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Abstract: 32 

As systems biology approaches to virology have become more tractable, highly studied viruses 33 

such as HIV can now be analyzed in new, unbiased ways, including spatial proteomics. We employed 34 

here a differential centrifugation protocol to fractionate Jurkat T cells for proteomic analysis by mass 35 

spectrometry; these cells contain inducible HIV-1 genomes, enabling us to look for changes in the spatial 36 

proteome induced by viral gene expression. Using these proteomics data, we evaluated the merits of 37 

several reported machine learning pipelines for classification of the spatial proteome and identification of 38 

protein translocations. From these analyses we found that classifier performance in this system was 39 

organelle-dependent, with Bayesian t-augmented Gaussian mixture modeling outperforming support 40 

vector machine (SVM) learning for mitochondrial and ER proteins, but underperforming on cytosolic, 41 

nuclear, and plasma membrane proteins by QSep analysis. We also observed a generally higher 42 

performance for protein translocation identification using a Bayesian model, BANDLE, on SVM-classified 43 

data. Comparative BANDLE analysis of cells induced to express the wild-type viral genome vs. cells 44 

induced to express a genome unable to express the accessory protein Nef identified known Nef-45 

dependent interactors such as TCR signaling components and coatomer complex. Lastly, we found that 46 

SVM classification showed higher consistency and was less sensitive to HIV-dependent noise. These 47 

findings illustrate important considerations for studies of the spatial proteome following viral infection or 48 

viral gene expression and provide a reference for future studies of HIV-gene-dropout viruses.  49 
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Introduction:  50 

 Spatial proteomics is a methodologically diverse and rapidly growing field within mass 51 

spectrometry (MS) that aims to understand the subcellular localization of the human proteome1–7. While 52 

initial efforts focused on establishing techniques and reference maps for various cell lines, recent work by 53 

the Cristea group expanded the field to understand the whole-cell effects of viral infection using human 54 

cytomegalovirus (HCMV) as a prototype7. This work led to novel findings on the importance of 55 

peroxisomes in herpesvirus infectivity8, exemplifying the power of these methods for uncovering new viral 56 

biology. However, as this was a first in its class study, how different methodologies might impact the 57 

results of viral studies using spatial proteomics is unclear. Using the well-characterized HIV-1 as a model 58 

virus system, we aimed to compare the output of several published spatial proteomic analysis pipelines9–59 

12 as a survey of established methods. 60 

To model HIV expression, we used a Jurkat T cell line that harbors a doxycycline-regulated HIV-1 61 

genome. These cells were previously developed by our group to generate nearly homogenous HIV-62 

positive cell populations for MS analysis13. As an additional biological comparator, we examined both 63 

wild-type (WT) virus and a virus lacking the accessory gene nef (ΔNef). Nef is a small (27 kDa), 64 

myristoylated membrane-associated accessory protein expressed early during the viral replication 65 

cycle14,15. Nef increases viral growth-rate and infectivity16, and it dysregulates the trafficking of cellular 66 

membrane proteins such as CD4, class I MHC, and proteins involved in T cell activation such as CD2817 67 

and p56-Lck18. Some of these activities enable the virus to evade immune detection19,20. Here we use 68 

inducible Jurkat T cell lines containing either WT or ΔNef HIV-1NL4-3 provirus and compare the spatial 69 

proteome of uninduced cells to cells post-induction with doxycycline. To fractionate the cells, we used a 70 

modified version of the Dynamic Organellar Mapping protocol5,6 with additional centrifugation steps4 to 71 

enhance organellar resolution, then analyzed the fractions by MS using TMT multiplexing. 72 

Following the generation and processing of MS data, two broad steps are required for spatial 73 

proteomics: classification and hit determination. For classifying detected proteins into cellular organelles 74 

we compared two methods from pRoloc, an R software package developed by the Lilley lab12. The first 75 

was support vector machine (SVM) classification which outputs a label for each protein and an algorithm 76 

specific confidence score that can be used to threshold assignments1. The second was a Bayesian 77 
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approach called t-augmented Gaussian mixture modeling with maximum a posteriori estimates (TAGM-78 

MAP) which outputs a label for each protein and an actual probability of assignment11. To gauge the 79 

quality of these classifications, we compared the two methods using the QSep metric developed by the 80 

Lilley group21, which quantifies the separation, or resolution, of the organelles in question. We additionally 81 

cross-referenced our organellar assignments to existing organellar proteome databases22–25. 82 

After classification, data were analyzed for translocating proteins following HIV expression. We 83 

compared three different methods for determining protein translocations: label-based movement, 84 

translocation analysis of spatial proteomics (TRANSPIRE)9, and Bayesian analysis of differential 85 

localization experiments (BANDLE)10. Label-based movement relies strictly on identifying proteins that 86 

are consistently classified in one organelle prior to a cellular perturbation, then consistently classified in 87 

another organelle following the perturbation; this method was employed by the Cristea group in their 88 

HCMV study7. TRANSPIRE is a refined methodology from the Cristea lab that relies on generating 89 

synthetic translocations from proteins of known localization and uses Bayesian analysis to determine the 90 

likelihood of proteins of unknown localization behaving in a manner consistent with anticipated 91 

translocations following a cellular perturbation9. Lastly, BANDLE is another method developed by the 92 

Lilley group that takes replicated data, both with and without a perturbation, and uses Bayesian analysis 93 

to yield a ranked list of possible translocations with their associated likelihood of occurrence10. We 94 

compared the hits from these various methods by cross-referencing hits with a previous study of the HIV 95 

interactome26 as well as the more broad NIH HIV-1 Human Interaction Database27. 96 

From these comparisons we found that the performance of different classifiers is organelle-97 

dependent and shows varied effects from HIV expression. As determined by agreement with previously 98 

published organellar proteomes, classification with TAGM-MAP showed increased accuracy in 99 

mitochondrial and ER-classified proteins, while SVM outperformed TAGM-MAP with nuclear, cytosolic, 100 

and plasma membrane-classified proteins. We also observed generally higher performance for protein 101 

translocation using BANDLE on SVM-classified data when compared to the HIV interactomes. BANDLE 102 

analysis of WT and ΔNef data identified known Nef interactors involved in T cell activation and the 103 

coatomer complex. Finally, we found that SVM classification showed higher consistency and was less 104 
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sensitive to HIV-dependent noise. These findings illustrate the complexities in choosing a computational 105 

method for spatial proteomics study and serve as a foundation for additional studies. 106 

 107 

Experimental Procedures: 108 

Experimental design and statistical rationale 109 

All fractionation experiments with mass spectrometric analysis were performed in technical 110 

triplicate for each condition (uninduced and induced), with two biological replicates for wild-type and ΔNef 111 

NL4-3 Jurkat cells (Fig. 1A). This yielded a total of 6 uninduced and 6 induced technical replicates for 112 

each virus type. Biological replicates were prepared on separate days and analyzed by mass 113 

spectrometry on separate days. Western blotting and flow cytometry were performed on each technical 114 

replicate. Analyses for QSep (Fig. 2B and C) used Welch’s t-test to determine statistical significance. 115 

