of 217 

note, iPSC-PPC-unique combinatorial egQTLs were enriched in quiescent and genic enhancer regions in adult 218 

endocrine. Similarly, adult endocrine- and exocrine-unique singleton egQTLs were enriched in active regulatory 219 

regions in PPC but were not detected as egQTLs in iPSC-PPC. For example, in the chr2:198053627-198143627 locus 220 

overlapping an active PPC enhancer, we observed that the variants were associated with an egQTL signal only in adult 221 

endocrine (Figure S11D). For these eQTLs that overlap an active regulatory element in a different tissue but do not 222 

affect gene expression, it may be possible that these variants act through the disruption of tissue-unique TF binding 43. 223 

Altogether, our results demonstrate that tissue-unique singleton and combinatorial egQTLs were strongly enriched for 224 

active chromatin regions with combinatorial egQTLs having the strongest preference for enhancers as observed in adult.   225 

Here, we present three examples of tissue-unique egQTL modules that illustrate context-specificity of genetic variants 226 

in the three pancreatic tissues. We identified the egQTL module GE_3_1 (“GE” means that this module is associated 227 

with gene expression) as a fetal-unique egQTL locus (ch3:148903264-148983264) because the underlying genetic 228 

variants were associated with CP and HPS3 expression in only iPSC-PPC while in adult endocrine and exocrine 229 

pancreas, the variants were not detected as egQTLs (Figure 3D-E). Similarly, GE_15_13 was an adult endocrine-unique 230 

egQTL locus (chr15:57746360-57916360) associated with GCOM1, MYZAP, and POLR2M expression, while in the 231 

other two pancreatic tissues, the variants were inactive and not associated with gene expression (Figure 3F-G). Finally, 232 

we discovered GE_5_32 as an adult exocrine-unique egQTL locus (chr5:146546063-146746063) associated with 233 

STK32A and STK32A-AS1 expression in only the adult pancreatic exocrine (Figure 3H-I). Together, these results show 234 

that gene regulation varies between fetal-like and adult pancreatic stages, as well as between the two adult tissues, 235 

further demonstrating the importance of profiling different spatiotemporal contexts of the pancreas to delineate 236 

molecular mechanisms underlying pancreatic disease. 237 

Regulatory plasticity in egQTL signals shared between fetal-like and adult pancreatic tissues 238 

Above, we demonstrated that genetic variants can exhibit temporal-specificity between fetal-like and adult tissues. 239 

Next, we sought to examine regulatory variants that are shared between the two stages and understand how their 240 

function changes. Using the 1,035 egQTL modules shared between fetal-like iPSC-PPC and adult pancreatic tissues, 241 

we next sought to understand how genetic variant function changes between the two developmental stages. 242 

Specifically, we asked whether the underlying egQTL signals in the modules were associated with the same or different 243 

eGenes in the three pancreatic tissues. We identified the following five categories (Figure 4A, Table S11): A) 230 244 
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(22.2%) egQTL modules were associated with same eGene(s) (range: 1-2) between fetal-like iPSC-PPC and only one 245 

of the two adult pancreatic tissues; B) 305 (29.5%) were associated with the expression of the same eGene(s) (range 246 

1-2) in the fetal-like and both adult tissues; C) 363 (35.1%) were associated with 2-9 eGenes, some of which were 247 

shared, but at least one eGene was different between the fetal-like and at least one of the adult tissues (referred to as 248 

“partial overlap”); D) 97 (9.4%) were associated with different eGenes (range: 2-5) between fetal-like iPSC-PPCs and 249 

one of the two adult pancreatic tissues; and E) the remaining 40 (3.9%) were associated with different eGenes (range: 250 

2-8) between the fetal-like and both adult endocrine and exocrine tissues (i.e., there is no overlap of eGenes between 251 

the two developmental stages).  252 

Here, we illustrate examples of egQTL modules in three intervals to highlight how eQTL associations varied between 253 

fetal-like and adult states. In the chr11:111505862-112155862 locus, we discovered a fetal-adult egQTL module 254 

(GE_11_69) that comprised egQTL associations with different eGenes in iPSC-PPC and the two adult pancreatic 255 

tissues, specifically CRYAB in iPSC-PPC and C11orf1 in the two adult tissues (Figure 4B). Likewise, the 256 

chr19:4213666-4433666 locus corresponding to a fetal-adult egQTL module (GE_19_90) was associated with MPND 257 

expression in only iPSC-PPC but in adult pancreatic endocrine and exocrine, the underlying variants were associated 258 

with STAP2 expression (Figure 4C). Finally, the fetal-adult egQTL locus (GE_10_11) in chr10:1273918-1276118 259 

affected UROS expression in all three pancreatic tissues but in adult pancreatic endocrine, the underlying variants also 260 

affected BCCIP expression (Figure 4D). Together, these genomic loci illustrate examples of regulatory plasticity 261 

observed in genetic variants in which their genotypes incur different transcriptional phenotypes depending on the life 262 

stage of the pancreas.    263 

Taken together, our findings reveal that 48.3% of shared egQTL loci (n = 500; categories C-E) comprising 691 iPSC-264 

PPC, 578 adult endocrine, and 959 adult exocrine egQTL associations display regulatory plasticity in which the 265 

underlying regulatory variants are associated with one or more different eGenes and could thereby affect different 266 

biological processes. For eASQTLs, we found that 39.8% eASQTL loci (n = 208; categories C-E) are shared between 267 

fetal-like and adult pancreas and associated with multiple different genes, comprising 448 iPSC-PPC, 384 adult 268 

endocrine, and 217 adult exocrine eASQTLs (see Supplemental Note 2).  269 

Associations of developmental stage-unique eQTLs with pancreatic traits and disease 270 

phenotypes 271 

To better understand the role of regulatory variants associated with complex human traits and disease during early 272 

development and adult pancreatic stages, we performed colocalization between GWAS signals and eQTLs (egQTL and 273 

eASQTL) detected in fetal-like iPSC-PPC, adult endocrine, and adult exocrine tissues. For this analysis, we considered 274 

GWAS data from ten different studies for two diseases involving the pancreas, including type 1 diabetes (T1D) 3 and 275 

type 2 diabetes (T2D) 4, and seven biomarkers related to three traits: 1) glycemic control (HbA1c levels and fasting 276 
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glucose) 2,46; 2) obesity (triglycerides, cholesterol, HDL level, and LDL direct) 46; and 3) body mass index (BMI) 46 277 

(Table S13).  278 

Singleton eQTLs 279 

Out of the 8,137 singleton eQTLs (4,777 egQTLs and 3,360 eASQTLs see Supplemental Note 2) in the fetal-like iPSC-280 

PPC and two adult pancreatic tissues, we found 164 (2%) that displayed strong evidence for colocalization with at least 281 

one GWAS signal, including 30 (of 2,205 total singleton eQTLs; 1.4%) fetal-like iPSC-PPC, 71 (of 2,705; 2.6%) adult 282 

endocrine, and 63 (of 3,227; 2.0%) adult exocrine singleton eQTLs (Figure 5A, Figure S13, Table S13). Given that 283 

some traits are highly correlated with one another 47,48, we observed 49 eQTLs that colocalized with GWAS variants 284 

associated with more than one trait (average: 1.5 traits per singleton eQTL; range: 1-6 studies). In total, we identified 285 

248 GWAS loci (across the ten GWAS studies) that displayed colocalization with fetal-like or adult pancreatic 286 

singleton eQTLs (Table S13). We next identified putative causal variants underlying both eQTL and trait associations 287 

and constructed 99% credible sets where the cumulative causal PP > 99% (see Methods). Of the total 248 GWAS loci, 288 

we were able to resolve 34 loci to a single putative causal variant while 84 had between two and ten variants and the 289 

remaining 130 had more than ten variants with an average of ~45 variants per locus (Figure 5B, Table S14).  290 

eQTL modules 291 

We next analyzed the combinatorial eQTLs (i.e., eQTLs that colocalize with one another) for GWAS colocalization. 292 

We considered an eQTL module to overlap with GWAS variants if more than 30% of the eQTLs in the module 293 

colocalized with PP.H4 > 80% and the number of H4 associations were twice greater than the number of H3 294 

associations (see Methods). Of the 3,185 (1,974 egQTL and 1,211 eASQTL) modules, 105 (63 egQTL + 42 eASQTL; 295 

3.3%) colocalized with a total of 149 GWAS signals (Table S13). Of these 105 GWAS-colocalized modules, 9 were 296 

associated with only fetal-like iPSC-PPC eQTLs, 42 were shared between both iPSC-PPC and adult, (5 fetal-endocrine, 297 

16 fetal-exocrine and 21 fetal-adult modules), and 54 were associated with only adult eQTLs (23 endocrine-unique, 8 298 

exocrine-unique, 23 adult-unique) (Figure S13, Table S13). These 105 modules were composed of 49 iPSC-PPC 299 

eQTLs, 84 adult endocrine eQTLs, and 49 adult exocrine eQTLs. Interestingly, we observed that all 9 of the fetal-300 

unique modules corresponded to eASQTL modules, which aligns with previous observations that alternative splicing is 301 

overall more prominent in fetal compared with adult tissues and thus, tends to be highly developmental stage-specific 302 
49. To obtain 99% credible sets for each of the 149 GWAS signals that colocalized with an eQTL module, we focused 303 

on the eQTL association that resulted in the least number of putative causal variants (see Methods). 17 GWAS loci had 304 

a credible set size of one variant, 58 with two to ten variants, and the remaining 74 had more than ten variants and an 305 

average of ~34 variants per set (Figure 5C, Table S14).  306 

In summary, we identified 79 eQTLs in iPSC-PPC (30 singleton + 49 combinatorial) that colocalized with GWAS 307 

variants associated with complex pancreatic traits and disease, 30 of which we found to function as singleton eQTLs 308 

(i.e., affect fetal-specific expression or alternative splicing of a single gene) while 49 were combinatorial eQTLs (i.e., 309 
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affect expression or alternative splicing of multiple genes or isoforms). Of these combinatorial eQTLs, 16 were fetal-310 

unique (i.e., only colocalized with iPSC-PPC eQTLs) while 33 were adult-shared (i.e., colocalized with an adult 311 

pancreatic eQTL). Furthermore, we observed that all 9 fetal-unique eQTL modules exclusively affected alternative 312 

splicing, indicating that fetal-unique regulatory variants associated with disease may likely affect splice mechanisms 313 

rather than gene transcription, consistent with previous studies demonstrating widespread alternative splicing during 314 

embryonic development 49–51.  315 

Interpreting mechanisms of fine-mapped GWAS signals  316 

Fetal pancreatic tissues are not typically assessed for GWAS annotation, so the role of developmental regulatory 317 

variants, and how their function changes in adult, is currently unclear. To better understand the function of disease-318 

associated variants in both fetal-like and adult pancreatic contexts, we used our previous assessment of eGene overlap 319 

between the two stages to annotate GWAS loci. While GWAS loci that colocalized with fetal-adult shared egQTL 320 

modules were more likely to modulate the expression of the same genes (75%; n = 24), ~25% displayed different 321 

regulatory functions. Specifically, three loci were associated with partially overlapping eGenes (category C) and five 322 

were associated with entirely different eGenes (category D and E) (Table S13). Similarly, for GWAS loci that 323 

colocalized with fetal-adult shared eASQTL modules, 90% (9/10) were associated with splice changes of the same gene 324 

