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Abstract  26 

To address the challenge of predicting tomato yields in the field, we used whole-plant 27 

functional phenotyping to evaluate water relations under well-irrigated and drought 28 

conditions. The genotypes tested are known to exhibit variability in their yields in wet and 29 

dry fields. The examined lines included two lines with recessive mutations that affect 30 

carotenoid biosynthesis, zeta z2083 and tangerine t3406, both isogenic to the processing 31 

tomato variety M82. The two mutant lines were reciprocally grafted onto M82, and multiple 32 

physiological characteristics were measured continuously, before, during and after drought 33 

treatment in the greenhouse. A comparative analysis of greenhouse and field yields showed 34 

that the whole-canopy stomatal conductance (gsc) in the morning and cumulative 35 

transpiration (CT) were strongly correlated with field measurements of total yield (TY: r2 36 

= 0.9 and 0.77, respectively) and plant vegetative weight (PW: r2 = 0.6 and 0.94, 37 

respectively). Furthermore, the minimum CT during drought and the rate of recovery when 38 

irrigation was resumed were both found to predict resilience. 39 

Keywords: drought tolerance, functional phenotyping, physiological trait, time-series 40 

measurements, tomato, yield prediction. 41 
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1. Introduction 50 

Water stress is the main factor limiting crop yields worldwide [1–3]. Despite intense research 51 

over the last decades, drought tolerance is still a major threat to plant growth and crop 52 

productivity [4]. The water balance-regulation mechanisms in plants are critical for stress 53 

responses, productivity, and resilience, as reviewed in [6]. This balance is controlled by 54 

combining two regulation mechanisms: leaf hydraulic conductance [7,8] and the 55 

transpiration [9,10]. Continuous measurement of the first one is still a challenge, but high-56 

throughput functional physiological phenotyping (FPP) analysis can be used for the second 57 

one[6], which should be considered when selecting traits for crop improvement and 58 

predicting crop performance under certain environmental conditions. Accurate yield 59 

prediction is important for national food security and global food production [11] and it also 60 

aids policymaking. From the research and development perspective, yield prediction tools 61 

would enable breeders to reduce the time and cost required to select the best parent lines and 62 

test new hybrids under different environmental conditions[12,13]. Finally, reliable yield 63 

prediction would benefit the growers who are the end-users of newly developed, improved 64 

varieties, aiding their crop management and helping them to make wise economic decisions 65 

[14]. However, early growth-stage prediction of crop yields is a challenging task, in general, 66 

and is even more challenging under water stress. Several yield-prediction models have been 67 

developed, some of which consider yield as a function of genotype (G) and environment (E) 68 

and treat the interaction between the two (G×E) as a noise [15,16]. Some other models 69 

address G×E interactions using multiplicative models [17], factor analytic (FA) models and 70 

linear mixed models to cluster environments and genotypes and detect their interactions [18–71 

20]. A recently developed yield-prediction model, which is based on a deep neural network 72 

fed with weather and soil-condition data for 2,247 sites and yield data for 2,267 maize 73 

hybrids) was found to accurately predict yields[13]. The developers of that system concluded 74 
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that environmental factors had a stronger effect on the crop yield than genotype did. Thus, 75 

early-season yield prediction may require a large amount of data from the soil-plant-76 

atmosphere continuum (SPAC). Plant physiological traits that are most relevant to 77 

productivity and are very responsive to environmental conditions are expected to serve as 78 

important yield predictors [6].  79 

Recent advances in crop physiology show that under drought conditions, quantitative 80 

physiological traits such as stomatal conductance [21], osmotic adjustment, accumulation 81 

and remobilization of stem reserves and photosynthetic efficiency are strongly correlated 82 

with yield [22–24]. Nevertheless, most of the available models do not include key plant 83 

physiological traits, such as gsc and photosynthesis, which contribute to crop productivity 84 

[25,26]. These traits are among the primary and most sensitive responses of the plant to the 85 

changing environment [27] and this dynamic behavior helps to optimize the plant’s response 86 

to changing environmental conditions and probably also helps to maximize yield.  For 87 

example, the early morning peak in stomatal conductance is proposed as a ‘golden hour’ with 88 

the assumption of high CO2 absorption while transpiration is low due to the relatively low 89 

VPD [6]. 90 

Therefore, we hypothesized that having a set of high-resolution and continuous data 91 

for many key-physiological traits, measured under different environmental conditions at an 92 

early growth stage, could improve our ability to predict the yields of particular genotypes 93 

under field conditions.  To profile physiological traits that reliably contribute to the yield-94 

prediction model, we used two carotenoid biosynthesis mutants, which affect abscisic acid 95 

in roots and revealed yield reduction compared with the isogenic control genotype M82 (see 96 

Materials and Methods).  97 

2. Materials and Methods  98 

2.1  Plant material and the grafting procedure  99 

Tomato cv. M82 seeds [28], the recessive mutant zeta z2083 (ZET) described in[29]  and the 100 

tangerine t3406 (TAN) mutant described in [30,31] were used. Mutants selected as they 101 

displayed stable yield reductions when compared to the M82. Moreover, the xanthophylls 102 
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violaxanthin and neoxanthin are the precursors for the synthesis of xanthoxin, which is 103 

converted to ABA. ABA synthesis in roots has been shown to affect plant growth in various 104 

ways. Consequently, the ABA synthesis in roots is compromised.  Therefore, as a way of 105 

increasing yield variation and evaluation for the relative contribution of root ABA to the 106 

phenotypes we measure, we made seven grafting combinations, four hetero grafting in which 107 