 116 

Cell culture 117 

The doxycycline-inducible NL4-3 HIV-1 and NL4-3 ΔNef Jurkat cell lines were previously 118 

described13,28. The replication-incompetent genome used was based on pNL4-3 but lacked most of the 5’ 119 

U3 region, encoded a self-inactivation deletion in the 3’ LTR, and contained the V3 region from the R5-120 

tropic 51-9 virus29 to prevent the cell-cell fusion of the Jurkat T cells used herein, which do not express 121 

CCR5. Inducible cells were cultured in RPMI 1640 media supplemented with penicillin/streptomycin 122 

(pen/strep) and 10% Tet-free fetal bovine serum (FBS), as well as puromycin (1 µg/mL) and G418 (200 123 

µg/mL) to maintain persistence of the tetracycline trans-activator and the inducible genome. Cells were 124 

passaged every two days to keep concentrations between 3.5x105 and 1x106 cells/mL. Cells were 125 

maintained at 37°C, 5% CO2, and 95% humidity. 126 

 127 

Doxycycline induction and fractionation 128 

On the day before fractionation, 2.016x109 cells were plated at 6x105 cells/mL in T75 flasks at a 129 

total volume of 40 mL/flask. Half of these cells were induced to express HIV-1/HIV-1ΔNef with 130 

doxycycline (1 µg/mL) for 18 hours, while the other half remained uninduced. Following induction, cells of 131 

each condition, i.e. uninduced and induced, were split into three technical replicates, and then centrifuged 132 
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at 500xg for 5 min at 4°C. Each technical replicate was pooled into a single 50 mL tube using ice cold 1X 133 

PBS, then counted by hemocytometer. From each technical replicate, 3x108 cells were fractionated. Two 134 

aliquots of cells were taken from each technical replicate for whole cell western blots and testing induction 135 

by flow cytometry. 136 

 The fractionation protocol used here is derived from the Dynamic Organellar Maps method5 with 137 

additional centrifugation steps4 and TMT-based MS analysis rather than SILAC6. Cells for fractionation 138 

were centrifuged at 500xg for 5 min at 4°C then resuspended in ice-cold PBS and incubated for 5 min on 139 

ice. Cells were again centrifuged at 500xg for 5 min at 4°C, then resuspended in ice-cold hypotonic lysis 140 

buffer (25 mM Tris-HCl (pH 7.5), 50 mM sucrose, 0.5 mM MgCl2, and 0.2 mM EGTA in water) and 141 

incubated for 5 min on ice. Using a 7 mL Dounce homogenizer, cells were homogenized with 20 full 142 

strokes of the tight pestle. Cell homogenates were then immediately transferred to a 13 mL (14x89 mm) 143 

ultracentrifuge tube with sufficient ice-cold hypertonic sucrose buffer (1.25 M sucrose, 25 mM Tris-HCl 144 

(pH 7.5), 0.5 mM MgCl2, and 0.2 mM EGTA in water) to restore 250 mM sucrose concentration. All 145 

replicates were then centrifuged at 1,000xg for 10 min at 4°C in a Beckman Coulter ultracentrifuge (SW-146 

41 Ti rotor), balancing each tube with balance buffer (250 mM sucrose, 25 mM Tris-HCl (pH 7.5), 0.5 mM 147 

MgCl2, and 0.2 mM EGTA in water). Supernatants were transferred to a fresh ultracentrifuge tube, 148 

balanced with balance buffer, then fractionated using the following differential centrifugation protocol: 149 

3,000xg for 10 min, 5,400xg for 15 min, 12,200xg for 20 min, 24,000xg for 20 min, 78,400xg for 30 min, 150 

110,000xg for 35 min, and 195,500xg for 40 min All centrifugation steps were performed at 4°C with 151 

pellets from each spin being resuspended in SDS buffer (2.5% SDS and 50 mM Tris-HCl (pH 8.0) in 152 

water). Fractions were then heated for 10 minutes at 72°C. Protein content of each fraction was quantified 153 

in triplicate using a bicinchoninic acid (BCA) protein assay (Thermo-Fisher). 154 

 155 

Confirmatory western blots and p24 flow cytometry 156 

 Prior to mass spectrometric analysis of fractions, induction and fractionation were evaluated by 157 

flow cytometry and western blotting (Fig. 1B and C). For p24 flow cytometry, an aliquot of 2x106 cells from 158 

each technical replicate were pelleted at 500xg for 5 min at 4°C then resuspended in ice-cold FACS 159 

buffer (2% FBS and 0.1% sodium azide in 1X PBS). The cells were again pelleted at 500xg for 5 min at 160 
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4°C then resuspended in Cytofix/Cytoperm reagent (BD Biosciences) and incubated on ice for 30 min 161 

Following fixation/permeabilization, cell suspensions were diluted with wash buffer and pelleted at 500xg 162 

for 5 min at 4°C. Cells were resuspended in p24 primary antibody solution (1:100 dilution of p24-FITC 163 

antibody clone KC57 (Beckman Coulter) diluted in perm/wash buffer) and incubated on ice for 30 min in 164 

darkness. Ice-cold FACS buffer was added to each sample and cells were pelleted at 500xg for 5 min at 165 

4°C. The intracellular p24 was analyzed using an Accuri C6 flow cytometer (BD Biosciences). Uninduced 166 

cells had an average p24+ population of 0.27% (S.D. = 0.20) and live cell population of 85.78% (S.D. = 167 

3.37). Induced cells had an average p24+ population of 94.85% (S.D. = 1.23) and live cell population of 168 

79.25% (S.D. = 4.35). 169 

An aliquot of 1x107 cells from each technical replicate was lysed in SDS buffer and probe 170 

sonicated on ice until no longer viscous. 3,000xg fractions were also probe sonicated. The samples were 171 

mixed with 4X loading buffer (200 mM Tris-HCl (pH 6.8), 8% SDS, 40% glycerol, 200 mM tris(2-172 

carboxyethyl)phosphine-HCl (TCEP), and 0.04% bromophenol blue in water) and proteins were then 173 

separated on 10% SDS-PAGE gels at a constant 70V. Proteins were transferred to polyvinylidene 174 

difluoride (PVDF) membranes for 1 hour using the Trans-Blot turbo (BioRad) system using standard 175 

conditions. The membranes were blocked in 5% milk in 1X PBS-T for 30 min at room temperature prior to 176 

incubation with primary antibodies diluted in 1% milk and 0.05% sodium azide in 1X PBS-T: sheep anti-177 

Nef (gift from Celsa Spina, diluted 1:3,000), mouse anti-p24 (Millipore, diluted 1:500), Chessie8 (mouse 178 

anti-gp41, NIH AIDS Research and Reference Reagent program30, diluted 1:10,000), rabbit anti-Vpu (NIH 179 

AIDS Research and Reference Reagent program ARP-969, contributed by Dr. Klaus Strebel, diluted 180 