(categories A and B) while 10% (1/10) was associated with at least one different gene between fetal-like and adult 325 

(category C) (Table S13). These results show that while the function of shared GWAS regulatory variants is likely 326 

conserved across fetal-like and adult pancreatic stages, a subset (21.4%, n = 9) are associated with distinct genes 327 

between the two stages.  328 

In total, we identified 397 GWAS loci (248 singleton and 149 module) colocalized with fetal-like and/or adult pancreas 329 

eQTLs. To demonstrate the power of the pancreas eQTL resource that we have generated, below we describe how our 330 

findings have contributed to biological insights in eight GWAS loci for pancreatic traits and diseases. Our examples 331 

show that our study provides putative causal mechanisms and temporal context underlying genetic associations with 332 

pancreatic complex traits and disease. We further demonstrate the regulatory plasticity of GWAS variants to produce 333 

different transcriptional effects on gene expression between fetal-like and adult pancreas.  334 

Singleton egQTLs: Here, we elucidate probable causal mechanisms for GWAS loci associated with FG levels and 335 

T1D-risk that colocalized with iPSC-PPC-unique singleton egQTLs.  336 

chr8:80998464-81093464 and TPD52 (iPSC-PPC-unique singleton) 337 

We found that in the chr8:80998464-81093464 locus, a GWAS signal associated with FG levels colocalized with a 338 

fetal-like iPSC-PPC-unique singleton egQTL for TPD52, also known as tumor protein D52 (effect size = -0.99, PP.H4 339 

= 91.7%) (Figure 6A, Figure S14A, Table S13). The reported causal variant underlying this GWAS signal is 340 
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rs12541643 2; however, colocalization with our eQTLs identified rs12549167 (chr8:81078464:C>T, PP = 33.9%, r2 = 341 

0.317 with rs12541643, Table S14) as the most likely candidate causal variant underlying both TPD52 expression in 342 

fetal-like iPSC-PPC and FG association. TPD52 directly interacts with the AMP-activated protein kinase and 343 

negatively affects AMPK signaling. AMPK controls a wide range of metabolic processes and is responsible for 344 

maintaining cellular energy homeostasis particularly in tissues associated with obesity, insulin resistance, T2D, and 345 

cancer such as muscle, liver, hypothalamus, and the pancreas 52–55. Dysregulation of AMPK has also been associated 346 

with developmental defects in which AMPK activation can lead to fetal malformation 56. Our findings suggest that 347 

decreased expression of TPD52 during development may influence changes in glucose metabolism and therefore 348 

fasting glucose levels in adult.  349 

chr9:4232083-4352083 and CDC37L1-DT (iPSC-PPC-unique singleton) 350 

We found that the well-known GLIS3 GWAS locus associated with FG and T1D-risk 57,58 colocalized with a fetal-like 351 

iPSC-PPC-unique singleton egQTL for the lncRNA CDC37L1 divergent transcript (CDC37L1-DT; effect size = 1.46; 352 

PP.H4 for FG and T1D = 92.4% and 91.2%, respectively, Figure 6B, Figure S14B, Table S13). Consistent with 353 

previous studies 57,58, we identified rs10758593 (chr9:4292083:G>A, PP = 79.2%) as the lead candidate causal variant 354 

underlying both eQTL and GWAS associations. Because GLIS3 plays a critical role in pancreatic beta cell development 355 

and function 58,59,60, it has often been reported as the susceptibility gene for this signal, however it remains unclear what 356 

effects rs10758593 has on GLIS3 expression. Our analysis suggests that another potential gene target of rs10758593 357 

during pancreas development is CDC37L1-DT. While the molecular function of CDC37L1-DT is unknown, the gene 358 

has been associated with 9p duplication in neurodevelopmental disorders 62. Furthermore, a recent study observed a 359 

significant association between the rs10758593 risk allele and birth weight, indicating a development role played by 360 

this locus 63. Although additional studies are needed to understand the function of CDC37L1-DT during pancreas 361 

development and in T1D pathology, our analysis indicates that CDC37L1-DT may be another candidate susceptibility 362 

gene for the variants in the GLIS3 locus. Assessment of GLIS3 egQTLs in the three pancreatic tissues showed that that 363 

is no overlap between the egQTLs and GWAS variants (Figure S15A).  364 

Combinatorial egQTLs: Below, we describe two GWAS intervals associated cholesterol, LDL direct levels, and T1D. 365 

We show that the GWAS variants colocalized with combinatorial egQTLs, indicating that multiple genes, and possibly 366 

multiple developmental stages of the pancreas, may be involved in trait predisposition.  367 

chr22:41049522-41449522 and ADSL and ST13 (fetal-adult combinatorial) 368 

We found that the GWAS signals associated with cholesterol and LDL direct levels in the chr22:41049522-41449522 369 

locus 64 colocalized with a “fetal-adult” egQTL module (module ID: GE_22_63, category E) (Figure 6C, Figure S14C-370 

D, Table S13). The module was associated with different eGenes between fetal-like iPSC-PPC and both adult 371 

pancreatic tissues, in which the GWAS variants were associated with ADSL expression in iPSC-PPC (effect size = 372 

0.78) but ST13 expression in both adult pancreatic tissues (effect size = -0.15 in adult endocrine and 0.27 in adult 373 
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exocrine). Infants born with ADSL (adenylosuccinate lyase) deficiency suffer from impaired glucose and lipid 374 

metabolism while ST13, also known as Hsc70-interacting protein, is involved in lipid metabolism 65. Overexpression 375 

of ST13 was found to result in disordered lipid metabolism in chronic pancreatitis 65. Although ST13 was reported to 376 

be the candidate causal gene for this locus 64, we determined that the underlying variants may also affect ADSL 377 

expression but specifically during early pancreas development. Congruent with the previous study 64, our colocalization 378 

identified rs138349 (chr22:41249522:A>G, PP = 21.9%) as the lead candidate causal variant for the egQTLs and both 379 

cholesterol and LDL GWAS associations (Table S14). Altogether, annotation of the chr22:41049522-41449522 380 

GWAS locus using our pancreatic eQTL resource suggests that altered expression of ADSL during pancreas 381 

development and ST13 in adult tissues may contribute to changes in cholesterol and LDL direct levels in adult. 382 

Additional studies are required to understand the degree to which ADSL and ST13 are causal for cholesterol and LDL 383 

direct levels. 384 

chr10:90001035-90066035 and PTEN and LIPJ (adult exocrine-unique combinatorial) 385 

We found a T1D-risk signal in the chr10:90001035-90066035 locus that colocalized with an “adult exocrine-unique” 386 

egQTL module (module ID: GE_10_35) associated with PTEN and LIPJ expression in adult pancreatic exocrine (effect 387 

size = 0.48 and 0.49, respectively) (Figure S15B, Figure S14E, Table S13). Colocalization identified the distal 388 

regulatory variant rs7068821 (chr10:90051035:G>T; PP = 85.5%) as the most likely candidate causal variant (Table 389 

S14), which is in LD with the reported index SNP rs10509540 (r2 = 0.876) in the GWAS catalogue. While RNLS was 390 

reported to be the susceptibility gene for this locus 66, our analysis suggests that PTEN and LIPJ may be candidate 391 

causal genes for this locus. Previous studies have shown that pancreas-specific PTEN knockout (PPKO) mice resulted 392 

in enlarged pancreas and elevated proliferation of acinar cells. PPKO mice also exhibited hypoglycemia, 393 

hypoinsulinemia, and altered amino metabolism 67. LIPJ encodes the lipase family member J and is involved in lipid 394 

metabolism 68. Our findings provide additional biological insight into the chr10:900001035-90066035 T1D locus and 395 

support previous studies suggesting a potential causal role of the adult exocrine pancreas in T1D pathogenesis 3,63.  396 

Singleton eASQTLs: Here, we illustrate three examples of putative causal variants involved in alternative splicing in 397 

the fetal-like pancreas. Long-noncoding RNAs (lncRNAs) have previously been shown to play important roles in 398 

pancreatic diseases 69. Two of our examples include lncRNAs while one is a protein-coding gene. 399 

chr14:101286447-101326447 and MEG3 (iPSC-PPC-unique singleton) 400 

The chr14:101286447-101326447 is a well-known GWAS locus associated with T1D and has been reported to affect 401 

the lncRNA maternally expressed gene 3 (MEG3). While the role of MEG3 in T1D and T2D pathogenesis has been 402 

extensively studied 70–72, the genetic mechanism by which this locus affects MEG3 expression and therefore, T1D risk 403 

is not well understood. Using our pancreatic eQTL resource, we found that the GWAS signal colocalized with a fetal-404 

like iPSC-PPC-unique singleton eASQTL for a MEG3 isoform (ENST00000522618, PP.H4 = 98%, effect size = 1.3, 405 

Figure 7A, Figure S16A, Table S13). Colocalization with the MEG3 eASQTL identified rs56994090 406 
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(chr14:101306447:T>C, PP = 100%) as the most likely candidate causal variant, which is concordant with the findings 407 

of a previous GWAS study 73 (Table S14). Given that rs56994090 is located in the novel intron enhancer of MEG3 74, 408 

we hypothesize that alternative splicing of MEG3 may alter the enhancer’s regulatory function, as previously observed 409 

in other lncRNAs 74, and thereby, affect T1D-risk. Altogether, our findings describe a potential causal mechanism for 410 

the T1D-risk locus involving differential alternative splicing of MEG3 specifically during pancreas development.  411 

chr16:684685635-68855635 and CDH3 (iPSC-PPC-unique singleton)  412 

We determined a known GWAS signal in the chr16:684685635-68855635 locus associated with HbA1c levels 75 413 

colocalized with a fetal-like iPSC-PPC-unique singleton eiQTL for the P-cadherin 3 (CDH3) isoform 414 

ENST00000429102 (effect size = -1.6, PP.H4 = 83.1%) (Figure 7B, Figure S16B, Table S13). Colocalization using 415 

the eASQTL identified intronic variant rs72785165 (chr16:68755635:T>A, PP = 6.8%) as the most likely candidate 416 

causal variant (Table S14), which is in high LD with the reported GWAS SNP (rs4783565, r2 = 0.88) 75. While no 417 

studies have examined how alternative splicing of CDH3 affects HbA1c levels, studies have shown that chimeric 418 

proteins made of cadherin ectodomains, including the P-cadherin CDH3, are important for proper insulin secretion by 419 

pancreatic beta cells 76. Based on our findings, we hypothesize that differential isoform usage of CDH3 during pancreas 420 

development may influence glucose control and therefore, HbA1c levels, in adults.   421 