M82 was reciprocally grafted with ZET and TAN, and three self‐grafts for each genotype. 108 

These mutant lines have mutations that affect two of the four enzymes reported to convert 109 

phytoene into phytoene desaturase (PDS), ζ-carotene desaturase (ZDS), zeta isomerase 110 

(ZISO) and carotene isomerase (CRTISO; [32,33].  111 

2.2 Open-field experiments  112 

The results presented here are from work that was done in two consecutive growing seasons, 113 

2018 and 2019, at the Western Galilee Experimental Station in Akko, Israel. In those trials, 114 

we used a low planting density of one plant per m2. In 2018, the experiment involved 115 

individual plants in a completely randomized design in blocks, with a minimum of 15 116 

replicates per block. In 2019, the experiment was conducted in plots of 10 plants per 5 m2, 117 

arranged in a randomized block design. The seedlings were grown at a commercial nursery 118 

(Hishtil, Ashkelon, Israel) for 35 days and then transplanted into the field at the beginning of 119 

April; wet and dry trials were conducted. Both wet and dry fields started the growing season 120 

at field capacity, which represents the maximum amount of water that the soil could hold. In 121 

the wet treatment, 320 m3 of water was applied per 1000 m2 of field throughout the growing 122 

season, according to the irrigation protocols commonly used in the area. In the limited-123 

irrigation (drought) treatment, we stopped irrigation 3 weeks after planting, so only 30 m3 of 124 

water was applied per 1000 m2 of field. There was no rain during the experimental period, 125 

so the drought scenario was managed entirely via irrigation. 126 

2.3 Measurements of yield and yield components 127 
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The experiments were harvested when nearly 100% ripened. Plant vegetative weight (PW, g 128 

m-2) was determined by weighing only the vegetative tissue (after harvesting the fruits) 129 

without the roots. Total fruit yield (TY, g m-2) per plant or plot included both the red and a 130 

few green fruits. Mean of 20 red fruits (FW) was estimated from a random sample of 20 fruits 131 

per plant or plot. The concentration of total soluble solids (Brix %) was measured using a 132 

digital refractometer and a random sample of 10 fruits per plant or 20 fruits per plot. The 133 

sugar output per plant or plot was calculated as the product of Brix and TY. 134 

2.4 Pigment extraction and analysis 135 

Fresh samples of root and flower tissues (50 to 100 mg) were harvested and immediately 136 

frozen in liquid nitrogen. Carotenoids were extracted and quantified according to protocols 137 

described by [34].  138 

2.5 Greenhouse experiment using the physiological-phenotyping platform 139 

A greenhouse experiment was conducted in parallel with a field experiment from mid-April 140 

to mid-May in 2018. The grafted and well-established seedlings were transplanted into 4-L 141 

pots filled with potting soil (Bental 11, Tuff Marom Golan, Israel).  Plants were grown under 142 

semi-controlled greenhouse conditions with naturally fluctuating light (see Fig. 1A). Whole-143 

plant, continuous physiological measurements were taken using a high-throughput, 144 

telemetric, gravimetric-based phenotyping system (Plantarry 3.0 system; Plant-DiTech, 145 

Israel) in the greenhouse of the I-CORE Center for Functional Phenotyping 146 

(http://departments.agri.huji.ac.il/plantscience/icore.phpon), as described in [35].  147 

The set-up included 72 highly sensitive, temperature-compensated load cells, which 148 

were used as weighing lysimeters. Each unit was connected to its own controller, which 149 

collected data and controlled the irrigation to each plant separately. A pot containing a single 150 

plant was placed on each load cell. (For more details, see the “Experimental set-up” section.) 151 
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The data were analyzed using SPAC-analytics (Plant-Ditech), a web-based software program 152 

that allowed us to view and analyze the real-time data collected from the Plantarray system. 153 

2.6 Experimental set-up 154 

The experimental set-up was generally similar to that described by [35], with some 155 

modifications. Briefly, before the start of the experiment, all load-cell units were calibrated 156 

for accuracy and drift level under constant load weights (1 kg and 5 kg). Each pot was placed 157 

into a Plantarray plastic drainage container on a lysimeter. The containers fit the pot size, to 158 

enable the accurate return to pot capacity after irrigation and to prevent evaporation. The 159 

container had orifices on its side walls that were located at different heights, to allow for 160 

different water levels after the drainage of excess water following irrigation. Evaporation 161 

from the soil surface was prevented by a cover with a circle cut out at its center through 162 

which the plant grew. 163 

Each pot was irrigated with a multi-outlet dripper assembly that was pushed into the 164 

soil to ensure that the medium in the pot was uniformly wetted at the end of the free-drainage 165 

period following each irrigation event. Irrigation events were programmed to take place 166 

during the night in three consecutive pulses (see inset in Fig.1B). The amount of water left 167 