1:1,000), and mouse anti-GAPDH (GeneTex, diluted 1:5,000). The blots were washed and probed with 181 

either horseradish peroxidase-conjugated goat anti-mouse, HRP-goat anti-rabbit, or HRP-rabbit anti-182 

sheep secondary (BioRad) diluted 1:3,000, incubating for 1 hour at room temperature on a shaker. 183 

Apparent molecular mass was estimated with PageRuler protein standard (Thermo Scientific). Blots were 184 

imaged using Western Clarity detection reagent (BioRad) before detection on a BioRad Chemi Doc 185 

imaging system with BioRad Image Lab v5.1 software. 186 

 187 

Sample digestion for mass spectrometry 188 
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Disulfide bonds were reduced with 5 mM TCEP at 30°C for 60 min and cysteines were 189 

subsequently alkylated (carbamidomethylated) with 15 mM iodoacetamide (IAA) in the dark at room 190 

temperature for 30 min Proteins were then precipitated with 9 volumes of methanol, pelleted and 191 

resuspended in 1M urea, 50 mM ammonium bicarbonate. Following precipitation, protein concentration 192 

was determined using a BCA protein assay. A total of 0.2 mg of protein was subjected to overnight 193 

digestion with 8.0 µg of mass spec grade Trypsin/Lys-C mix (Promega). Following digestion, samples 194 

were acidified with formic acid (FA) and subsequently 150 ug peptides were desalted using AssayMap 195 

C18 cartridges mounted on an Agilent AssayMap BRAVO liquid handling system, C18 cartridges were 196 

first conditioned with 100% acetonitrile (ACN), followed by 0.1% FA. The samples were then loaded onto 197 

the conditioned C18 cartridge, washed with 0.1% FA, and eluted with 60% MeCN, 0.1% FA. Finally, the 198 

organic solvent was removed in a SpeedVac concentrator prior to LC-MS/MS analysis. 199 

  200 

TMT Labeling 201 

Peptide concentration was determined using a Nanodrop, and a total of 15 µg of peptide was 202 

then used for TMT labeling, each replicate serving as a multiplex. Briefly, dried peptide sample was 203 

resuspended in 200 mM HEPES (pH 8) and incubated for 1 h at room temperature with one of the 204 

TMT10-plex reagents (ThermoFisher) solubilized in 100% anhydrous ACN. Reactions were quenched 205 

using a 5% hydroxylamine solution at 1-2 μl per 20 μl TMT reagent. The multiplexed samples were then 206 

pooled and dried in a SpeedVac. The labeled peptides were resuspended in 0.1% FA. After sonication for 207 

1min, the sample was desalted manually using SepPak; the column was first conditioned with 100% 208 

ACN, followed by 0.1% FA. Sample was loaded, then washed with 0.1% FA and eluted in a new vial with 209 

60% ACN, 0.1% FA. Finally, the organic solvent was removed using a SpeedVac concentrator prior to 210 

fractionation. 211 

 212 

High pH Reverse-Phase Fractionation 213 

Dried samples were reconstituted in 20mM ammonium formate (pH ~10) and fractionated using a 214 

Waters ACQUITY CSH C18 1.7 μm 2.1 × 150 mm column mounted on a MClass Ultra Performance 215 

Liquid Chromatography (UPLC) system (Waters corp., Milford, MA) at a flow rate of 40 μl/min with buffer 216 
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A (20 mM ammonium formate pH 10) and buffer B (100% ACN). Absorbance values at 215 nm and 280 217 

nm were measured on a Waters UV/Vis spectrophotometer, using a flowcell with a 10 mm path length. 218 

Peptides were separated by a linear gradient from 5% B to 25% B in 62.5 min followed by a linear 219 

increase to 60% B in 4.5 min and 70% in 3 min and maintained for 7 min before increasing to 5% in 1 min 220 

Twenty-four fractions were collected and pooled in a non-contiguous manner into twelve total fractions. 221 

Pooled fractions were dried to completeness in a SpeedVac concentrator. 222 

 223 

LC-MS3 Analysis 224 

Dried samples were reconstituted with 0.1% FA and analyzed by LC-MS/MS on an Orbitrap 225 

Fusion Lumos mass spectrometer (Thermo) equipped with an Easy nLC 1200 ultra-high pressure liquid 226 

chromatography system interfaced via a Nanospray Flex nanoelectrospray source (Thermo). Samples 227 

were injected on a C18 reverse phase column (25 cm x 75 um packed with Waters BEH 1.7 um particles) 228 

and separated over a 120-min linear gradient of 2-28% solvent B at a flow rate of 300nL/min The mass 229 

spectrometer was operated in positive data-dependent acquisition mode. 230 

Parameter settings were set as follows: FT MS1 resolution (120 000) with AGC target of 1e6, 231 

ITMS2 isolation window (0.4 m/z), IT MS2 max. inject time (120 ms), IT MS2 AGC (2E4), IT MS2 CID 232 

energy (35%), SPS ion count (up to 10), FT MS3 isolation window (0.4 m/z), FT MS3 max. inject time 233 

(150 ms), FT MS3 resolution (50 000) with AGC target of 1e5. A TOP10 method was used where each FT 234 

MS1 scan was used to select up to 10 precursors for interrogation by CID MS2 with readout in the ion 235 

trap. Each MS2 was used to select precursors (SPS ions) for the MS3 scan which measured reporter ion 236 

abundance. 237 

 238 

Mass spectrometry spectra identification 239 

Raw files were analyzed using Proteome Discoverer v2.3 (Thermo Fisher Scientific). MS/MS 240 

spectra were searched against a concatenated database containing Uniprot human and HIV-1 proteins 241 

(downloaded 02/03/20) and reverse decoy sequences using the Sequest algorithm31; the database 242 

contained 20,367 total entries. Mass tolerance was specified at 50 ppm for precursor ions and 0.6 Da for 243 

MS/MS fragments. Static modifications of TMT 10-plex tags on lysine and peptide n-termini (+229.162932 244 
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Da) and carbamidomethylation of cysteines (+57.02146 Da), and variable oxidation of methionine 245 

(+15.99492 Da) were specified in the search parameters. Data were filtered to a 1% false discovery rate 246 

at the peptide and protein level through Percolator32 using the target-decoy strategy33. TMT reporter ion 247 

intensities were extracted from MS3 spectra within Proteome Discoverer to perform quantitative analysis. 248 

 249 

Computational analysis 250 

 Matching biological replicates were combined (i.e. WT biological replicate 1 and 2), then analyzed 251 

using the various pipelines described. The Homo sapiens (“hsap”) marker set from pRoloc was used in all 252 

cases. For classification and hit generation, only the proteins commonly detected across matched 253 

biological replicates were analyzed to allow for consistency in comparing methods on the same data set. 254 