Combinatorial eASQTLs: Here, we present potential causal mechanisms during pancreas development that involve 422 

alternative splicing and are associated with T2D-risk and BMI. 423 

chr13:30956642-31116642 and HMGB1 (iPSC-PPC-unique combinatorial) 424 

The GWAS signals associated with T2D and BMI in the chr13:30956642-31116642 locus 77–80 colocalized with the 425 

iPSC-PPC-unique eASQTL module (module ID: AS_13_2) associated with three HMGB1 isoforms: 426 

ENST00000326004, ENST00000339872, and ENST00000399494 (effect size = 2.16, -0.85, and -2.26, respectively) 427 

(Figure 7C, Figure S16C-E, Table S13). Our colocalization identified rs3742305 (chr13:31036642:C>G, PP = 49.3%) 428 

as the lead candidate causal variant underlying this locus, in which the risk allele (G) was associated with increased 429 

usage of ENST00000326004 and decreased usages of ENST0000339872 and ENST00000399494 (Figure S16C-E, 430 

Table S6, Table S14). While a previous study 79 also reported HMGB1 as the susceptibility gene, the precise mechanism 431 

by which rs3742305 affected HMGB1 expression was unclear. HMGB1, also known as high-mobility group box 1, is 432 

an important mediator for regulating gene expression during both developmental and adult stages of life. Deletion of 433 

HMGB1 disrupts cell growth and causes lethal hypoglycemia in mouse pups 81. In T2D, HMGB1 promotes obesity-434 

induced adipose inflammation, insulin resistance, and islet dysfunction 84. Our results suggest that differential usage of 435 

HMGB1 isoforms during pancreas development may affect adult risk of developing obesity and/or T2D.  436 

Altogether, our findings demonstrate the value of our pancreatic eQTL resource to annotate GWAS risk variants with 437 

fetal-like and adult temporal and regulatory information. We show that some causal regulatory variants underlying 438 
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disease-associated signals may influence adult traits by modulating the expression of genes in early development, while 439 

in other cases, they may display regulatory plasticity and exert their effects by modulating the expression of multiple 440 

different genes in fetal-like and adult pancreatic stages. Further, we identified an association between exocrine pancreas 441 

and T1D, supporting a potential role of this tissue in diabetes pathogenesis 3.  442 

Discussion 443 

In this study, we leveraged one of the most well-characterized iPSC cohorts comprising >100 genotyped individuals 444 

to derive pancreatic progenitor cells and generate a comprehensive eQTL resource for examining genetic associations 445 

with gene expression and isoform usage in fetal-like pancreatic cells. We discovered 8,665 eQTLs in the fetal-like 446 

iPSC-PPCs and showed that 60% of eGenes were associated with regulatory variation specifically active during 447 

pancreas development. For the eGenes that were shared with adult, ~12% were regulated by different genomic loci, 448 

indicating that different regulatory elements modulate the same gene in fetal-like and adult pancreas. We further 449 

identified regulatory variants that displayed developmental-specific function, 70% of which were uniquely active in 450 

only iPSC-PPC while in other cases, the variants were active in both developmental and adult contexts but exhibited 451 

regulatory plasticity in the genes they regulate. These results concur with previous studies showing that the genetic 452 

regulatory landscape changes between fetal tissues and their adult counterparts 41,43,83, and therefore, highlights the 453 

importance of assessing variant function in both fetal and adult tissue contexts. Furthermore, it is widely known that 454 

tight regulation of genes during development is essential 84, and our study reflects this in our findings that the majority 455 

of developmental-unique eQTLs were restricted to a single eGene. Because conditional associations were not readily 456 

available for the adult pancreatic tissues, additional analyses are required to recapitulate our findings.  457 

Finally, we highlighted examples of GWAS associations for which we utilized our temporally informed eQTL resource 458 

to characterize novel causal risk mechanisms underlying adult pancreatic disease. We showed that some causal 459 

regulatory variants underlying GWAS signals identified in the fetal-like iPSC-PPCs modulate the expression of genes 460 

in early development, while others may exert their effects by modulating the expression of multiple different genes 461 

across fetal-like and adult pancreatic stages. Of note, many of the fetal-unique regulatory variants underlying the 462 

GWAS signals were eASQTLs, which is consistent with alternative splicing playing a key role in developing tissues 49–463 
51,85. Hence, we believe that contribution of alternative splicing differences during fetal pancreas development to 464 

complex traits warrants further investigation given the novel biology presented in our results. 465 

We offer limitations in our study and potential future directions for the field at large. We believe that studies using 466 

larger sample sizes are needed to identify additional associations between genetic variation and gene expression in fetal 467 

samples. Our eQTL mapping in iPSC-PPC was conducted on much fewer samples compared to the other two studies 468 

that used ~400 samples, rendering our dataset underpowered and not being able to capture weaker eQTL associations 469 

that could be shared with the adult pancreatic tissues. Therefore, some of the eQTLs we annotated as adult endocrine-470 
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unique or exocrine-unique may in reality be shared with fetal pancreas. On the other hand, the eQTLs we annotated as 471 

iPSC-PPC-unique are less likely to be shared, as the signals in the adult datasets are better powered and therefore 472 

sufficient for comparing against iPSC-PPC signals. Additionally, with the rapid generation of eQTL datasets from 473 

different tissue contexts 1,2, the development and application of artificial intelligence and machine learning as ways to 474 

identify shared eQTL associations between multiple tissues will be extremely useful. While pairwise colocalization 475 

and network analysis was able to identify shared eQTL regulatory loci across the fetal-like and two adult pancreatic 476 

tissues in our study, machine learning approaches would enable these analyses to scale across spatiotemporal contexts 477 

of all tissues and thereby, provide insights into regulatory elements that are unique to a specific context, as well as 478 

those that display regulatory plasticity across multiple contexts.  479 

In summary, our study provides a valuable resource for discovering causal regulatory mechanisms underlying 480 

pancreatic traits and disease across developmental and adult timepoints of the pancreas. We revealed that disease 481 

variants may either display temporal-specificity in which they affect gene expression specifically in one timepoint, or 482 

regulatory plasticity, in which they affect gene expression in multiple timepoints but affect different genes. Our findings 483 

lay the groundwork for future employment of development contexts for the characterization of disease-associated 484 

variants.  485 

Methods 486 

Subject Information 487 

We used iPSC lines from 106 individuals recruited as part of the iPSCORE project (Table S1). There were 53 488 

individuals belonging to 19 families composed of two or more subjects (range: 2-6). Each subject was assigned an 489 

iPSCORE_ID (i.e., iPSCORE 4_1), where “4” indicates the family number and “1” indicates the individual number, 490 

and a 128-bit universal unique identifier (UUID). The 106 individuals included 68 females and 38 males with ages 491 

ranging from 15 to 88 years old at the time of enrollment. Recruitment of these individuals was approved by the 492 

Institutional Review Boards of the University of California, San Diego, and The Salk Institute (project no. 110776ZF). 493 

Each of the subjects provided consent to publish information for this study.  494 

iPSC Generation 495 

Generation of the 106 iPSC lines has previously been described in detail 30. Briefly, cultures of primary dermal 496 

fibroblast cells were generated from a punch biopsy tissue 87, infected with the Cytotune Sendai virus (Life 497 

Technologies) per manufacturer’s protocol to initiate reprogramming. Emerging iPSC colonies were manually picked 498 

after Day 21 and maintained on Matrigel (BD Corning) with mTeSR1 medium (Stem Cell Technologies). Multiple 499 

independently established iPSC clones (i.e. referred to as lines) were derived from each individual. Many of the iPSC 500 
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lines were evaluated by flow cytometry for expression of two pluripotent markers: Tra-1-81 (Alexa Fluor 488 anti-501 

human, Biolegend) and SSEA-4 (PE anti-human, Biolegend) 30. Pluripotency was also examined using PluriTest-502 

RNAseq 30. This iPSCORE resource was established as part of the Next Generation Consortium of the National Heart, 503 

Lung and Blood Institute and is available to researchers through the biorepository at WiCell Research Institute 504 

(www.wicell.org; NHLBI Next Gen Collection). For-profit organizations can contact the corresponding author directly 505 

to discuss line availability.  506 

Pancreatic Progenitor Differentiation 507 

We performed pancreatic progenitor cell (PPC) differentiation on each of the 106 iPSC lines. One iPSC line was 508 

differentiated twice giving a total of 107 differentiations. Each differentiation was assigned a 128-bit universally unique 509 

identifier (UUID), and a unique differentiation ID (UDID; “PPCXXX”), where “XXX” represents a numeric integer 510 

(Table S2). 511 

Differentiation Protocol 512 

The iPSC lines were differentiated into PPCs using the STEMdiffTM Pancreatic Progenitor Kit (StemCell Technologies) 513 

protocol with minor modifications. Briefly, iPSC lines were thawed into mTeSR1 medium containing 10 µM Y-27632 514 

ROCK Inhibitor (Selleckchem) and plated onto one well of a 6-well plate coated with Matrigel. iPSCs were grown 515 

until they reached 80% confluency 88 and then passaged using 2mg/ml solution of Dispase II (ThermoFisher Scientific) 516 

onto three wells of a 6-well plate (ratio 1:3). To expand the iPSC cells for differentiation, iPSCs were passaged a second 517 

time onto six wells of a 6-well plate (ratio 1:2). When the iPSCs reached 80% confluency, cells were dissociated into 518 

single cells using Accutase (Innovative Cell Technologies Inc.) and resuspended at a concentration of 1.85 x 106 519 

cells/ml in mTeSR medium containing 10 µM Y-27632 ROCK inhibitor. Cells were then plated onto six wells of a 6-520 

well plate and grown for approximately 16 to 20 hours to achieve a uniform monolayer of 90-95% confluence (3.7 x 521 

106 cells/well; about 3.9 x 105 cells/cm2). Differentiation of the iPSC monolayers was initiated by the addition of the 522 

STEMdiffTM Stage Endoderm Basal medium supplemented with Supplement MR and Supplement CJ (2 ml/well) (Day 523 

1, D1). The following media changes were performed every 24 hours following initiation of differentiation (2 ml/well). 524 

On D2 and D3, the medium was changed to fresh STEMdiffTM Stage Endoderm Basal medium supplemented with 525 

Supplement CJ. On D4, the medium was changed to STEMdiffTM Pancreatic Stage 2-4 Basal medium supplemented 526 

with Supplement 2A and Supplement 2B. On D5 and D6, the medium was changed to STEMdiffTM Pancreatic Stage 527 

2-4 Basal medium supplemented with Supplement 2B. From D7 to D9, the medium was changed to STEMdiffTM 528 