in the drainage containers underneath the pots at the end of the irrigation events was intended 168 

to provide water to the well-irrigated plants beyond the water volume at pot capacity. The 169 

associated monotonic weight loss over the course of the daytime hours was essential for the 170 

calculation of the different physiological traits using the data-analysis algorithms (see inset 171 

in Fig. 1B).  172 

Drought treatment: As each individual plant has a unique transpiration rate based on its 173 

genetic characteristics and location in the greenhouse, stopping the irrigation of all plants at 174 

once would lead to non-homogeneous drought conditions. To enable a standard drought 175 

treatment (i.e., similar drying rate for all pots), drought scenarios were automatically 176 
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controlled via the system’s feedback-irrigation controller, in which each plant was subjected 177 

to a constant reduction in soil water content based on its daily water loss 178 

2.7 Measurement of quantitative physiological traits 179 

The following water-relations kinetics and quantitative physiological traits of the plants were 180 

determined simultaneously, following protocols and equations [1] implemented in the SPAC-181 

analytics software for daily transpiration, transpiration rate, normalized transpiration (E) and 182 

WUE. Cumulative transpiration (CT) was calculated as the sum of daily transpiration for all 183 

29 days of the experiment for each plant. The other physiological traits used in this 184 

experiment are described in [36]. The estimated plant weight at the beginning of the 185 

experiment was calculated as the difference between the total system weight and the sum of 186 

the tare weight of the pot + the drainage container, the weight of the soil at pot capacity and 187 

the weight of the water in the drainage container at the end of the free drainage. The plant 188 

weight at the end of a growth period (calculated plant weight) was calculated as the sum of 189 

the initial plant weight and the product of the multiplication of the cumulative transpiration 190 

during the period by the WUE. The latter, determined as the ratio between the daily weight 191 

gain and the transpiration during that day, was calculated automatically each day by the 192 

SPAC-analytics software. The plant's recovery from drought was described by the rate at 193 

which the plant gained weight following the resumption of irrigation (recovery stage).  194 

2.8 Data presentation and statistical analysis  195 

We used the JMP® ver. 14 statistical packages (SAS Institute, Cary, NC, USA) for our 196 

statistical analyses.  Levene’s test was used to examine the homogeneity of variance among 197 

the treatments. Differences between the genotypes were examined using Tukey HSD. Each 198 

analysis involved a set significance level of P < 0.05. 199 
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 Pairwise Pearson correlations between traits under greenhouse conditions and the yield and 200 

yield components measured in the open field (i.e., plant vegetative weight, red yield, green 201 

yield, Brix yield and total yield) were calculated using the genotype's mean performance. 202 

3. Results   203 

3.1 Field-based plant weight and total yield   204 

The yield components plant vegetative weight (PW), total yield (TY), and green yield (GY) 205 

were tested under well-irrigated and dry conditions in the 2018 and 2019 growing seasons. 206 

Comparing two key traits TY and PW we found similar performances of the genotypes across 207 

years in 2018 and 2019. 208 

Plant vegetative weight (PW):  In the well-irrigated field, the M82 self-grafted plants 209 

(M82_scion/M82_rootstock) had a significantly higher PW than the TAN/TAN and 210 

ZET/ZET plants. Under the dry condition, no significant difference was observed between 211 

the M82 and TAN self-grafted plants, whereas the plant vegetative weights of the ZET/ZET 212 

plants were significantly lower (Fig. 2A, B) under both well-irrigated and dry conditions. 213 

Total Yield (TY):  Under well-irrigated conditions, the TY of the different self-grafted M82 214 

was significantly different from both mutants across both years. The total yield of M82/M82 215 

was significantly higher than the yields of the other self-grafted plants, TAN/TAN was a 216 

medium yielder and ZET/ZET had the lowest yield of all the self-grafted plants across both 217 

years. Under the drought condition, the total yield of M82/M82 remained higher than those 218 

of the other two genotypes, which were not different from each other (Fig. 2C and D, 219 

respectively).  However, the TY under the drought condition was less than half of that 220 

observed under the well-irrigated condition. To increase the phenotypic variation in yield, 221 

we used a reciprocal-grafting approach, in which seven combinations of the three tomato 222 

cultivars resulted in different gradients of yield performance under wet and dry conditions 223 
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(Fig. 2C and D, respectively). TY increased more than 2-fold when TAN and ZET scions 224 

were grafted onto M82 rootstock, especially under dry conditions. 225 

3.2 Early-stage physiological traits measured in the greenhouse.  226 

To identify physiological traits of young tomato plants that might serve as good predictors 227 

of yield in the field, we profiled multiple physiological traits using continuous data collected 228 

on a minute time-scale, such as whole-canopy stomatal conductance (gsc); continuous data 229 

collected on a daily time-scale, such as transpiration throughout the experimental period as a 230 

cumulative transpiration (CT); and single-point measurements such as growth rate and plant 231 

net weight (see Table 1).  232 

The continuous measurement data show that the traits varied with the environment. 233 