 The pRoloc implementation of SVM12 was performed on row-normalized data sets, while the 255 

pRoloc implementation of TAGM-MAP11 required PCA transformation and no row-normalization with the 256 

first four principal components carried forward. The PCA transformation was used because of floating 257 

point arithmetic errors that arose because of highly correlated features. Default parameters for algorithms 258 

were used excepting the following: 259 

 SVM hyperparameter classification: 10 times 10-fold cross-validation 260 

 SVM classification threshold: median algorithm score for each organelle 261 

 TAGM-MAP model training: 200 iterations 262 

 BANDLE: 6 chains 263 

TRANSPIRE was run on averaged row-normalized datasets, i.e., technical replicates were row-264 

normalized then values for each feature were averaged for each protein across matched technical 265 

replicates. Organelles were combined into 5 groups: 1) Golgi apparatus/plasma membrane/endoplasmic 266 

reticulum/peroxisomes/lysosomes, 2) cytosol/actin cytoskeleton/proteasome, 3) nucleus, 4) mitochondria, 267 

and 5) 40S/60S ribosome. The number of inducing points and the kernel function were chosen from 268 

amongst the suggested values in the TRANSPIRE documentation. For these datasets, 75 inducing points 269 

and the squared exponential kernel performed best and were used in the analysis. 270 

The average distribution of proteins across organelles was calculated by determining the average 271 

organellar distribution for a single technical replicate, then averaging the values of matched technical 272 
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replicates. Marker profiles were generated by averaging the behavior of markers for a given organelle 273 

within a technical replicate, then averaging those values across technical replicates for each organelle. 274 

Organellar QSep scores were calculated by averaging the individual QSep scores between two 275 

organelles across all matched technical replicates, then plotting the distribution of those averages. 276 

Comparisons to the Human Protein Atlas (HPA) were completed by combining several HPA 277 

subcellular localization annotations to align with the organelles used by pRoloc: 278 

1. Nuclear membrane, nucleoli fibrillar center, nucleoli rim, nucleoli, kinetochore, mitotic 279 

chromosome, nuclear bodies, nuclear speckles, and nucleoplasm: Nucleus 280 

2. Actin filaments and focal adhesion sites: Actin Cytoskeleton 281 

3. Plasma membrane and cell junctions: Plasma Membrane 282 

Remaining designations within the HPA beyond the above and those in common with pRoloc’s “hsap” 283 

markers were not considered. The 40S Ribosome, 60S Ribosome, and Proteasome classes from the 284 

SVM and TAGM-MAP classified data were collapsed into the Cytosol label. 285 

 Thresholds for Figures 6 and S8 were determined by dividing the size of the Jӓger HIV 286 

interactome26, 453 proteins, or the NIH HIV interactome27, 4,628 proteins, by the predicted human 287 

proteome size of 19,773 proteins34. G.O. analysis for Figure 6B was conducted using the STRING 288 

database35. 289 

 290 

Results: 291 

Doxycycline-inducible HIV-1NL4-3 Jurkat T cells are a scalable and uniform system for subcellular 292 

fractionation and proteomic studies. 293 

 The WT HIV-1 inducible cells used here were previously generated and used for whole-cell 294 

quantitative- and phospho-proteomics13. To avoid the formation of syncytia, which could alter the 295 

subcellular fractionation and subsequent spatial proteomic data, the inducible HIV-1NL4-3 genomes were 296 

modified with a CCR5-tropic Env protein to avoid cell-cell fusion between the CCR5-negative Jurkat cells. 297 

Due to the high induction rates of HIV-1 expression and the scalability of this culture system, we 298 

reasoned that it would be amenable to subcellular fractionation by differential centrifugation with 299 

subsequent MS analysis (Fig. 1A). To determine the optimal time-point for analysis following induction of 300 
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HIV-1 expression, cells were treated with doxycycline for 0, 4, 8, 12, 16, and 18 hours, and the 301 

expression of HIV-1 proteins was detected by western blotting and flow cytometry (Fig. 1B and C). WT 302 

cells began to express detectable Nef by 4 hours post-induction, and both WT and ΔNef cells expressed 303 

p55 Gag precursor (the precursor protein for virion structural proteins) by 8 hours and gp160 (the 304 

envelope glycoprotein precursor) by 12 hours. By 18 hours, viral proteins were robustly expressed; about 305 

90-95% of both WT and ΔNef cells were positive by flow cytometry for p24 capsid (a proteolytic product of 306 

p55). 307 

 Subcellular fractionation was performed 18 hours post-induction; the cells were mechanically 308 

ruptured with a Dounce homogenizer in hypotonic solution, then subjected to a differential centrifugation 309 

protocol before preparation for quantitative, multiplexed MS analysis. Uninduced and induced cells were 310 

handled in technical triplicate for each biological replicate (n=2). We used a modified version of the 311 

Dynamic Organellar Mapping (D.O.M.) protocol5,6 with additional fractions generated at 110,000xg and 312 

195,500xg to increase the resolution of the classification analysis; a similar method of expanded 313 

differential centrifugation fractionation was previously described by the Lilley group36. As a quality control 314 

before MS, protein yields were quantified for each fraction (Fig. 1D). The post-nuclear fractions accounted 315 

for only ~10-15% of total cellular protein, presumably because nuclear proteins and soluble cytoplasmic 316 

proteins that failed to pellet at 195,500xg were discarded, leaving primarily membranous organelles or 317 

organellar fragments and large, cytoplasmic complex proteins in the fractions analyzed. We also 318 

observed decreasing protein yields across the fractions, with an increase in the 78,400xg fraction, 319 

consistent with the original D.O.M. study using HeLa cells5. In further support of differential fractionation, 320 

varied abundances of viral proteins across the fractions in cells expressing either the WT or ΔNef 321 

genomes were observed by western blotting (Fig. 1E). Following confirmation of differential fractionation, 322 

we analyzed all fractions by LC-MS3 with TMT-10 multiplexing (Fig. 1A). 323 

 To determine the consistency of the MS analysis we used unsupervised hierarchical clustering by 324 

Spearman correlation coefficient for the individual fractions. We found that for both the WT and ΔNef data 325 

the fractions clustered by g-force rather than biological replicate (Fig. S1 and 2), suggesting consistent 326 

quantification values. Because the WT and ΔNef Jurkat cell lines represent individual clones for each, we 327 
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also compared the uninduced fractions of the WT and ΔNef data to each other. This comparison showed 328 

that fractions still clustered by g-force rather than HIV genome (Fig. S3). 329 

 330 

SVM shows greater organellar resolution than TAGM-MAP even with stringent thresholds of classification 331 

for TAGM-MAP. 332 

 To classify the fractionation data and identify translocating proteins, we employed a variety of 333 

previously published methods (Fig. 2A). As several resources detail known HIV interactors26,27, we 334 

primarily focused on comparing classification and translocation identification methods using our WT data. 335 

In subsequent analyses, we examined the ΔNef data to determine the power of various methods in 336 

identifying Nef-specific effects. 337 

For classification, proteins were classified using either the pRoloc implementation of SVM or 338 