Pancreatic Stage 2-4 Basal medium supplemented with Supplement 3. From D10 to D14, the medium was changed to 529 

STEMdiffTM Pancreatic Stage 2-4 Basal medium supplemented with Supplement 4. On D15, cells were dissociated 530 

with Accutase and then collected, counted, and processed for data generation. iPSC-PPC cells were cryopreserved in 531 

CryoStor® CS10 (StemCell Technologies). 532 
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iPSC-PPC Differentiation Efficiency  533 

To evaluate the efficiency of iPSC-PPC differentiation, we performed flow cytometry on two pancreatic precursor 534 

markers, PDX1 and NKX6-1. Specifically, at least 2 x 106 cells were fixed and permeabilized using the 535 

Fixation/Permeabilized Solution Kit with BD GolgiStop TM (BD Biosciences) following the manufacturer’s 536 

recommendations. Cells were resuspended in 1x BD Perm/Wash TM Buffer at a concentration of 1 x 107 cells/ml. For 537 

each flow cytometry staining, 2.5 x 105 cells were stained for 75 minutes at room temperature with PE Mouse anti-538 

PDX1 Clone-658A5 (BD Biosciences; 1:10) and Alexa Fluor® 647 Mouse anti-NKX6.1 Clone R11-560 (BD 539 

Bioscience; 1:10), or with the appropriate class control antibodies: PE Mouse anti-IgG1 κ R-PE Clone MOPC-21 (BD 540 

Biosciences) and Alexa Fluor® 647 Mouse anti IgG1 κ Isotype Clone MOPC-21 (BD Biosciences). Stained cells were 541 

washed three times, resuspended in PBS containing 1% BSA and 1% formaldehyde, and immediately analyzed using 542 

FACS Canto II flow cytometer (BD Biosciences). The fraction of PDX1- and NKX6-1-positive was calculated using 543 

FlowJo software version 10.4 (Table S2).  544 

WGS data 545 

Whole-genome sequencing data for the 106 iPSCORE individuals were downloaded from dbGaP (phs001325) as a 546 

VCF file 29. We retained variants with MAF > 5% across all 273 individuals in the iPSCORE resource, that were in 547 

Hardy-Weinberg equilibrium (p > 10-6), and that were within 500 Kb of the expressed gene’s body coordinates. 548 

Specifically, we expanded the coordinates of each of the 16,464 expressed autosomal genes (500 Kb upstream and 549 

downstream) and extracted all variants within these regions using bcftools view with parameters --f PASS -q 0.05:minor 550 
89. Next, we normalized indels and split multi-allelic variants using bcftools norm -m- and removed variants that were 551 

genotyped in fewer than 99% of samples using bcftools filter -i 'F_PASS(GT!="mis") > 0.99 89. Finally, we converted 552 

the resulting VCF files to text using bcftools query 89 and converted the genotypes from character strings (0/0, 0/1, and 553 

1/1) to numeric (0, 0.5, and 1, respectively). This resulted in 6,593,484 total variants used for eQTL mapping. 554 

Bulk RNA-seq 555 

Library Preparation and Sequencing 556 

RNA was isolated from total-cell lysates using the Quick-RNATM MiniPrep Kit (Zymo Research) with on-column 557 

DNAse treatments. RNA was eluted in 48 µl RNAse-free water and analyzed on a TapeStation (Agilent) to determine 558 

sample integrity. All iPSC-PPC samples had RNA integrity number (RIN) values over 9. Illumina TruSeq Stranded 559 

mRNA libraries were prepared according to the manufacturer’s instructions and sequenced on NovaSeq6000 for 101bp 560 

paired-end sequencing.  561 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2021.03.17.435846doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435846
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

Data Processing and Quality Control 562 

FASTQ files were obtained for all 107 iPSC-PPC samples and processed using a similar pipeline described in our 563 

previous studies 29,90. Specifically, RNA-seq reads were aligned with STAR (2.7.3) 91 to the hg19 reference using 564 

GENCODE version 34 hg1992 splice junctions with default alignment parameters and the following adjustments: -565 

outFilterMultimapNmax 20, -outFilterMismatchNmax 999, -alignIntronMin 20, -alignIntronMax 1000000, -566 

alignMatesGapMax 1000000. BAM files were sorted by coordinates, and duplicate reads were marked using Samtools 567 

(1.9.0) 89. RNA-seq QC metrics were calculated using Samtools (1.9.0) flagstat 89, Samtools (1.9.0) idxstats 89, and 568 

Picard (2.20.1) CollectRnaSeqMetrics 93. Across all 107 iPSC-PPC samples, the total read depth ranged from 32.3 M 569 

to 160.4 M (mean = 70.7), the median percentage of intergenic bases was 3.31%, the median percentage of mRNA 570 

bases was 92.1%, and the median percentage of duplicate reads was 22.2% (Table S2).  571 

Sample Identity 572 

We obtained common bi-allelic variants from the 1000 Genomes Phase 3 panel 94 with minor allele frequencies between 573 

45% and 55% and predicted their genotypes in the 107 bulk RNA-seq samples using mpileup and call functions in 574 

BCFtools (1.9.0) 95,96. Then, we used the genome command in plink 93  to estimate the identity-by-state (IBS) between 575 

each pair of bulk RNA-seq and WGS samples. All RNA-seq samples were correctly matched to the subject with 576 

PI_HAT > 0.95 (Table S2).  577 

Quantification of gene expression and relative isoform usage 578 

We calculated TPM and estimated relative isoform usage for each gene in each RNA-seq sample using RSEM (version 579 

1.2.20) 97 with the following options –seed 3272015 –estimate-rspd –paired-end –forward-prob. To identify expressed 580 

autosomal genes and isoforms to use for eQTL analyses, we used the same approach previously described 12. Briefly, 581 

autosomal genes were considered expressed if TPM ≥ 1 in at least 10% of samples. To identify expressed isoforms, 582 

we required that isoforms had TPM ≥ 1 and usage ≥ 10% in at least 10% of samples and corresponded to expressed 583 

genes with at least two expressed isoforms. In total, 16,464 autosomal genes were used for egQTL analysis, and 29,871 584 

autosomal isoforms corresponding to 9,624 genes were used for eiQTL analysis. We quantile-normalized TPM and 585 

isoform usage across all 107 samples using the normalize.quantiles (preprocessCore) and qnorm functions in R (version 586 

4.2.1) to obtain a mean expression = 0 and standard deviation = 1.  587 

Inferring pseudotime using Monocle 588 

We obtained FASTQ files for 213 iPSCs 29,30 (phs000924), 176 adult pancreatic exocrine 8 (phs000424), and 589 

87 adult pancreatic endocrine 31 (GSE50398), and processed the data using the same pipeline described above 590 

to obtain TPM counts for each gene per sample. We then used Monocle (http://cole-trapnell-591 

lab.github.io/monocle-release/docs/#constructing-single-cell-trajectories)  98 to infer the pseudotime on all of 592 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2021.03.17.435846doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435846
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

the RNA-seq samples, including the 107 iPSC-PPCs. Following the standard workflow under “Constructing Single 593 

Cell Trajectories” in the Monocle tutorial, we provided TPM counts for all overlapping autosomal expressed genes in 594 

the four tissues as input. Then, we identified differentially expressed genes using differentialGeneTest, ordered them 595 

(setOrderingFilter), and performed dimension reduction analysis using reduceDimension with max_components = 2 596 

and method = “DDRTree”. Pseudotime was calculated by rooting time (pseudotime = 0) in the 213 iPSC-PPCs using 597 

the GM_state and orderCells functions provided in the tutorial (Table S5).   598 

PCA analysis with iPSCs, adult pancreatic exocrine, and adult pancreatic endocrine 599 

We obtained TPM counts (described above) for the 213 iPSCs 29, 176 adult exocrine 8, 87 adult endocrine 31, and the 600 

107 iPSC-PPCs and performed PCA analysis on the 2,000 most variable genes across the samples using prcomp in R 601 

(version 4.2.1) with scale = T and center = T. We observed that the PC clusters corresponded to the iPSCs and each 602 

of the three pancreatic tissue types: iPSC-PPC, adult endocrine, and adult exocrine (Figure S9, Table S5).   603 

scRNA-seq 604 

To characterize the cellular composition of the fetal-like iPSC-PPC samples, we performed single-cell RNA-seq 605 

(scRNA-seq) on one iPSC line (from differentiation PPC034) and ten iPSC-PPC samples with varying percentages of 606 

double-positive PDX1+/NKX6-1+ cells based on flow cytometry (range: 9.4-91.7%) (Figure S2, Figure S3, Table S2). 607 

Because bulk RNA-seq was generated on cryopreserved cells, we sought to also examine whether cell cryopreservation 608 

affects gene expression estimates using scRNA-seq. Therefore, we included both freshly prepared (i.e., not frozen and 609 

processed immediately after differentiation) and cryopreserved cells for four iPSC-PPC samples (PPC029, PPC027, 610 

PPC023, PPC034; Table S2) for scRNA-seq processing. 611 

Sample Collection  612 

Fresh cells from the iPSC line and seven iPSC-PPC samples were captured individually at D15. Cells from four of 613 

these same iPSC-PPC samples that had been cryopreserved were pooled and captured immediately after thawing 614 

(RNA_Pool_1). Cells from an additional three iPSC-PPC samples were captured only after cryopreservation 615 

(RNA_Pool_2) (Table S2).  616 

Library Preparation and Sequencing 617 

All single cells were captured using the 10X Chromium controller (10X Genomics) according to the manufacturer’s 618 

specifications and manual (Manual CG000183, Rev A). Cells from each scRNA-seq sample (one iPSC, seven fresh 619 

iPSC-PPCs, RNA_Pool_1, and RNA_Pool_2) were loaded each onto an individual lane of a Chromium Single Cell 620 

Chip B. Libraries were generated using Chromium Single Cell 3’ Library Gel Bead Kit v3 (10X Genomics) following 621 

manufacturer’s manual with small modifications. Specifically, the purified cDNA was eluted in 24 µl of Buffer EB, 622 
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half of which was used for the subsequent step of the library construction. cDNA was amplified for 10 cycles and 623 

libraries were amplified for 8 cycles. All libraries were sequenced on a HiSeq 4000 using custom programs (fresh: 28-624 

8-175 Pair End and cryopreserved: 28-8-98 Pair End). Specifically, eight libraries generated from fresh samples (one 625 

iPSC and seven iPSC-PPC samples) were pooled together and loaded evenly onto eight lanes and sequenced to an 626 

average depth of 163 million reads. The two libraries from seven cryopreserved lines (RNA_Pool_1 and RNA_Pool_2) 627 

were each sequenced on an individual lane to an average depth of 265 million reads. In total, we captured 99,819 cells. 628 