For example, as shown in Figure 3, the whole-canopy conductance measured every 3 min for 234 

the whole day fluctuated over the course of the day in response to the environment. To better 235 

understand this trait, we divided the day into three periods: morning, midday, and late 236 

afternoon time period. We found that stomatal conductance was relatively high at morning 237 

time (Fig. 3, marked in green), declined between midday and late afternoon to some point, 238 

and then increased again during the late afternoon. We also performed a correlation analysis 239 

using the average value of morning (7:00am -10:00am), (midday, 10:00am-13:00pm) and 240 

late afternoon (13:00pm-17:00pm) measurement and correlated it with field-based yield and 241 

biomass data. 242 

3.3 Correlation of greenhouse physiological traits with yield and yield components in 243 

the field  244 

Data from the functional-phenotyping system were composed of continuous soil-plant-245 

atmosphere measurements, with each data point representing the trait at a certain time point. 246 

In contrast, field data are normally composed of a single-point measurement that represents 247 
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the plant's absolute performance throughout the season (e.g., total fruit yield or plant 248 

vegetative weight). When we compared time-series, cumulative and single-point 249 

physiological traits (measured traits) of young tomato plants with their field-based yield-250 

related traits (TY, PW, RF, GF and Brix,), we found only a few traits that were highly 251 

correlated with each other (Table 1), out of about 95 bivariate combinations (see Fig. 4, 252 

Supplementary Figs. S3 and S4). Here, we present a few physiological traits for which the 253 

greenhouse data was strongly correlated with the field data and for which we observed low 254 

p-values (e.g., the highly correlated traits in Table 1). 255 

Time-series data are highly dynamic because of the plant’s continuous response to 256 

environmental changes (e.g., stomatal conductance, Fig.3; transpiration rate). Therefore, 257 

some data points were strongly correlated with yield (e.g., gsc in the morning, Table 1) while 258 

others were weakly correlated with yield (e.g., gsc at midday; Table 1). Looking at cumulative 259 

physiological data or single-point traits, both presented as a single value (e.g., CT, growth 260 

rate, plant net weight), eliminated the need to select a specific time point and revealed highly 261 

significant and positive correlations between CT and yield and most of the yield components 262 

under well-irrigated conditions (Fig. 4A‒D). Similarly, the CT of drought-treated plants after 263 

recovery in the greenhouse was positively correlated with yield and with most yield 264 

components, but poorly correlated with green yield (Fig. 4C).  A similar positive correlation 265 

between CT and yield in the field was observed in 2019 (Supplementary Figs. S5 and S6).   266 

3.4 Cumulative transpiration as an indicator of resilience and yield performance 267 

The rate of plants’ recovery from drought stress (i.e., drought resilience) is an important trait. 268 

To evaluate this resilience, we measured the CT for the first week after recovery from 269 

drought. We then compared that CT data with CT data from two other periods during the 270 

experiment: the pre-drought period and the drought period (Fig. 5A). While the CT over the 271 

pre-drought treatment showed a similar positive correlation with that of the entire well-272 
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irrigated experiment (Fig. 5B), we found a strong negative correlation between total yield 273 

and CT and under drought conditions (Fig. 5C). We also observed a strong positive 274 

correlation between CT and TY during the recovery period (Fig. 5D), even though the actual 275 

total yield of the drought-treated plants was half that of the plants grown under the well-276 

irrigated condition. 277 

4. Discussion  278 

Physiological traits (e.g., photosynthesis or stomatal conductance) are key contributors to 279 

plant productivity and yield [37,38]. However, existing methods of measuring these traits are 280 

mostly manual and thus are limited to a single point on a single leaf at a time [39]. As these 281 

physiological traits are very sensitive to ambient conditions, especially light and vapor 282 

pressure deficit (VPD); [6], conventional manual measurements fail to capture the temporal 283 

and spatial dynamic interactions between the genotype and the environment. This could be 284 

misleading for yield prediction, as plants respond differently to dynamic growing conditions 285 

[6]. Hence, the integration of manual physiological measurements into breeding programs is 286 

limited, most likely due to their low-throughput nature and the large degree of variation 287 

within and between temporal and spatial measurements. 288 

In this study, we used continuous measurements of physiological traits to assess 289 

whether those traits could serve as early predictors of plant responses to environmental 290 

conditions. We used a high-throughput, physiological phenotyping platform, with a high 291 

resolution of 3-min intervals, to capture plant responses to the environment. In our 292 

experiments, we captured a detailed profile of each plant's performance. Yet, another 293 

challenge was to leverage the daily dynamic responses of plants from these detailed profiles 294 

in order to understand their importance in the actual field condition (e.g., choosing the 295 

measurement points to be used). A good example of this challenge is demonstrated in Fig. 3, 296 

which shows how continuous gsc measurements were correlated with yield performance at 297 
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different hours of the day (Table 1). Using data from different time periods of the day, we 298 

show that the morning gsc peak is strongly correlated with TY and PW in the field. In 299 

agreement with our results, a recent study reported high stomatal conductance and 300 

photosynthesis in rice in the early morning [40]. The early morning peak has been reported 301 

on several plants [9,41] was referred to as a "golden hour" [6], due to relatively low VPD and 302 

good light for photosynthesis at this time. In fact, these conditions are allowing the plant to 303 