TAGM-MAP. As the differential centrifugation protocol employed here is a modified version of the D.O.M. 339 

method which generates only 5 fractions5, we first examined whether our two additional fractions 340 

improved organellar resolution. The D.O.M. method classifies proteins with SVM, so we compared the 341 

resolution of organelles with the QSep analysis21 using the first 5 fractions for SVM classification, then the 342 

first 6 fractions, and finally all 7 fractions (Fig. 2B). We found that while the addition of the 110,000xg spin 343 

alone had no significant effect on organellar resolution as compared to the original method, the 344 

subsequent addition of the 195,500xg spin yielded a significant increase from a mean QSep score of 3.74 345 

to 4.05 (median scores 2.97 and 3.50, respectively). In light of this, all subsequent analyses on the SVM 346 

data were performed on the full 7 fractions. 347 

 To determine if an alternate method for classification would perform better than SVM, we also 348 

tested the pRoloc implementation of TAGM-MAP. The outputs from TAGM-MAP give both a localization 349 

and a probability that the given protein is located in that organelle. These probabilities allowed us to test 350 

the effect of different probability thresholds on TAGM-MAP’s QSep scores. While using a 50% threshold, 351 

i.e. converting all proteins with a probability of localization lower than 50% to an “unknown” designation, 352 

showed no significant effect, 75% and 90% thresholds both showed significant gains over no thresholding 353 

(Fig. 2C). A 90% threshold showed no significant increase in QSep scores over the 75% threshold, so 354 

subsequent analyses employed the 75% threshold for TAGM-MAP classification. Of importance, we 355 
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observed that the QSep scores from SVM classification were on average higher than those from TAGM-356 

MAP even when comparing TAGM-MAP’s highest condition (90% probability threshold, average score of 357 

3.55) to SVM’s lowest condition (5 fractions, average score of 3.74). 358 

 359 

SVM classifies proteins more consistently than TAGM-MAP. 360 

 We next wanted to understand how the SVM and TAGM-MAP methods compared for consistency 361 

of classification across WT replicates (Fig. 3A and B). Both SVM (Fig. 3A) and TAGM-MAP (Fig. 3B) 362 

showed a low percentage (~10-15%) of proteins that were classified identically in 6 out of 6 technical 363 

replicates for either WT uninduced or induced. However, allowing for a majority of replicates, i.e. 4 out of 364 

6, gave ~70-75% of proteins as classified consistently by SVM (Fig. 3A). This compared to ~50-55% of 365 

proteins classified to a similar consistency by TAGM-MAP (Fig. 3B). HIV expression modestly decreased 366 

the consistency of both SVM and TAGM-MAP (~5% difference), suggesting an increase in experimental 367 

noise from HIV expression. 368 

 Looking at the average distribution of proteins across organelles, we found that SVM yielded a 369 

higher percentage of proteins that reverted to an unknown designation (Fig. 3C, 44% of proteins); this 370 

may partly explain the higher QSep scores generally seen for SVM compared to TAGM-MAP (Fig. 2). 371 

However, this percentage is stable between WT uninduced and induced replicates, while the lower 372 

percentage of unknown proteins (32% for uninduced and 41% for induced) for TAGM-MAP is more 373 

sensitive to HIV expression. Similar trends were seen within the ΔNef data (Fig. S4); marker behavior for 374 

WT (Fig. S5) and ΔNef (Fig. S6) is also similar, which likely explains the consistent trends. These data 375 

show a greater consistency for SVM classification and additionally suggest that SVM is less susceptible 376 

to noise introduced into data by HIV expression. 377 

 378 

Agreement between SVM and TAGM-MAP classification is organelle-dependent and is variably affected 379 

by HIV expression. 380 

 To determine the concordance of SVM and TAGM-MAP for classification, we examined all 381 

proteins that were classified consistently in at least 4 of 6 WT replicates for both SVM and TAGM-MAP. 382 

We found more such proteins for the uninduced replicates (Fig. 4A), 1,863 proteins, as compared to the 383 
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induced replicates (Fig. 4B) with 1,448 proteins. This difference may be attributable to the decrease in 384 

classification consistency caused by HIV expression for both SVM and TAGM-MAP, which would be 385 

accentuated by any increased susceptibility of TAGM-MAP to HIV-dependent noise. Of these consistently 386 

classified proteins, HIV expression minimally affected classifier agreement; 65% agreed between SVM 387 

and TAGM-MAP for WT uninduced and 69% agreed between SVM and TAGM-MAP for induced 388 

replicates (see diagonal of heatmaps). However, HIV expression increased the proportion of proteins that 389 

were consistently designated unknown by both SVM and TAGM-MAP: in uninduced cells, 40% of proteins 390 

agreed upon by the two methods were designated unknown (Fig. 4A), while 71% of agreed upon proteins 391 

were designated unknown from induced cells (Fig. 4B). This shift seems primarily driven by the increase 392 

in unknown designations for TAGM-MAP following HIV expression: in uninduced replicates, 52% of 393 

proteins designated unknown by SVM agreed with TAGM-MAP, but in induced replicates, 81% of these 394 

proteins agreed with TAGM-MAP. Matching trends were seen in ΔNef data (Fig. S7). Taken together, 395 

these data suggest that while HIV expression has little effect on the proportion of consistently classified 396 

proteins that are agreed upon by the two classifiers, the proportion of these proteins that are designated 397 

unknown is increased, and the overall number of consistently classified proteins is decreased. 398 

 We found that proteins from the cytosol, ER, and mitochondria were the most frequent among 399 

consistently classified proteins. These three organelles also showed the best agreement between SVM 400 

and TAGM-MAP for uninduced replicates (Fig. 4A and S4A). However, HIV expression decreased the 401 

proportion of cytosolic proteins and ER proteins in agreement between SVM and TAGM-MAP: 73% of all 402 

proteins classified as cytosolic and 85% of all proteins classified as ER agreed for WT uninduced 403 

replicates, but only 31% of cytosolic proteins and 67% of ER proteins agreed for induced replicates. This 404 

decrease was smaller for mitochondrial proteins: 62% for uninduced and 58% for induced. Similar trends 405 

for cytosolic and mitochondrial proteins were seen in ΔNef data, but ER proteins showed little change 406 

(Fig. S7). These data show an organelle-dependent trend in classifier agreement that is variably affected 407 

by HIV expression. 408 

 409 

TAGM-MAP classification yields higher agreement than SVM classification with reported ER and 410 

mitochondria proteomes, but lower agreement in other organelles. 411 
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 To gauge the quality of our classifications, we compared those proteins that were consistently 412 

classified, i.e. 4 out of 6 replicates, for WT uninduced to several published spatial proteomes: 413 