We observed highly correlated cell type proportions between fresh and cryopreserved iPSC-PPC samples (Figure S8). 629 

scRNA-seq Alignment  630 

We obtained FASTQ files for the ten scRNA-seq samples (one iPSC, seven fresh iPSC-PPCs, RNA_Pool_1, and 631 

RNA_Pool_2) (Table S2) and used CellRanger V6.0.1 (https://support.10xgenomics.com/) with default parameters 632 

and GENCODE version 34 hg19 92 gene annotations to generate single-cell gene counts and BAM files for each of the 633 

ten samples.  634 

Dataset Integration and Quality Control 635 

We processed the single-cell gene counts by first aggregating the iPSC and seven fresh iPSC-PPC samples using the 636 

aggr function on CellRanger V6.0.1 with normalization = F. Then, we integrated the aggregated dataset (“aggr”) with 637 

the two pools of cryopreserved samples (RNA_Pool_1 and RNA_Pool_2) using the standard integration workflow 638 

described in Seurat (version 3.2; https://satijalab.org/seurat/archive/v3.2/integration.html). Specifically, for each 639 

dataset (aggr, RNA_Pool_1, and RNA_Pool_2), we log-normalized the gene counts using NormalizeData (default 640 

parameters) then used FindVariableFeatures with selection.method = “vst”, nfeatures = 2000, and dispersion.cutoff 641 

= c(0.5, Inf) to identify the top 2,000 most variable genes in each dataset. We then used FindIntegrationAnchors and 642 

IntegrateData with dims = 1:30 to integrate the three datasets. We scaled the integrated data with ScaleData, performed 643 

principal component analysis with RunPCA for npcs = 30, and processed for UMAP visualization (RunUMAP with 644 

reduction = “pca” and dims = 1:30). Clusters were identified using FindClusters with default parameters.  645 

To remove low-quality cells, we examined the distribution of the number of genes per cell and the percentage of reads 646 

mapping to the mitochondrial chromosome (chrM) in each cluster. We removed the cluster (11,677 cells) with fewer 647 

than 500 genes per cell and more than 50% of the reads mapping to chrM. We re-processed the filtered data (ScaleData, 648 

RunPCA, FindClusters, RunUMAP) and removed a second cluster of cells that had the lowest median number of 649 

expressed genes (723 versus 2,775) and highest median fraction of mitochondrial reads (34.0% versus 8.39%). After 650 

this second filtering step, we retained 84,258 cells. 651 

Demultiplexing Sample Identity 652 
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We used Demuxlet 99 to assign pooled cryopreserved cells in RNA_Pool_1 and RNA_Pool_2 (19,136 cells in total) to 653 

the correct iPSC-PPC sample. Specifically, we provided CellRanger Bam files and a VCF file containing genotypes 654 

for biallelic SNVs located at UTR and exon regions on autosomes as annotated by GENCODE version 34 hg19 92. We 655 

excluded 33 cells that were incorrectly assigned to samples not associated with the pooled sample (i.e., cells from 656 

RNA_POOL_1 were predicted to be from other samples not in RNA_Pool_1). 84,225 cells remained for downstream 657 

analyses (Table S3).   658 

Annotation of Cell Type Clusters 659 

We annotated the scRNA-seq clusters by first clustering at three different resolutions (0.5, 0.08, and 0.1) (Figure S4-660 

6). We selected resolution = 0.08 because it best captured the expected iPSC-PPC cell types based on each cluster’s 661 

expression for the following gene markers: POU5F1 (iPSC), COL1A1, COL1A2 (mesendoderm) AFP, APOA (early 662 

definitive endoderm), GATA4, GATA6, PDX1 (early PPC), PDX1, NKX6-1 (late PPC), PAX6, CHGA, INS, GCG, SST 663 

(endocrine), and FLT1 (early ductal). We validated our annotations by comparing the iPSC-PPC clusters to those 664 

identified from scRNA-seq of ESC-PPC samples over 4 different stages of differentiation 100 (GSE114412): Stage 3 665 

(Day 6; 7,982 cells), Stage 4 (Day 13; 6,960 cells), Stage 5 (Day 18; 4,193 cells), and Stage 6 (Day 25; 5,186 cells). 666 

Specifically, we compared the expression patterns of the gene markers between the clusters using z-normalized mean 667 

expression computed on cells expressing at least 1% of maximal expression for the gene, as described in the reference 668 

study 100. Metadata containing single cell annotations are reported in Table S3. 669 

Differentially Expressed Genes 670 

To identify differentially expressed genes for each iPSC-PPC cluster, we used the FindAllMarkers function in Seurat 671 
101 with logfc.threshold = 0.01 and min.pct = 0.01. P-values were automatically adjusted using Bonferroni correction, 672 

and genes with adjusted p-values ≤ 0.05 were considered differentially expressed (Table S4).  673 

eQTL Analysis 674 

To investigate the effects of genetic variation on gene expression in iPSC-PPCs, we performed an expression 675 

quantitative trait loci (eQTL) analysis on gene expression and isoform usage. The eQTLs associated with gene 676 

expression were defined as egQTLs while those associated with relative isoform usage were defined as eiQTLs.  677 

Covariates for eQTL Mapping  678 

We included the following as covariates for eQTL mapping of both gene expression and isoform usage: 1) sex; 2) 679 

normalized number of RNA-seq reads; 3) percent of reads that mapped to autosome or sex chromosomes (labeled as 680 

“pct_uniquely_mapped_to_canonical_chromosomes” in Table S2); 4) percent of reads mapped to mitochondrial 681 

chromosome; 5) 20 genotype principal components to account for global ancestry; 6) 20 PEER factors to account for 682 
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transcriptome variability; and 7) kinship matrix to account for genetic relatedness between samples. All covariates are 683 

available in Table S1-3. 684 

Genotype Principal Component Analysis (PCA): Global ancestry was estimated using the genotypes of the 439,461 685 

common variants with minor allele frequency (MAF) between 45 and 55% in the 1000 Genomes Phase 3 Panel 94. We 686 

merged the VCF files for the 106 iPSCORE subjects and the 2,504 subjects in the 1000 Genomes 94 and performed a 687 

PCA analysis using plink --pca 93 (Figure S1A). The top 20 principal components were used as covariates in the eQTL 688 

model to account for global ancestry and can be found in Table S1. 689 

PEER Factors: We sought to determine the optimal number of PEER factors to use in the eQTL analysis that will result 690 

in maximal eGene discovery. To this end, we initially calculated PEER factors on the 10,000 expressed genes with the 691 

largest variance across all samples. To limit biases due to the expression levels of each gene, we divided the 16,464 692 

expressed genes into ten deciles based on their average TPM, and selected 50 genes from each decile, for a total of 500 693 

genes. We next performed eQTL analysis on each of the 500 genes using 10 to 60 PEER factors in increments of 10. 694 

While 30 PEER factors resulted in the highest percentage of eGenes (14.0%), we opted for using 20 PEER factors 695 

because the eQTL analysis had a comparable percentage of eGenes (11.8%) to GTEx tissues with similar sample sizes 696 
10 (Figure S18). Although we observed variable fraction of double-positive PDX1+/NKX6-1+ cells in the iPSC-PPC 697 

samples, we did not include this variable as a covariate because PEER factors 1 and 4 already accounted for this 698 

variability (Figure S19).  699 

Kinship Matrix: The kinship matrix was included as a random effects term to account for the genetic relatedness 700 

between individuals in our cohort. We constructed the kinship matrix using the same 439,461 variants employed above 701 

using the –make-rel square function in plink 93. The kinship matrix is available in Table S2. 702 

eQTL Analysis 703 

We performed eQTL analysis using the same method described in our previous study 12. For each expressed autosomal 704 

gene and isoform, we tested variants that were within 500 Kb of the gene body coordinates using the bcftools query 705 

function. To account for the genetic relatedness between the samples, we performed eQTL mapping using a linear 706 

mixed model with the scan function in limix v.3.0.4 102 that incorporates the kinship matrix as a random effects term. 707 

Specifically, eQTL mapping was implemented through the following model: 708 

𝑦! =	𝛽"! ∙ 𝑔" +	*𝛽# ∙ 𝐶#

$

#%&

+ u + ϵ!" 709 

Where 𝑦! is the normalized expression value for gene 𝑖, 𝛽"! is the effect size of genotype of SNP 𝑗 on gene 𝑖, 𝑔" is the 710 

genotype of SNP 𝑗, 𝛽# is the effect size of covariate 𝑛, 𝐶# is a vector of values for covariate 𝑛, u is the kinship matrix 711 

as a random effect, and ϵ is the error term for the association between expression of gene 𝑖 and genotype of SNP 𝑗. As 712 
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described above, we used the following as covariates: 1) sex, 2) normalized number of RNA-seq reads, 3) percent of 713 

reads mapped to autosomal or sex chromosome, 4) percent of reads mapped to mitochondrial chromosome, 5) the top 714 

20 genotype PCs (to account to global ancestry), and 6) the top 20 PEER factors (to account for confounders of 715 

expression variability), and are available in Tables S1-2.  716 

FDR Correction 717 

To perform FDR correction,  we used a two-step procedure described in Huang et al. 103, which first corrects at the 718 

gene level and then at the genome-wide level. First, we performed FDR correction on the p-values of all variants tested 719 

for each gene or isoform using eigenMT 102, which considers the LD structure of the variants. Then, we extracted the 720 

lead eQTL for each gene or isoform based on the most significant FDR-corrected p-value. If more than one variant had 721 

the same FDR-corrected p-value, we selected the one with the largest absolute effect size as the lead eQTL. For the 722 

second correction, we performed an FDR-correction on all lead variants using the Benjamini-Hochberg method (q-723 

value) and considered only eQTLs with q-value £ 0.01 as significant (Table S6). 724 

Conditional eQTLs 725 

To identify additional independent eQTLs (i.e., conditional eQTLs) for each eGene and eIsoform, we performed a step-726 

wise regression analysis in which the genotype of the lead eQTL was included as a covariate in the model and the 727 

eQTL mapping procedure (regression and multiple test correction) was re-performed. We repeated this analysis to 728 

discover up to five additional associations for each eGene and eIsoform. Conditional eQTLs with q-values £ 0.01 were 729 

considered significant (Table S6).  730 

Functional characterization of iPSC-PPC eQTLs 731 

Fine-mapping of eQTL Associations 732 

To define a credible set of candidate causal variants for each eQTL association, we performed genetic fine-mapping 733 

using the finemap.abf function in coloc (version 5.1.0, R) 35. This Bayesian method converts p-values of all variants 734 

tested for a specific gene to posterior probabilities (PP) of association for being the causal variant. Variants with PP ≥ 735 