maintain high productivity with low water loss, thereby achieving optimal WUE. As such, 304 

we suggest that as soon as the plant reaches this point and as high as its gsc is at this point, it 305 

will be more beneficial to the plant in general and in particular under stress. However, a clear 306 

understanding of the optimal stomatal conductance kinetics throughout the day and during 307 

the entire growing season as it reacts to dynamically changing environmental conditions is 308 

still a challenge. Several models have been proposed to understand the kinetics of stomatal 309 

conductance at leaf level [42–44] and  quite a few at the whole plant level [45]. Although 310 

these models are good tools in predicting the kinetics of stomatal response to environment, 311 

still it is not easy to leverage the predicted or directly measured small dynamic responses on 312 

hourly, daily, and seasonal bases and translate it to final yield.  Moreover, the fact that our 313 

midday gsc data was less strongly correlated with field performance is in agreement with the 314 

common practice of measuring gsc between 10:00 and 14:00 [46,47]. The weak correlation 315 

between midday gsc and yield could be related to the dynamic patterns of daily whole-plant 316 

water-use efficiency suggested by  [6]. Nevertheless, the identification of the best time to 317 

measure each trait and/or weather condition understanding the cumulative effect hourly, daily 318 

seasonal changes in stomatal conductance on plant performance and dynamic water use 319 

might require the use of new data-analysis tools, potentially a data-hungry machine 320 

learning algorithms[48], to create a more comprehensive understanding of our large amount 321 

of data. However, the application of machine learning in plant science is still in its infancy 322 
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[48].  Moreover, a better understanding of the genetic mechanism governing the morning 323 

peak could contribute to the improvement of crop productivity through breeding, in addition 324 

to yield prediction, as plants use water very efficiently at that time of day. It is also important 325 

to examine many genotypes. For example, the tomato introgression line (IL) population [28] 326 

with multiple years of field data, to verify whether these morning peaks are present in all 327 

genotypes, since the current study used only isogenic lines. This would improve our 328 

understanding of the genetic mechanism for this important trait.  329 

The relationship between transpiration and net carbon assimilation or dry weight has 330 

been well studied [49,50]. The reason for this correlation is most likely due to the fact that 331 

CO2 enters via the same open stomata through which the plant transpires. Indeed, we found 332 

a positive correlation between CT and yield. Yet, this correlation was weaker than the 333 

correlation between morning gsc and TY (r2 = 0.9 versus r2 = 0.77 and p = 0.004 versus p 334 

=0.04, respectively), suggesting that the correlation between CT and CO2 absorption might 335 

be affected by other environmental factors, such as VPD, radiation and humidity, which are 336 

all known to affect stomatal conductance [51]. On the other hand, CT is a stable, single-point 337 

measurement that is relatively simple to measure, yet it integrates the overall responses of 338 

plants to the environment throughout the experimental period. Nevertheless, these 339 

correlations should be examined in other plant species, as different vegetative stages, 340 

reproductive systems, growth, and development patterns may involve different yield-related 341 

predictive traits.  342 

Another goal of this study was to evaluate stress-related traits that could predict yield. 343 

Under water-deficient conditions, the plant undergoes several changes ranging from 344 

molecular and cellular changes to changes at the whole-plant level. This reprogramming of 345 

metabolic pathways and physiological response patterns enables the plant to better cope with 346 

drought stress [52,53]. Many of the physiological responses to stress [e.g., reduced stomatal 347 
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conductance, damage to the photosynthetic parts, reduced chlorophyll content; [54]] have 348 

dramatic effects on plant productivity. Under stressful conditions, plants enter a protective 349 

or survival mode [53] at the expense of their productive mode [55]. Here, we found that CT 350 

was strongly and positively correlated with TY under well-irrigated conditions, but 351 

negatively correlated with yield under stressful conditions (Fig. 5C). This reversal reflects 352 

the productive-survival transition mode of the plant [55]. Namely, a plant that can maximize 353 

its transpiration under well-irrigated conditions and swiftly minimize it under stressful 354 

conditions is more likely to produce more yield by the end of the season if it recovers quickly 355 

after the stress ends. This is clearly shown in Figure 5B: M82/M82 and TAN/M82 had higher 356 

levels of transpiration pre-stress, but swiftly reduced their transpiration during the stress 357 

period (Fig. 5C) and went back to their high levels of transpiration after recovery (Fig. 5D), 358 

which might have led them to have higher yields than the other lines. Thus, this transition 359 

mode is important for distinguishing plants' stress-response (protective) mode from their 360 

normal growth response (productive mode). An additional important phase of the plant-stress 361 

response is the plant’s post-stress performance, often called resilience. 362 

Resilience to water limitations, specifically the plant's ability to resume growth and 363 

gain yield after water resumption following drought stress, was acknowledged by [56]. 364 

Resilience is considered to be a key trait for crop improvement for water stress [57]. Although 365 

it has not received much attention for some time [58], this trait has been prioritized in some 366 

breeding programs [59]. In this study, we found that the CT of all the treatment periods 367 

together (pre-treatment, drought and the recovery period) and the CT of only the recovery 368 

period each had a strong, positive relationship with TY (Figs. 4B, 5D), suggesting the 369 

importance of this trait for stress-response profiling. 370 

Though the lines TAN and ZET were selected for this study due to their well-371 

characterized yield data, we would like to discuss the contribution of the specific carotenoid 372 
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mutations to stress response. Carotenoid biosynthesis in roots serve mainly the supply for the 373 

abscisic acid (ABA) and strigolactones precursors, β-carotene and violaxanthin, respectively. 374 