MitoCarta2.0 database22, a study of the mitochondrial matrix proteome23, and a review of lysosome 414 

proteomic studies24 (Fig. 5A). Examining those proteins from each study that were detected in our 415 

datasets, we found that TAGM-MAP consistently out-performed SVM for mitochondria but performed less 416 

well for lysosomes. We also compared only those proteins that received an organellar classification, i.e. 417 

we excluded consensus unknown designations, to see if a focus on only proteins that remained classified 418 

would change the performance of SVM (orange bars) or TAGM-MAP (dark orange bars). SVM was more 419 

responsive to the exclusion of unknown proteins compared to TAGM-MAP, which is likely due to the lower 420 

proportion of unknown proteins in the TAGM-MAP uninduced condition. 421 

 We did a similar analysis for additional organelles by comparing to the Human Protein Atlas 422 

(HPA)25. To obtain a baseline to our analysis, we focused on those proteins considered by the HPA to be 423 

localized to a single organelle with high confidence (enhanced rating). Of those proteins, we then plotted 424 

the percentage that were similarly classified by SVM or TAGM-MAP (Fig. 5B). Again, we found that 425 

TAGM-MAP outperformed SVM for mitochondrial proteins, and we saw a similar trend for ER proteins, 426 

albeit to a lesser degree. Conversely, SVM outperformed TAGM-MAP in the Golgi apparatus, nucleus, 427 

peroxisomes, and plasma membrane, although only two proteins were considered for the peroxisome. 428 

Similar to our observations above, the exclusion of unknown proteins yielded a larger increase in 429 

percentage agreement for SVM (orange vs blue bars) than TAGM-MAP (dark orange vs green bars); this 430 

exclusion also increased the performance in the cytosol for SVM over TAGM-MAP. These data 431 

correspond well to those of Figure 4A where 114 proteins designated as unknown by SVM were classified 432 

as mitochondrial by TAGM-MAP. Similar trends were found within ΔNef data (Fig. S8). Taken together, 433 

this suggests that at least in this cell system and using these fractionation methods, TAGM-MAP is better 434 

suited for spatial proteomic studies focused on the mitochondria and the ER, while SVM is better suited 435 

for studies of the Golgi, nucleus, and plasma membrane. This finding was surprising as we observed 436 

higher average QSep scores for the mitochondria and ER in WT replicates using SVM as compared to 437 

TAGM-MAP (Fig. S9), with less of a difference in ΔNef replicates (Fig. S10), which suggests an imperfect 438 

correlation between QSep scores and general accuracy for certain organelles. 439 
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 440 

SVM-based BANDLE of WT replicates yielded the best agreement of HIV-dependent translocations with 441 

known HIV interactomes; partial overlap with ΔNef translocation hits. 442 

 Following our analysis of classifiers, we examined various pipelines for identifying protein 443 

translocations. We inputted our SVM and TAGM-MAP classified data into BANDLE10 and a basic label-444 

based analysis7, and inputted unclassified data into TRANSPIRE9 (Fig. 2A). For TRANSPIRE, we 445 

combined the organelles into 5 groups: 1) Golgi apparatus/plasma membrane/endoplasmic 446 

reticulum/peroxisomes/lysosomes, 2) cytosol/actin cytoskeleton/proteasome, 3) nucleus, 4) mitochondria, 447 

and 5) 40S/60S ribosome. This is in line with the authors’ recommendation to combine similarly behaving 448 

organelles to increase translocation confidence9, although in our case we lose the ability to identify 449 

proteins moving between the membranous organelles most likely to be affected by Nef, i.e. secretory 450 

organelles. To compare the performance of these five methods, we cross-referenced their hits against an 451 

HIV interactome derived from affinity purification-mass spectrometry (AP-MS)26 as well as the NIH HIV 452 

interactome27. The AP-MS study is more stringent since it includes only those proteins that directly 453 

complex with HIV proteins, while the NIH HIV interactome includes proteins that are affected by HIV even 454 

in the absence of evidence for a direct interaction. We found that the percentage of hits from each 455 

method that were in the interactomes was consistently above the threshold expected by chance (Fig. 6A, 456 

dashed line). Comparing the methods, the top 50 hits from the BANDLE analysis of SVM-classified data 457 

performed best for both interactomes with 20% and 84% of hits in the Jӓger et al study (direct 458 

interactome by AP-MS) and NIH HIV interactome (functional as well as direct interactors), respectively. Of 459 

note, ~1,500 proteins were considered to be translocation hits by the BANDLE analysis of SVM, i.e. 460 

greater than 95% probability of translocation. The validity of this value is difficult to gauge, but it is much 461 

higher than the ~50 proteins from the BANDLE analysis of TAGM-MAP-classified data with a similar 462 

probability of translocation. We conducted a similar hit analysis on our ΔNef inducible line and found that 463 

SVM-based BANDLE was still the highest performer for the NIH HIV interactome but was only 3rd best for 464 

the AP-MS interactome (Fig. S11). 465 

The top 250 hits from SVM-based BANDLE for WT and ΔNef were compared to see if the method 466 

could identify Nef-dependent translocations (Fig. 6B); hits that were detected by MS in only WT or ΔNef 467 
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replicates were removed to avoid detection bias. Of those hits found only for WT, we observed several 468 

known Nef targets and cofactors: ZAP70 (ref.37), Lck18,38, STAT1 (ref.39), and coatomer complex I (COPI 469 

complex)40,41. Five separate proteins in the COPI complex appear together as well as three proteins from 470 

the T cell signaling pathway, suggesting high coverage of perturbed complexes. For commonly shared 471 

hits, proteins involved in cytoskeletal organization were enriched. Disruption of the cytoskeleton following 472 

infection with HIV has been attributed to Nef among other viral proteins, but the enriched proteins here 473 

lacked known targets of Nef but instead included ROCK1, an interactor of HIV Tat, and filamin-A, an 474 

interactor of HIV Gag42. We were surprised to see two components of the AP2 complex, known 475 

interactors of Nef43, and HLA class B, a known target of Nef44,45, in the ΔNef only translocations. The SVM 476 

classification for these select proteins and STRING diagrams of the full protein sets are shown in the 477 

Supplemental Figures (Fig. S12-15). Notably, the SVM classifications rarely provided definitive organellar 478 

translocations for the hits identified by BANDLE (Fig. S12). In some cases, this was due to the majority of 479 

replicates becoming unclassified in the induced condition. An interesting exception is Filamin-A: although 480 

a translocation hit in both WT and ΔNef cells by BANDLE (Fig. 6B), by SVM classification Filamin-A 481 

moves from the actin cytoskeleton to the cytosol in cells expressing WT but not ΔNef (Fig. S12K). While 482 

the basis for such analytic discrepancies is unclear, taken together these data suggest potential value in 483 

identifying novel HIV cofactors, targets, and interactors via BANDLE analysis of spatial proteomics data. 484 

 485 

Discussion: 486 

 We have detailed here a comparison of computational methods within the field of spatial 487 

proteomics as an example and guide for researchers hoping to use these methods to better understand 488 

viral infection and replication. Extensive work in the field, particularly by the Lilley2,11,21,36,46, Cristea7–9, and 489 

Borner groups4–6,47 along with their collaborators, offers a variety of established choices for fractionation, 490 

classification, and translocation identification methods. To build off of the work of the Cristea group with 491 