1% are available in Table S7. The eQTLs not present in this table do not having any variants with PP ≥ 1% (i.e., all 736 

variants were estimated to have PP < 1%).  737 

Genomic enrichments of egQTLs and eiQTLs 738 

For each independent eQTL association, we obtained candidate causal variants whose PP ≥ 5% (Table S7) and 739 

determined their overlap with each of the following genomic annotations using bedtools intersect: short splice acceptor 740 

sites (± 50bp), long splice acceptor sites (± 100bp), splice donor sites (± 50bp), UTR, intron, exon, intergenic, 741 

promoters, and RNA-binding protein binding sites (RBP-BS). RBP-BS were downloaded from a published dataset that 742 
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utilized enhanced CLIP to identify binding sites of 73 RBPs 104. We considered only binding sites with irreproducible 743 

discovery rate (IDR) threshold of 0.01, indicating that these sites were reproducible across multiple biological samples. 744 

Enrichment of candidate causal variants for genomic regions was calculated using a Fisher’s Exact Test comparing the 745 

proportion of SNPs that overlap each annotation between egQTLs and eiQTLs. P-values were corrected using the 746 

Benjamini-Hochberg method and were considered significant if their FDR-corrected p-value £ 0.05 (Figure 1E).  747 

Quantification of allele-specific binding of transcription factors using GVATdb 748 

To annotate each candidate causal variant by their effects on transcription factor (TF) binding, we used the Genetic 749 

Variants Allelic TF Binding Database (GVATdb) to estimate the TF binding impact score associated with each variant 750 

and each of the 58 iPSC-PPC-expressed TF available on the database and with a AUPRC > 0.75 indicating a high-751 

confidence deltaSVM model. We estimated the score using the instructions and reference files provided on the 752 

GVATdb GitHub repository (https://github.com/ren-lab/deltaSVM). The software required a list of SNPs as input 753 

along with hg19 reference files provided in the GVATdb repository. The output provides the deltaSVM score 105 for 754 

each variant-TF pair (Table S8), indicating whether the variant results in a promotion (“Gain”), disruption (“Loss”), or 755 

no change (“None”) in TF binding. 756 

Correlation between eQTL effect size and binding affinity of transcription factors 757 

To determine whether egQTLs were more likely to affect TF binding compared to eiQTLs, we performed a Spearman 758 

Correlation Analysis between deltaSVM score and eQTL effect size on candidate causal variants with PP ≥ 10%, 20%, 759 

40%, 60% and 80%. We considered nominal p-value £ 0.05 as significant.  760 

Colocalization between iPSC-PPC gene and isoform eQTLs 761 

To determine the overlap of genetic variants between egQTLs and eiQTLs for the same gene, we performed Bayesian 762 

colocalization using the coloc.abf function in coloc (version 5.1.0, R) 35, where each pair of signals was given a 763 

summary PP that each of the following five hypotheses was true: H0) no association was detected in both signals, H1) 764 

an association was detected in signal 1, H2) an association was detected in signal 2, H3) an association was detected 765 

in both signals but the underlying causal variants are different, and H4) an association was detected for both signals 766 

and the underlying causal variants are the same. We considered two eQTL signals to be shared if the number of 767 

overlapping variants used to test for colocalization (called “nsnps” in coloc.abf output) ≥ 500 and the PP for H4 (called 768 

“PP.H4.abf” in coloc.abf output; hereafter referred to as PP.H4) ≥ 80%. Conversely, two signals were considered 769 

distinct if nsnps ≥ 500 and PP for H3 (called “PP.H3.abf” in coloc.abf output; hereafter referred to as PP.H3) ≥ 80%. 770 

eQTL associations with PP.H4 < 80% and PP.H3 < 80% were due to insufficient power in one or both eQTL signals. 771 

As input into coloc.abf, we provided p-values, minor allele frequency, and sample size. All associations with PP ³ 80% 772 

for any model are available in Table S9.  773 
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Genomic enrichment of overlapping egQTL and eiQTL signals compared to non-overlapping 774 

To test the enrichment of overlapping egQTLs and eiQTLs in genomic regions compared to non-overlapping signals, 775 

we used a similar approach described in a previous study 10. We determined the overlap of candidate causal variants 776 

with PP ³ 1% in each genomic annotation using bedtools intersect and compared the proportion of variants overlapping 777 

each annotation against a background set of 20,000 random variants using a Fisher’s Exact Test. For overlapping 778 

eQTLs, we used the candidate causal variants predicted in the coloc.abf output. Enrichments with nominal p-value < 779 

0.05 were considered significant (Figure S10). 780 

Downloading eQTL summary statistics for adult pancreatic tissues 781 

We downloaded complete eQTL summary statistics for gene and exon associations for 420 adult pancreatic endocrine 782 

from the InSPIRE Consortium (https://zenodo.org/record/3408356) 11, and gene and splicing associations for 305 adult 783 

pancreatic exocrine from the GTEx Data Portal for GTEx Analysis version 8 10 784 

(https://console.cloud.google.com/storage/browser/gtex-resources). All GTEx SNPs were converted to hg19 using the 785 

UCSC liftOver Bioconductor package in R (https://www.bioconductor.org/help/workflows/liftOver/). Complete 786 

statistics for conditional associations in the adult endocrine and exocrine datasets were not readily available and 787 

therefore, not included in our analyses.   788 

Due to the different types of eQTLs used in this study, we hereafter refer to all eQTLs as a collective unit as “eQTLs”, 789 

eQTLs that are associated with gene expression as “egQTLs”, and eQTLs associated with changes in alternative splicing 790 

(eiQTLs, exon eQTLs, and sQTLs) as “eASQTLs”.   791 

Comparing eGenes between iPSC-PPC and adult endocrine 792 

To identify eGenes that were shared between iPSC-PPC and adult pancreatic endocrine tissues, we compared the 4,065 793 

eGenes in iPSC-PPC and the 4,211 eGenes in adult endocrine that complete summary statistics were available for. 794 

Specifically, we used the intersect function in R to identify eGenes that overlapped between the two tissues and setdiff 795 

function in R to identify eGenes that did not overlap. Similarly, using the intersect function in R, we compared the 796 

22,266 expressed genes in adult endocrine tissues with the 4,065 eGenes in iPSC-PPC to identify the proportion of 797 

iPSC-PPC eGenes that were expressed in adult endocrine, and vice versa with the 17,098 expressed genes in iPSC-798 

PPC and 4,211 eGenes in adult endocrine. The 22,266 expressed genes in adult endocrine tissues were obtained from 799 

the complete summary statistics uploaded by the previous study in https://zenodo.org/record/3408356.  800 

Comparing eQTLs present in fetal-like iPSC-PPC and adult pancreatic tissues  801 
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Colocalization between iPSC-PPC and adult eQTLs 802 

To identify eQTLs whose effects were driven by the same causal signals in iPSC-PPC and adult pancreatic tissues 803 

(endocrine and exocrine), we performed Bayesian colocalization using the coloc.abf function in coloc (version 5.1.0, 804 

R) 35. Specifically, for each iPSC-PPC and adult eQTL, we tested its overlap with nearby eQTLs within 3 Mb from the 805 

gene body coordinates. eQTLs with no overlapping variants would automatically not be tested. Then, we filtered the 806 

results by requiring that each colocalization used the number of overlapping variants (called “nsnps” in the coloc.abf 807 

output) ≥ 500. As described above, we considered two eQTL signals to be shared if PP.H4 ≥ 80% or distinct if PP.H3 808 

≥ 80%. eQTL associations with PP.H4 < 80% and PP.H3 < 80% were due to insufficient power in one or both eQTL 809 

signals. 810 

Because we, and others, have shown that egQTLs are functionally different from eASQTLs (eiQTLs, exon eQTLs, and 811 

splicing eQTLs), we performed colocalization for egQTLs and eASQTLs independently (i.e., colocalization of egQTL 812 

was performed only with another egQTL and an eASQTL only with another eASQTL). All associations with PP ³ 80% 813 

for any model are reported in Table S9.  814 

Fine-mapping of adult eQTL associations 815 

Similarly for iPSC-PPC eQTLs, we identified candidate causal variants using the finemap.abf function in coloc (version 816 

5.1.0, R). This Bayesian method converts p-values of all variants tested for a specific gene to a PP value for being the 817 

causal variant. Variants with PP ≥ 1% are available in Table S7. The eQTLs not present in this table do not having any 818 

variants with PP ≥ 1% (i.e., all variants were estimated to have PP < 1%).  819 

For all downstream analyses beyond this point, we used only iPSC-PPC, adult pancreatic endocrine, and adult 820 

pancreatic exocrine eQTLs with at least one candidate causal variant with PP ≥ 1%, outside of the MHC region, 821 

and are annotated in GENCODE version 34 hg19, to ensure that our analyses were powered sufficiently and the 822 

multiple datasets were comparable.  823 

Identifying tissue-unique singleton eQTLs 824 

Singleton eQTLs were defined in this study as an eQTL not colocalizing or in LD (r2 ≥ 0.2 and within 500 Kb) with 825 

another eQTL in the same or different pancreatic tissue. Singleton eQTLs were also considered tissue-unique as they 826 

were functional in only the tested tissue. For each eQTL that did not display a H4 association with another eQTL, we 827 

examined their LD with nearby eQTLs of the same phenotype (gene expression or alternative splicing) in all three 828 

pancreatic tissues using their most likely candidate causal variants based on the highest PP (from finemap.abf output). 829 

LD was calculated using plink --r2 square --keep-allele-order --make-bed 93 and the 1000 Genomes Phase 3 panel 94. 830 

A singleton eQTL was considered in LD with another eQTL if the singleton’s candidate causal variant was within 500 831 

Kb and in LD (r2 ≥ 0.2) with another eQTL’s candidate causal variant. If the candidate causal variant was not genotyped 832 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2021.03.17.435846doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435846
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

in the 1000 Genomes Phase 3 panel, then we used the next top candidate causal variant and repeat the process, if 833 

needed, until no more variant was remaining with causal PP ≥ 1%. If none of the candidate causal variants with PP ≥ 834 

1% were genotyped in 1000 Genomes, then we used distance as a metric for determining potential associations, where 835 

if the singleton candidate causal variant was within 500 Kb with another eQTL’s candidate causal variant, we 836 

considered them to be potentially associated. A singleton eQTL in LD or potentially associated based on distance was 837 

annotated as “ambiguous” and excluded from further analysis, otherwise we annotated the eQTL as a tissue-unique 838 

singleton. All annotated tissue-unique singleton eQTLs are reported in Table S10. 839 

Identifying eQTL modules 840 

eQTL modules were identified by first creating a network using the graph_from_data_frame function in igraph 841 

(version 1.3.4, R) 106 where the input was a data frame containing all pairs of colocalized eQTLs (nsnps ³ 500 and 842 

PP.H4 ³ 80%) as binary edges. We created networks for each chromosome and phenotype (gene expression and 843 

alternatively splicing) independently, totaling to 44 networks (22 chromosomes x 2 phenotypes = 44 networks). Then, 844 

we performed community detection analysis using the cluster_leiden function with --objective_function = 845 