The mutation tangerine (TAN) in the gene Crtiso and Zeta (ZET) in the gene Ziso impair 375 

carotene isomerase and ζ-carotene isomerase, respectively. Mutations in these enzymes block 376 

carotenoid biosynthesis in their respective states and eliminate downstream xanthophylls in 377 

roots (Fig. S2). The accumulation of carotenoid intermediates in roots of TAN and ZET 378 

indicates that carotenoid biosynthesis does take place in roots. The low concentration of 379 

carotenoids in wild-type roots can be explained, in part, by the synthesis of ABA and 380 

strigolactones in the tomato roots, as reviewed in [40]. ABA deficient in roots in mutants 381 

TAN and ZET is expected to affect the ability of these plants to cope with drought and other 382 

stresses. Our results show that ZET and TAN are prone to slow recovery rates (Fig. 5A, D), 383 

in terms of cumulative and daily transpiration, which probably contributes to their low yields. 384 

Their lower CT levels may be related to their root systems, since both ZET and TAN grafted 385 

as scions on M82 performed a lot better than ZET and TAN when M82 was used as the scion. 386 

In these mutants, carotenoid synthesis is blocked, so intermediate products accumulate. This 387 

blockage is very effective in the roots due to their lack of exposure to light, whereas exposure 388 

to light in the leaves partially compensates for the lack of carotenoid isomerase CRTISO and 389 

ZISO [60,61]. However, this cannot explain the lower yields of ZET and TAN under the 390 

well-irrigated condition. The relatively low yield of TAN plants under the well-irrigated 391 

condition might be linked to the lower concentrations of carotenoids, such as violaxanthin 392 

and neoxanthin, in their flowers, as compared to M82 (Supplemental Fig. S2). Violaxanthin 393 

and neoxanthin are the precursors for ABA synthesis [62], which suggests that ABA might 394 

have been involved in reducing the yields of these mutants. However, this hypothesis needs 395 

to be tested in future research.  396 

5. Conclusions  397 
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In conclusion, continuous measurements of dynamic traits such as gsc provide a 398 

dataset that is rich, yet also very challenging to analyze. In our current study, we confirmed 399 

that early morning gsc is an important physiological trait that can predict yield performance. 400 

Understanding the genetic mechanism underlying early-morning gsc could be a potential 401 

avenue for breeding programs aimed at developing lines that will perform well under water-402 

deficit conditions. Furthermore, future data-science tools are likely to improve our 403 

understanding of the mechanisms involved and allow us to use these dynamic traits in yield-404 

prediction models. On the other hand, the relatively simple trait of CT of young tomato was 405 

proven to be a good predictor of plant biomass and yield performance. The inclusion of CT 406 

in yield models is expected to improve the accuracy and consistency of those models, which 407 

should facilitate the selection of complex traits for water-stress conditions. 408 

It is important to note that various crops may present different response profiles, as 409 

well as different levels of susceptibility to a particular type of stress, depending on their 410 

biochemical, physiological and phenological stage.  411 

In addition to yield prediction and crop improvement (i.e., at pre-breeding stages), 412 

high-resolution, continuous physiological data could further be exploited to help bridge the 413 

genotype-phenotype gap, by combining the functional-genomics approach with a high-414 

resolution time axis on a QTL map. This combined approach may help to identify time-415 

dependent QTLs for dynamic physiological traits such as gsc and help us to understand the 416 

genetic mechanisms that underlie those dynamic traits if tested for other crops, since our 417 

current work focused only on tomato plants. 418 

  419 
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Table and Figure Legends 420 

Table 1. Correlations between the physiological traits of young tomato plants in the 421 

greenhouse and their field-based yield and biomass under well-irrigated conditions; means 422 

of each genotype were used for the correlation. The greenhouse measurements were 423 

categorized as continuous (i.e., whole-canopy stomatal conductance, gsc,), cumulative or 424 

single-point measurements. gsc at the three-time periods (morning, midday, and late 425 

afternoon) is obtained by averaging the 3 minutes measurement during each time. All 426 

measurements were taken 1 week before the stress treatment started. r2 and p-values indicate 427 

the range of weak to strong correlations.  428 

Fig. 1. Atmospheric conditions and experimental progress are represented as the fluctuations 429 

in pot weight over the course of the experiment in the greenhouse. (A) Daily vapor pressure 430 

deficit (VPD) and photosynthetically active radiation (PAR) during the 29 consecutive days 431 

of the experiment. (B) Continuous weight measurements of all the plants during the 29 days 432 

of the experiment. Each line represents one plant/pot. The decreasing slope of the lines during 433 

the day indicates that the system lost weight as the plants transpired. The three sharp peaks 434 

during the nighttime show system weight gain during irrigation events.  435 

Fig. 2. Plant weight and total yield among three reciprocal-grafted tomatoes grown in the 436 

field. Boxplot showing the differences in (A) fresh weights of self-grafted and reciprocal-437 

graft plants under the well-irrigated condition and (B) fresh weights of self-grafted and 438 

reciprocal-graft plants under the limited-irrigation condition. (C) Total fruit yield self and 439 

reciprocal-graft plants under the well-irrigated condition and (D) Total fruit yield of self and 440 

reciprocal-graft plants under the limited-irrigation condition. Data from 2018 are indicated 441 

in grey (with small letters) and data from the 2019 experiments are indicated in red (with 442 

capital letters). Different letters indicate significantly different means, according to Tukey’s 443 