HCMV, we chose to examine HIV-1 as a model virus due to the existing wealth of knowledge on HIV-492 

dependent protein interactions and translocations. We found in our T cell line model and using differential 493 

centrifugation for cell fractionation that the choice of computational method for classification is organelle-494 

dependent: TAGM-MAP offered an advantage for mitochondrial and ER proteins, while SVM performed 495 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2021. ; https://doi.org/10.1101/2021.03.17.435902doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435902
http://creativecommons.org/licenses/by-nc-nd/4.0/


T Cell Spatial Proteomics and Impact of HIV 

20 
 

better for the Golgi apparatus, nucleus, and plasma membrane. For identifying translocations, BANDLE 496 

gave the highest agreement with known HIV biology (i.e. published interactome data), particularly when 497 

coupled with SVM-classified data. 498 

 The model of inducible HIV in Jurkat T cells used here has advantages and disadvantages. One 499 

advantage is that the system provides a highly homogenous population of HIV-expressing cells suitable 500 

for mass spectrometric analysis13. A homogenous population is particularly important in spatial proteomic 501 

studies as mixed populations of cells might yield erroneous classifications of proteins due to mixtures of 502 

different states46. Another advantage is scalability. These experiments required just over 3x108 cells for 503 

each technical replicate, or over 1x109 cells for a single biological replicate, to be induced. In our initial 504 

attempts with fewer cells, centrifugation at higher RCF (110,000xg and 195,500xg) yielded insufficient 505 

protein mass for quality control and mass spectrometry (data not shown). This highlights an advantage of 506 

using this T cell line compared to using primary CD4+ T-cells48, which in principle would be more relevant 507 

but would require at least 2x109 cells and extraordinary viral inocula to achieve a high-multiplicity, 508 

synchronized infection. A disadvantage of using this T cell system is that the cytoplasmic volume of the 509 

cell is relatively small. We required an order of magnitude more cells for each technical replicate here 510 

than was used in the D.O.M. studies of Itzhak et al., who used HeLa cells with larger cytoplasm. 511 

 In addition to these technical considerations for modeling viral infection/expression, the choice of 512 

fractionation method has practical and computational implications. The use of differential centrifugation 513 

here and by Itzhak et al. requires the downstream analysis of fewer fractions than gradient fractionation 514 

methods and is far less time-, resource-, and labor-intensive2. On the other hand, gradient fractionation 515 

methods seem to show increased resolution of protein classification21. In an attempt to increase the 516 

organellar resolution of the D.O.M method we used additional high-speed centrifugation steps to those 517 

described in the D.O.M. method of Itzhak et al. and found a significant increase in overall organellar 518 

resolution using seven fractions as compared to the original five (Fig. 2). Previous work by the Lilley 519 

group comparing differential centrifugation and gradient-based methods for fractionation revealed 520 

comparable downstream results for the two methods using U-2 OS cells with differential centrifugation 521 

having a slight advantage in resolving the cytosol and proteasome36, but whether this trend would hold in 522 

different cell types after viral infection or gene-expression is unclear. Generalizable rules for spatial 523 
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proteomics might require comparisons of various fractionation and computational methods in multiple 524 

systems, or perhaps more likely, the specific experimental system and questions asked might be best 525 

addressed by a specific method. For example, to investigate translocations caused by HIV-1 Nef, better 526 

separation of membranous organelles (see Fig. S5 and S6) might have yielded more Nef-specific 527 

translocations. 528 

 Our findings on classification consistency and accuracy might influence the choice of classifier, at 529 

least for this model system. We found that SVM yielded higher consistency in classification than TAGM-530 

MAP, although both suffered similar losses in consistency following HIV expression. In cases where 531 

infection or viral expression is expected to introduce greater noise in the data, as seems to be the case 532 

here, SVM may be the better option as it yielded a higher starting point for consistency. If lower tolerance 533 

to noise is acceptable, TAGM-MAP offers an advantageous alternative for both the mitochondria and ER. 534 

TAGM-MAP also suffered less loss of protein classification to unknown designations for uninduced 535 

replicates, perhaps due in part to the threshold used here for retaining SVM classification. While we used 536 

a basic median SVM algorithm score threshold for each organelle2 to allow for raw comparisons of 537 

classifiers to existing spatial proteomes, this might have been overly stringent for certain organelles, 538 

which would explain the higher number of unknown designated proteins for SVM. An alternative method 539 

would be to introduce an organelle-dependent threshold that would cap false positives by comparing 540 

classifier outputs to gene ontology analysis and published spatial proteomes; this method was employed 541 

previously by the Lilley group1,36. We further note the fact that while SVM showed generally higher QSep 542 

scores for the mitochondria and ER it still underperformed compared to TAGM-MAP for these organelles. 543 

This suggested to us that organellar resolution as measured by QSep might be an imperfect measure of 544 

classification accuracy for a given organelle, a hypothesis that will need further examination. 545 

 Lastly, the choice of translocation identification method requires consideration of several factors, 546 

the first of which is the experimental design. Part of BANDLE’s power comes from its ability to factor 547 

multiple replicates of a condition into hit determination. Indeed, we saw a generally higher predictive 548 

power for BANDLE compared to other methods. The ranked list of output is also useful in cases where 549 

resources are limited and only a few hits can be pursued. TRANSPIRE seemed to have poorer 550 

performance compared to other methods, but this might reflect our need to combine similarly fractionated 551 
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organelle groups to reduce computational demand and increase resolution. In cases where individual 552 

organellar resolution is greater, TRANSPIRE might yield higher quality hits. Notably, both BANDLE and 553 

TRANSPIRE require intensive computational resources, with TRANSPIRE requiring supercomputer 554 

access for larger, more complex datasets. In cases where computational power is limited, label-based 555 

methods would be suitable. Indeed, this method was employed by the Cristea group for their HCMV study 556 

with success7. 557 

 A challenge not addressed here is how to handle changes in whole-organellar behavior within 558 

spatial proteomics, such as might be induced by viruses. Indeed, we observed such a change within our 559 

data: peroxisomal marker proteins shifted in their fractionation behavior (peak abundance occurring at a 560 

higher g-force) when WT HIV was induced, becoming very similar in their behavior to marker proteins of 561 

the ER (Fig. S5). This effect was not observed for ΔNef (Fig. S6). A previous discussion of this issue by 562 

the Lilley group10 highlighted the various possible causes of whole-organellar changes—e.g. differences 563 

in organelle protein content, lipid composition, morphology, etc.—as potentially problematic for the 564 

movement-reproducibility method of translocation identification5, but how these types of biochemical 565 

changes would affect translocation detection methods or classifiers is not obvious. In our preliminary 566 

analyses of the average distance between organellar clusters based on pairwise distances, we found that 567 

peroxisomes alone shifted in relation to other organelles following the induction of WT HIV (but not ΔNef). 568 