“modularity”, n_iterations = 500, resolution = 0.3 to identify modules of eQTLs. Upon examining them in depth, we 846 

observed that 5% of the modules contained at least one H3 association (PP.H3 ³ 80%) between a pair of eQTLs, 847 

indicating that signals within a module were predicted to have distinct genetic variants despite being assigned to the 848 

same module. Therefore, to filter for modules that contained eQTLs likely to share the same genetic variants, we 849 

required that at least 30% of all eQTL pairs had a H4 association and that the number of H4 “edges” was twice the 850 

number of H3 “edges” (number of H4 edges / number of H3 edges ³ 2). For example, a module with four eQTLs would 851 

have six possible pairwise combinations, and to be considered a validated module, we required at least two H4 edges 852 

and no more than one H3 edge. Modules that did not pass these thresholds were annotated as “module_failed” and 853 

excluded from downstream analyses. Summary of eQTL modules and their individual eQTL associations are reported 854 

in Table S11. Module IDs were assigned such that the first term indicates the phenotype the module was associated 855 

with (“GE” for gene expression or “AS” for alternative splicing), the second term indicates the chromosome number, 856 

and the third term indicates a unique integer. For example, “GE_1_32” indicates that this module is associated with 857 

changes in gene expression, located in in chromosome 1, and assigned the number 32.  858 

Identifying tissue-unique and tissue-sharing eQTL modules 859 

Combinatorial eQTLs were defined in this study as an eQTL having at least one H4 association (PP.H4 ³ 80%) with 860 

another eQTL either in the same or different tissue. These combinatorial eQTLs then connect to form a module, which 861 

we identified using the network analysis described above. We then categorized each module based on the activity of 862 

eQTLs in the three pancreatic tissues, having a total of seven module categories: 863 

1) Fetal-unique: contains eQTLs in only iPSC-PPC 864 
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2) Adult endocrine-unique: contains eQTLs in only adult endocrine 865 

3) Adult exocrine-unique: contains eQTLs in only adult exocrine 866 

4) Adult-shared: contains eQTLs in adult endocrine and adult exocrine 867 

5) Fetal-endocrine: contains eQTLs in iPSC-PPC and adult endocrine 868 

6) Fetal-exocrine: contains eQTLs in iPSC-PPC and adult exocrine 869 

7) Fetal-adult: contains eQTLs in all three pancreatic tissues 870 

We next filtered the eQTL modules based on their LD relationships with other tissues to confirm the module’s tissue 871 

specificity. For example, we required fetal-endocrine modules to contain eQTLs specific to only iPSC-PPC and adult 872 

endocrine and not be in LD with an eQTL from adult exocrine. Similar to the analysis described above for identifying 873 

tissue-unique singletons, we calculated LD between each pair of eQTLs’ most likely candidate causal variants (based 874 

on the highest PP; PP ≥ 1%) using plink --r2 square --keep-allele-order --make-bed 93 and the 1000 Genomes Phase 3 875 

panel 94. For each of the module categories, we required that the following were true to be considered for downstream 876 

analyses: 877 

1) Fetal-unique: contains eQTLs in only iPSC-PPC, and all eQTLs were not in LD with eQTLs in adult 878 

endocrine and adult exocrine 879 

2) Adult endocrine-unique: contains eQTLs in only adult endocrine, and all eQTLs were not in LD with 880 

eQTLs in adult exocrine and iPSC-PPC 881 

3) Adult exocrine-unique: contains eQTLs in only adult exocrine, and all eQTLs were not in LD with 882 

eQTLs in adult endocrine and iPSC-PPC 883 

4) Adult-shared: contains eQTLs in only adult endocrine and adult exocrine, and all eQTLs were not in 884 

LD with eQTLs in iPSC-PPC 885 

5) Fetal-endocrine: contains eQTLs in iPSC-PPC and adult endocrine, and all eQTLs were not in LD 886 

with eQTLs in adult exocrine 887 

6) Fetal-exocrine: contains eQTLs in iPSC-PPC and adult exocrine, and all eQTLs were not in LD with 888 

eQTLs in adult endocrine  889 

7) Fetal-adult: contains eQTLs in all three pancreatic tissues.  890 

For any module that did not meet the above requirements, we annotated the eQTLs in the module “ambiguous” and 891 

excluded for downstream analysis. Hereafter, we refer the eQTL associations in tissue-unique modules (categories 1-892 

3) as tissue-unique combinatorial eQTLs and those in categories 5-7 as eQTLs shared between both fetal-like and adult 893 

stages. All annotations for eQTL modules and their individual eQTLs are reported in Table S10 and Table S11. 894 

Enrichment of tissue-unique eQTLs in pancreatic chromatin states  895 
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We obtained chromatin state maps for adult endocrine and human embryonic stem cell-derived pancreatic progenitor 896 

cells from previously published studies 21,107 and adult pancreatic exocrine from the Roadmap Epigenome Project 897 

(epigenome ID: E098) 7. Because egQTLs were likely to affect non-coding regulatory elements (Figure 1E), we 898 

examined their enrichments in chromatin states to better understand, and validate, their functional mechanisms. 899 

Enrichments were calculated using a Fisher’s Exact Test by comparing the proportion of candidate causal variants 900 

(from finemap.abf, see above sections; PP ≥ 10%) of tissue-unique singleton and combinatorial egQTLs in each 901 

chromatin state to a background set of 20,000 randomly selected variants. Enrichments with Benjamini-Hochberg-902 

corrected p-values ≤ 0.05 were considered significant. Enrichment results are available in Table S12, Figure 3I, and 903 

Figure S11C.Functional plasticity of eQTLs in fetal-like and adult pancreatic tissues  904 

For the modules shared between both fetal-like and adult pancreatic tissue (categories 5-7; described above), we 905 

compared the eGenes associated with 1) iPSC-PPC eQTLs versus adult endocrine eQTLs and 2) iPSC-PPC eQTLs 906 

versus adult exocrine eQTLs. For eASQTLs, we compared the genes mapping to 1) each isoform in iPSC-PPC versus 907 

exon in adult endocrine and 2) each isoform in iPSC-PPC versus splice interval in adult exocrine. From these 908 

comparisons, we assign each module an “endocrine_egene_overlap” label and an “exocrine_egene_ overlap” label in 909 

Table S11 (also shown in Figure 4A and Figure S12D), where “zero” indicates that the module does not contain an 910 

eQTL in the adult tissue, “same” indicates that the module contains eQTLs associated with the same gene in iPSC-911 

PPC and adult, “partial” indicates that the module contains eQTLs associated with partially overlapping genes between 912 

iPSC-PPC and adult, and “different” indicates that the module contains eQTLs associated with entirely different genes. 913 

For example, if a module was annotated with “zero” for endocrine_egene_overlap and “same” for 914 

exocrine_egene_overlap, this indicates that the module was shared between only fetal-like and adult exocrine (i.e, 915 

“fetal-exocrine” or category 6 as described above; does not contain an adult endocrine eQTL) and the genes associated 916 

with this locus were the same in both tissues. 917 

Complex Trait GWAS Associations 918 

Colocalization of eQTLs with GWAS associations 919 

We obtained GWAS summary statistics from ten different studies: 1) type 1 diabetes 3, 2) type 2 diabetes 107, 3) body 920 

mass index 46, 4) triglycerides 46, 5) HDL cholesterol 46,  6) LDL direct 46, 7) cholesterol 46, 8) glycated hemoglobin 921 

A1C (HbA1c) levels from the MAGIC Consortium 108, 9) HbA1c levels from the Pan-UKBB Study 46, and 10) fasting 922 

glucose 108. All of the data, except for type 1 diabetes, were provided in hg19 coordinates, therefore we converted the 923 

coordinates from hg38 to hg19 using the liftOver package in R 109. We sorted and indexed each file using tabix 89. For 924 

each trait, we performed colocalization between GWAS variants and all filtered significant eQTLs (see bolded section 925 

above) in the three pancreatic tissues with the coloc.abf function in coloc (version 5.1.0, R) 35 using p-values, MAF, 926 

and sample size as inputs. Then, we filtered results based on whether the lead candidate causal variant underlying both 927 

GWAS and eQTL association (from coloc.abf output) is genome-wide significant for GWAS association (p-value ≤ 928 
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5x10-8) and the number of overlapping variants used to test for colocalization (nsnps) ≥ 500. eQTLs were considered 929 

to share a genetic signal with GWAS if PP.H4 ³ 80% or have distinct signals with GWAS if PP.H3 ³ 80%. For eQTL 930 

modules, we required that at least 30% of the eQTLs in the module colocalized with GWAS (PP.H4 ³ 80%) and that 931 

the number of H4 associations is twice the number of H3 associations (number of H4 associations / number of H3 932 

associations ≥ 2). Colocalization results for the 397 GWAS loci with PP.H4 ³ 80% are available in Table S13. 933 

GWAS 99% Credible Sets  934 

For each GWAS locus (based on GWAS locus ID in Table S13), we constructed 99% credible sets with the predicted 935 

candidate causal variants underlying both eQTL and GWAS associations (from coloc.abf output). If the GWAS locus 936 

colocalized with a singleton eQTL, the credible sets were constructed using the output of the eQTL’s colocalization 937 

with GWAS. If the GWAS locus colocalized with an eQTL module, we constructed credible sets for each of the 938 

pairwise eQTL-GWAS colocalization and retained the eQTL that resulted in the least number of candidate causal 939 

variants. If multiple eQTLs had the same number of variants in their credible set, we considered the eQTL with the 940 

highest PP.H4 for GWAS colocalization. 99% credible sets were constructed by first sorting the variants by descending 941 

order of causal PP and obtaining the least number of variants that resulted in a cumulative PP ³ 99%. 99% credible 942 

sets for each of the 397 GWAS loci (248 singleton and 149 module) are reported in Table S14. 943 

Data Availability 944 

FASTQ sequencing data for iPSC-PPC scRNA-seq and bulk RNA-seq have been deposited into GSE152610 and 945 

GSE182758, respectively. RNA-seq for iPSC, adult endocrine, and adult exocrine samples used in PCA and 946 

pseudotime analyses were downloaded from phs000924, GSE50398, and phs000424, respectively. eQTL summary 947 

statistics for adult endocrine and exocrine samples were obtained from the GTEx Data Repository 948 

(https://console.cloud.google.com/storage/browser/gtex-resources) and a previously published study 11 949 

(https://zenodo.org/record/3408356), respectively. WGS data for iPSCORE subjects were downloaded as a VCF file 950 

from phs001325. GWAS summary statistics were obtained from the Pan UK BioBank resource 951 

(https://pan.ukbb.broadinstitute.org/), the MAGIC (Meta-Analyses of Glucose and Insulin-related traits) Consortium 952 

(https://magicinvestigators.org/downloads/; https://doi.org/10.1038/s41588-021-00852-9), the DIAMANTE 953 