Honest Significant Difference test (p < 0.05). Box edges represent the upper and lower 444 
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quantile with the median value shown as a bold line and mean as a small square in the middle 445 

of the box. Whiskers represent 1.5 times the quantile of the data. 446 

Fig. 3. The Daily pattern of whole-canopy stomatal conductance (gsc(gwater-1gplant-1min) 447 

presented as an example of continuous whole-plant physiological measurement. Well-448 

irrigated M82 tomato plants were used. The line is an average of three days. Data are shown 449 

as means (± SE, n=10). 450 

Fig. 4. Correlations between yield components and cumulative transpiration of different 451 

tomato genotypes. (A) Plant vegetative weight in the field, (B) total fruit yield, (C) green 452 

yield and (D) red yield. Measurements taken at harvest time were correlated with the CT 453 

throughout the 29 days of the greenhouse experiment. Symbols are the means ± SE of traits 454 

for each genotype under the limited-irrigation condition (circles) and the well-irrigated 455 

condition (square box). Vertical SE (n = 12‒15), Horizontal SE (n  = 8‒10) .  456 

Fig. 5. The differential contribution of transpiration periods to yield prediction. (A) Mean ± 457 

SE. Daily was transpiration continuously measured during the whole experimental period for 458 

all genotypes. We examined the relative contributions of the three phases for yield prediction: 459 

well-irrigated (green box), drought treatment (orange), and recovery from drought (light 460 

green). CT was measured and correlated with TY for each period: (B) pre-treatment, (C) 461 

drought period and (D) recovery period. Vertical SE (n = 12‒15) field-based data; horizontal 462 

SE (n = 8‒10) greenhouse-based data.  463 

Supplementary Fig. S1. Fruit color and leaf characteristics of M82 and the two mutant lines. 464 

(A, a) Fruit and leaves of M82. (B, b) Zeta mutant’s fruit and yellowish leaves characteristic. 465 

(C, c) The tangerine mutant’s fruit and leaf characteristics.  466 

Supplementary Fig. S2.  467 
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Carotenoid concentrations in the (A) flowers and (B) roots of wild-type (M82), TAN and 468 

ZET plants and their reciprocal combinations (µg. g-1 FW). Roots of wild-type tomato 469 

contained negligible amounts of carotenoids.   470 

Supplementary Fig. S3. Scatter-plot matrices for traits under the well-irrigated condition in 471 

2018. The figure depicts the matrices of scatter plots and Pearson’s correlation coefficients 472 

among the field-measured yield data and yield components correlated with the greenhouse-473 

based traits of 7 different young tomato plants under the well-irrigated condition. The 474 

windows show Pearson’s correlation coefficients (r) and bivariate scatter plot matrices with 475 

a density ellipse 476 

Supplementary Fig. S4. Scatter-plot matrices for traits under the water-deficit condition in 477 

2018. The figure depicts the relationships between field-measured yield and yield 478 

components, and the greenhouse-based traits of 7 different young tomato plants that were 479 

exposed to drought. The windows show Pearson’s correlation coefficients (r) and bivariate 480 

scatter-plot matrices with a density ellipse 481 

Supplementary Figure 5: Scatter plot matrix for traits under well irrigated conditions in 482 

2019. The relationships between fields measured yield and its components and greenhouse-483 

based traits of 7 different young tomato plants under irrigated condition. The windows are 484 

Pearson’s correlation coefficients (r) and bivariate scatter plots matrix with density ellipse.  485 

Supplementary Fig. S6. Scatter-plot matrices of correlations among studied physiological 486 

yield traits under the water-deficient conditions in 2019. The figure depicts the relationships 487 

between field-measured yield and yield components, and the greenhouse-based traits of 7 488 

different young tomato plants under drought conditions. The windows show Pearson’s 489 

correlation coefficients (r) and bivariate scatter-plot matrices with a density ellipse. 490 

 491 

 492 
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Fig. 1. Atmospheric conditions and experimental progress are represented as the fluctuations in pot weight over the course of the experiment in the greenhouse. (A) Daily vapor pressure

deficit (VPD) and photosynthetically active radiation (PAR) during the 29 consecutive days of the experiment. (B) Continuous weight measurements of all the plants during the 29 days of the

experiment. Each line represents one plant/pot. The decreasing slope of the lines during the day indicates that the system lost weight as the plants transpired. The three sharp peaks during the

nighttime show system weight gain during irrigation events.
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Fig. 2. Plant weight and total yield among three reciprocal-grafted tomatoes grown in the field. Boxplot showing the differences in (A) fresh weights of self-grafted and reciprocal-graft plants

under the well-irrigated condition and (B) fresh weights of self-grafted and reciprocal-graft plants under the limited-irrigation condition. (C) Total fruit yield self and reciprocal-graft plants

under the well-irrigated condition and (D) Total fruit yield of self and reciprocal-graft plants under the limited-irrigation condition. Data from 2018 are indicated in grey (with small letters) and

data from the 2019 experiments are indicated in red (with capital letters). Different letters indicate significantly different means, according to Tukey’s Honest Significant Difference test (p <