However, analyses using QSep, which additionally considers the average intracluster distance (i.e., the 569 

dispersal of the cluster that defines the organelle), gave a less clear picture, with the potential for multiple 570 

relative movements among organelles (data not shown). These observations suggest that computational 571 

methodology will affect conclusions about organellar behavior as a whole. While the uniform shift of all 572 

markers for a given organelle should have only a minor impact on classification, how likely such a shift is 573 

in the context of viral gene expression probably depends on the specific virus and the type of cytopathic 574 

effect it induces. Indeed, the greater sensitivity of TAGM-MAP to HIV expression for classifier consistency 575 

could be a manifestation of subtle changes in organelle behavior. Careful examination of marker proteins 576 

used as well as the integration of pre-existing knowledge on the cytopathic effects of the virus under 577 

study are doubtlessly important for interpretation of whole-organellar changes. 578 
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 With these considerations in mind, our findings underscore that studies of spatial proteomics 579 

require careful consideration of the question at hand to inform the choice of methodology. Our work and 580 

that of others highlights the potential differences in organellar resolution that can result from the choice of 581 

fractionation and analytical methods. Interest in a particular organelle and in specific types of 582 

translocations will factor into the choice of methods. Our findings offer a reference point for studies of viral 583 

infection by spatial proteomics, for general studies of the spatial proteome, and for the study of additional 584 

gene dropout mutants of HIV-1.  585 

 586 

Data availability: 587 

Mass spectrometry data (.RAW files and peptide identification tables) can be found on the 588 

ProteomeXchange database using project accession number PXD024716. 589 
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Figure 1: Inducible HIV-1 Jurkat cell lines yield a near pure population of HIV-expressing cells suitable for 726 

fractionation by differential centrifugation. A) Equal numbers of doxycycline-inducible wild-type and ΔNef 727 

HIV Jurkat cells were induced or left uninduced for 18 hours then fractionated by Dounce homogenization 728 

in a hypotonic lysis buffer. Cell homogenates were put through a differential centrifugation protocol, 729 

discarding the nuclear pellet (1,000xg) and lysing remaining pellets in 2.5% SDS buffer. Fractions were 730 

labeled for TMT-10 multiplexing and further offline HPLC fractionation. All multiplexes were run for 3 731 

hours on LC-MS3. B) Western blot showing induction of HIV p55, gp160, gp41, Nef, and Vpu with a 732 

GAPDH loading control. Cells were induced for 0, 4, 8, 12, 16, and 18 hours, lysed, then a portion of 733 

these cell lysates was run on 10% SDS-PAGE gels. C) Flow cytometry analysis of remaining sample from 734 

1B. HIV-1 expression peaked at ~95% of cells p24+ by 18 hours. D) Average percentage of total cellular 735 

protein detected in each fraction by BCA protein assay. Bars represent the mean value for a given 736 

fraction based on the average from each biological replicate. Error bars are one standard deviation. All 737 

BCA assays were performed in technical triplicate on 10-fold dilutions for each biological replicate. E) 738 

Western blots for cell fractions of inducible wild-type HIV Jurkat cells (left) and ΔNef HIV Jurkat cells 739 

(right), 18 hours post-induction. Blots shown are representative of both biological replicates. 740 

 741 

Figure 2: Analysis of fractionation data reveals increased organellar resolution from added fractions and 742 

thresholding TAGM-MAP data. A) Diagram of the computational methods used here. For SVM 743 

classification, the raw data of individual technical replicates were row normalized. For TAGM-MAP 744 

classification, the raw data of individual technical replicates were PCA transformed, with the first four 745 

principal components (PC1-4) carried forward for analysis. Both SVM and TAGM-MAP classified data 746 

were fed into BANDLE or label-based movement analysis. Lastly, for analysis with TRANSPIRE, 747 

individual technical replicates were row normalized then averaged together. B) Boxplot of QSep scores 748 

for SVM analysis of WT uninduced samples using the original 5 fractions described by Itzhak et al.5, 749 

adding a 110,000xg fraction (6 fractions), or adding both a 110,000xg and a 195,500xg fraction (7 750 

fractions). C) Boxplot of QSep scores for TAGM-MAP analysis of WT uninduced samples comparing 751 

using no threshold for remaining classified, a 50% chance of classification, a 75% chance of 752 

classification, or a 90% chance of classification. Statistical significance is calculated using a two-sided, 753 
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independent Student’s t-test with Welch’s correction for unequal variance. Boxplots show median, not 754 

mean, line. 755 

 756 

Figure 3: Classification with SVM shows greater consistency than TAGM-MAP classification. A) Proteins 757 

were classified by SVM and the most frequent organellar classification was identified along with its 758 

frequency, i.e. number of technical replicates classified as such. Left pie chart shows consistency of 759 

classification for WT uninduced replicates and right pie chart shows WT induced replicates. B) Same as 760 

A), but classification by TAGM-MAP. C) Average distribution of proteins across organelles for each 761 

indicated condition. All charts consider the same common proteins found across all WT replicates (4,765 762 

proteins). 763 

 764 

Figure 4: Concordance of SVM and TAGM-MAP classifications depends on organelle and expression of 765 

HIV. A) Heat map of common proteins that were consistently classified (proteins classified consistently in 766 

at least 4 of 6 replicates) by both SVM and TAGM-MAP for uninduced condition. Annotations indicate 767 

number of proteins in a given scenario. B) Same as A) for induced condition. 768 

 769 

Figure 5: Validation of protein classification reveals higher performance for ER and mitochondria using 770 

TAGM-MAP, but better performance for Golgi apparatus, nucleus, and plasma membrane using SVM. A) 771 

Percentage of detected proteins from MitoCarta2.0 database22, Rhee et al. mitochondrial matrix study23, 772 

or Lubke lysosome proteome24 that were consistently classified (proteins classified consistently in at least 773 

4 of 6 replicates) in line with the respective reference. Numbers above bars indicate the total number of 774 

proteins from that reference that were detected and classified for a given method. B) Proteins classified 775 

by SVM or TAGM-MAP were cross-referenced against the Human Protein Atlas and any protein 776 

considered to be singularly localized with an Enhanced rating was kept. The percentage of these proteins 777 

that were consistently classified by SVM or TAGM-MAP into the HPA-designated organelle is shown. 778 

Numbers above bars indicate the number of HPA proteins considered for each organelle. For conditions 779 

with Unknown proteins excluded, those proteins that were consistently classified as Unknown were 780 

removed from the analysis. 781 
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 782 

Figure 6: Detection of protein translocations by BANDLE analysis of SVM-classified data shows the 783 

highest rate of identifying known HIV interactors. A) The percentage of hits from each method that are in 784 

the Jӓger HIV interactome26 (left bars) or the NIH HIV interactome27 (right bars) is shown. Dashed lines 785 

indicate the percentage of hits that would be expected by chance based on the proportion of the human 786 

proteome represented in each interactome. B) Venn diagram of top 250 hits from SVM-based BANDLE 787 

for WT and ΔNef replicates. Three of the hits from the ΔNef analysis were not detected by MS in WT 788 

replicates and were thus removed from consideration. 789 
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