Consortium (https://diagram-consortium.org/downloads.html; http://doi.org/10.1038/s41588-018-0241-6), and a 954 

previously published study 3. Full eQTL summary statistics for iPSC-PPC, supplemental tables, and processed scRNA-955 

seq data have been deposited in Figshare: https://figshare.com/projects/Large-scale_eQTL_analysis_of_iPSC-956 

PPC/156987. 957 
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Figure 1. Discovery and Characterization of eQTLs in iPSC-PPC 975 

 976 

(a) Study overview. (b) Density plots showing the distribution of PDX1+ cells (%; regardless of NKX6-1 status; light 977 

green) and PDX1+/NKX6-1+ cells (%; dark green). (c) Bar plot showing the number of eGenes with primary and 978 

conditional egQTLs. (d) Bar plot showing the number of eIsoforms with primary and conditional eiQTLs. (e) 979 

Enrichment (odds ratio) of eQTLs for functional genomic annotations using a two-sided Fisher’s Exact Test comparing 980 

the proportion of SNPs with causal PP ≥ 5% between egQTLs (blue; n = 8,763) and eiQTLs (yellow; n = 8,919). (f) 981 

Line plot comparing the spearman correlation between TF binding score and eQTL effect size at different thresholds 982 

of PP for egQTLs (blue) and eiQTLs (yellow). Closed points indicate significance of correlation based on nominal p < 983 
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0.05. (g) Bar plot showing the number of genes that have only egQTLs (blue; n = 3,057), only eiQTLs (green; n = 984 

1,554), or both. Orange represents genes with only overlapping egQTLs and eiQTLs (PP.H4 ≥ 80%; n = 333) based on 985 

colocalization. Red represents genes with only distinct egQTLs and eiQTLs (PP.H3 ≥ 80%; n = 38), and pink represents 986 

genes with both shared and distinct egQTLs and eiQTLs (i.e., an eGene with two eIsoforms may colocalize with one 987 

eIsoform but not the other) (n = 39). Gray represents genes whose eQTL signals were not sufficiently powered to test 988 

for colocalization (PP.H4 < 80% and PP.H3 < 80%; n = 598).   989 
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Figure 2. Comparison of the genetic architecture underlying gene expression between 990 

fetal-like and adult endocrine  991 

 992 

(a) Stacked bar plot showing the number of eGenes detected in adult endocrine (blue; n = 4,211 total) that are expressed 993 

in iPSC-PPC. Likewise, we show the number of iPSC-PPC eGenes (green; n = 4,065 total) that are expressed in adult 994 

endocrine. Darker shades represent eGenes that are expressed in the other tissue while lighter shades represent those 995 

that were expressed. These results show that the majority of iPSC-PPC and adult endocrine eGenes were expressed in 996 

the other tissue. Therefore, the small overlap of eGenes between the two tissues were not due to expression differences 997 

but instead due to differences in the genetic regulatory landscape. (b) Pie chart showing that 12% of the shared eGenes 998 

between iPSC-PPC and adult endocrine were associated with distinct genetic loci (PP.H3 ≥ 80%), indicating that 999 

different regulatory mechanisms facilitate the expression of the same gene in iPSC-PPC and adult endocrine. (c) 1000 

Example of a shared eGene (SNX29) whose expression was associated with different egQTL signals in iPSC-PPC 1001 

(green, top panel) and adult endocrine (blue, bottom panel). For plotting purposes, we assigned a single p-value for 1002 

gene-level significance based on Bonferroni-correction (0.05 divided by the number of variants tested for the gene; 1003 

horizontal line). Red vertical lines indicate the positions of the lead variants in the adult endocrine and fetal-like iPSC-1004 

PPC based on p-value (chr16:12656135 and chr16:12136526, respectively).  1005 
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Figure 3. eQTL sharing between iPSC-PPC and adult pancreas 1006 

 1007 

(a) Bar plot showing the number of tissue-unique egQTLs identified in fetal-like iPSC-PPC, adult pancreatic endocrine, 1008 

and adult pancreatic exocrine. (b) Bar plot showing the number of egQTL modules for each annotation. (c) Plot showing 1009 

the enrichment (odds ratio) of tissue-unique singleton (S) and combinatorial (C) egQTLs in PPC 21 (left) and endocrine 1010 
45 (right) chromatin states. Nomenclature for the chromatin states used in the previously studies was maintained. 1011 

Enrichment was tested using a two-sided Fisher’s Exact Test comparing the proportion of candidate causal variants 1012 

with causal PP ≥ 20% overlapping the chromatin states between the egQTLs in question versus a background of 1013 

randomly selected 20,000 variants. P-values were Benjamini-Hochberg-corrected and considered significant if the 1014 

corrected p-values < 0.05. Non-significant results are set to log(odds ratio) = 0. Error bars represent 95% confidence 1015 
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intervals for the odds ratios. (d-e) The chr3:148903264-148983264 locus (gray rectangle) was an example of an “iPSC-1016 

PPC-unique” egQTL locus (module ID: GE_3_1) associated with CP and HPS3 expression. (f-g) The chr15:57746360-1017 

57916360 locus (gray rectangle) was an example of an “adult endocrine-unique” egQTL locus (module ID: GE_15_13) 1018 

associated with GCOM1, MYZAP, and POLR2M expression. We show that the egQTL locus was unique to adult 1019 

endocrine and not active in iPSC-PPC and adult exocrine. GCOM1 was not expressed in adult exocrine and therefore, 1020 

was not tested for egQTL discovery. (h-i) The chr5:146546063-146746063 locus (gray box) is an example of an “adult 1021 

exocrine-unique” egQTL locus (module ID: GE_5_32) associated with STK32A and STK32A-AS1 expression only in 1022 

adult endocrine. STK32A-AS1 was not expressed in iPSC-PPC and therefore, was not tested for egQTL discovery. Panel 1023 

d, f, h display the egQTL modules as networks in which the egQTL associations (nodes) are connected by edges based 1024 

on colocalization (PP.H4 ≥ 80%). For plotting purposes, we assigned a single p-value for gene-level significance based 1025 

on Bonferroni-correction (0.05 divided by the number of variants tested for the gene; horizontal line). Red vertical 1026 

lines indicate the positions of the lead candidate causal variants underlying the colocalization based on maximum PP.  1027 
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Figure 4. Regulatory plasticity of egQTL loci  1028 

 1029 

(a) Number of egQTL modules based on eGene overlap between iPSC-PPC and the two adult pancreatic tissues. “Zero” 1030 

indicates that the module does not contain an egQTL in the respective adult tissue. “Same” indicates that the module 1031 

contains egQTLs for only the same eGenes in iPSC-PPC and the adult tissue. “Partial” indicates that the module 1032 

contains egQTLs for partially overlapping eGenes between iPSC-PPC and the adult tissue. “Different” indicates that 1033 

the module contains egQTLs for only different eGenes between iPSC-PPC and the adult tissue. For example, the 171 1034 

egQTL modules in category A (orange) contain egQTLs from only iPSC-PPC and adult exocrine (zero egQTLs from 1035 

adult endocrine) and are associated with the same eGenes between the two tissues. (b-d) Examples of egQTL loci 1036 

demonstrating regulatory plasticity of genetic variation across fetal-like and adult pancreatic stages. Panel b shows a 1037 

locus associated with different eGenes in iPSC-PPC (CRYAB) and both the adult tissues (C11orf1). Panel c shows a 1038 
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locus associated with MPND expression in only iPSC-PPC but STAP2 expression in both the adult tissues. Panel d 1039 

shows a locus associated with partially overlapping eGenes between the two pancreatic stages (UROS in all three 1040 

pancreatic tissues and BCCIP in only adult endocrine). For plotting purposes, we assigned a single p-value for gene-1041 

level significance based on Bonferroni-correction (0.05 divided by the number of variants tested for the gene; horizontal 1042 

line). Red vertical lines indicate the positions of the lead candidate causal variants underlying the colocalization based 1043 

on maximum PP.  1044 
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Figure 5. Summary of Pancreatic GWAS Associations 1045 

 1046 

(a) Bar plot showing the number of eQTL loci that colocalized with GWAS variants (PP.H4 ≥ 80%) as a singleton or 1047 

module. (b) Pie chart showing the number of singleton-colocalized GWAS loci (n = 248) color-coded by the number 1048 

of candidate causal variants identified in their 99% credible sets. (c) Pie chart showing the number of module-1049 

colocalized GWAS loci (n = 149) color-coded by the number of candidate causal variants identified in their 99% 1050 

credible sets.  1051 
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Figure 6. Pancreatic GWAS Associations with Fetal-specific and Adult-shared Gene 1052 

Expression  1053 

 1054 

(a) The TPD52 locus is associated with fasting glucose levels and colocalized with an iPSC-PPC-unique singleton 1055 

egQTL with the predicted causal variant identified as rs12549167 (chr8:81078464:C>T, PP = 33.9%). (b) The 1056 

CDC37L1-DT locus is associated with fasting glucose and type 1 diabetes and colocalized with an iPSC-PPC-unique 1057 

singleton egQTL with the predicted causal variant identified as rs10758593 (chr9:4292083:G>A, PP = 79.2%). (c) 1058 

Cholesterol and LDL direct GWAS loci colocalize with a fetal-adult egQTL module where the variants are associated 1059 

with ADSL expression in iPSC-PPC and ST13 expression in the adult tissues. The predicted causal variant was 1060 

identified as rs138349 (chr22:41249522:A>G, PP = 21.9%). For plotting purposes, we assigned a single p-value for 1061 

gene-level significance based on Bonferroni-correction (0.05 divided by the number of variants tested for the gene; 1062 

horizontal line). Red vertical lines indicate the positions of the lead candidate causal variants underlying the 1063 

colocalization based on maximum PP.  1064 
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Figure 7. Pancreatic GWAS Associations with Fetal-specific Alternative Splicing 1065 

 1066 

(a) T1D-risk locus colocalized with an iPSC-PPC-unique singleton eASQTL for MEG3 with the predicted causal variant 1067 

identified as rs56994090 (chr14:101306447:T>C, PP = 100%). (b) GWAS locus associated with HbA1c colocalized 1068 

with an iPSC-PPC-unique singleton eASQTL for CDH3 with the predicted causal variant identified as rs72785165 1069 

(chr16:68755635:T>A, PP = 6.8%). (c) HMGB1 locus was associated with T2D-risk and BMI and colocalized with an 1070 

iPSC-PPC-unique eASQTL module for differential usage of three HMGB1 isoforms with the predicted causal variant 1071 

identified as rs3742305 (chr13:31036642:C>G, PP = 49.3%). For plotting purposes, we assigned a single p-value for 1072 

gene-level significance based on Bonferroni-correction (0.05 divided by the number of variants tested for the gene; 1073 

horizontal line). Red vertical lines indicate the positions of the lead candidate causal variants underlying the 1074 

colocalization based on maximum PP.  1075 
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