0.05). Box edges represent the upper and lower quantile with the median value shown as a bold line and mean as a small square in the middle of the box. Whiskers represent 1.5 times the

quantile of the data.
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Fig. 3. The Daily pattern of whole-canopy stomatal conductance (gsc(gwater-1gplant-1min) presented as an example of continuous whole-plant

physiological measurement. Well-irrigated M82 tomato plants were used. The line is an average of three days. Data are shown as means (± SE,

n=10).
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Field-Based Measurements

Total Yield Plant fresh weight

R2 range

p-Value 

ranges R2 range p-Value range
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-B
as

ed
 

M
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re

m
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ts

C
on

ti
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ou
s

gsc(7:00-10:00)
0.55 to 0.90 0.19 to 0.004 0.2 to 0.60 0.62 to 0.14

gsc (10:00-13:00)
0.45 to 0.72 0.304 to 0.067 0.44 to 0.89 0.32 to 0.006

gsc (13:00-16:00)
0.34 to 0.71 0.447 to 0.073 0.74 to 0.93 0.054 to 0.002

S
in

gl
e 

po
in

t Cumulative
transpiration 0.77 0.04 0.94 0.001

Growth rate 0.62 0.12 0.89 0.0065

Plant net weight 0.70 0.076 0.79 0.038

Table 1. Correlations between the physiological traits of young tomato plants in the greenhouse and their field-based yield and biomass under well-irrigated conditions;

means of each genotype were used for the correlation. The greenhouse measurements were categorized as continuous (i.e., whole-canopy stomatal conductance, gsc,),

cumulative or single-point measurements. gsc at the three-time periods (morning, midday, and late afternoon) is obtained by averaging the 3 minutes measurement during

each time. All measurements were taken 1 week before the stress treatment started. r2 and p-values indicate the range of weak to strong correlations.
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Fig. 4. Correlations between yield components and cumulative transpiration of different tomato genotypes. (A) Plant vegetative weight in the field, (B) total fruit yield, (C)

green yield and (D) red yield. Measurements taken at harvest time were correlated with the CT throughout the 29 days of the greenhouse experiment. Symbols are the means

± SE of traits for each genotype under the limited-irrigation condition (circles) and the well-irrigated condition (square box). Vertical SE (n = 12‒15), Horizontal SE (n =

8‒10) .
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TY for each period: (B) pre-treatment, (C) drought period and (D) recovery period. Vertical SE (n = 12‒15) field-based data; horizontal SE (n = 8‒10) greenhouse-based data.
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b d

Supplementary Fig. S1. Fruit color and leaf characteristics of M82 and the two mutant lines. (A, a) Fruit and leaves of M82.

(B, b) Zeta mutant’s fruit and yellowish leaves characteristic. (C, c) The tangerine mutant’s fruit and leaf characteristics.
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Supplementary Fig. S2.

Carotenoid concentrations in the (A) flowers and (B) roots of wild-type (M82), TAN and ZET plants and their reciprocal combinations (µg. g-1 FW).

Roots of wild-type tomato contained negligible amounts of carotenoids.
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Supplementary Fig. S3. Scatter-plot matrices for traits under the well-irrigated

condition in 2018. The figure depicts the matrices of scatter plots and Pearson’s

correlation coefficients among the field-measured yield data and yield components

correlated with the greenhouse-based traits of 7 different young tomato plants under

the well-irrigated condition. The windows show Pearson’s correlation coefficients (r)

and bivariate scatter plot matrices with a density ellipse. The short names are defined

as below.
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Supplementary Fig. S4. Scatter-plot matrices for traits under the water-deficit

condition in 2018. The figure depicts the relationships between field-measured

yield and yield components, and the greenhouse-based traits of 7 different young

tomato plants that were exposed to drought. The windows show Pearson’s

correlation coefficients (r) and bivariate scatter-plot matrices with a density

ellipse. The short names are defined as below.
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Supplementary Figure 5: Scatter plot matrix for traits under well irrigated conditions in 2019. The relationships between fields measured

yield and its components and greenhouse-based traits of 7 different young tomato plants under irrigated condition. The windows are Pearson’s

correlation coefficients (r) and bivariate scatter plots matrix with density ellipse. The short names are defined as below.
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Supplementary Fig. S6. Scatter-plot matrices of correlations among studied physiological yield traits under the

water-deficient conditions in 2019. The figure depicts the relationships between field-measured yield and yield

components, and the greenhouse-based traits of 7 different young tomato plants under drought condition. The

windows show Pearson’s correlation coefficients (r) and bivariate scatter-plot matrices with a density ellipse. The

short names are defined as below.
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