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Humans and now computers can derive subjective valuations from sensory

events although such transformation process is largely a black box. In this

study, we elucidate unknown neural mechanisms by comparing representa-

tions of humans and convolutional neural networks (CNNs). We optimized

CNNs to predict aesthetic valuations of paintings and examined the relation-

ship between the CNN representations and brain activity by using multivoxel

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.18.435929doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435929


pattern analysis. The activity in the primary visual cortex was similar to com-

putations in shallow CNN layers, while that in the higher association cortex

was similar to computations in deeper layers, being consistent with the princi-

pal gradient that connects unimodal to transmodal brain regions. As a result,

representations of the hidden layers of CNNs can be understood and visual-

ized by the correspondence with brain activity. These relations can provide

parallels between artificial intelligence and neuroscience.

Introduction

Valuation is an important mental process for decision-making. Subjective valuation is sup-

ported by sensory stimuli such as somatosensory, auditive, and especially visual input and is

performed consciously or subconsciously. A recent study (1) has revealed that visual/gustatory

stimuli can be simultaneously converted into categorical and value-related information. Value-

related information has been mainly related to activity on the orbitofrontal cortex and found

to be independent of sensory modalities. Several anatomical studies have suggested an occip-

itotemporal–orbitofrontal pathway connecting the inferior temporal cortex, as the end of the

ventral visual pathway, with the orbitofrontal cortex (2–4). However, the neural mechanism to

transform visual stimuli into value-related information is not fully understood.

The categorical transformation of visual information (i.e., vision-to-category transforma-

tion) has been extensively investigated due to the emergence of artificial neural networks (ANNs),

which provide unique architectures consisting of nodes stacked into consecutive blocks to re-

semble the computations that occur in individual neurons and regions of the human brain. An-

other resemblance of an ANN to the human brain is the use of nonlinear activation with func-

tions such as a rectified linear threshold or a sigmoid function as well as operations of pool-

ing, normalization, convolution, among others to perform computations (5). Theoretically, an
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ANN can provide a mechanism for projecting any suitable input to a desired output if provided

with sufficient data and appropriate instructions (6). A feedforward ANN inherently models

a sequential computation. Thus, brain–ANN correspondence maps may describe intermediate

representations and information flow in the brain.

Goal-driven approaches have been devised to first optimize the ANN parameters to solve

behavioral tasks (5, 7), and then the ANN has been used as a simplified brain model for further

investigation. For instance, Yamins et al. (8) developed a hierarchical modular optimization

model based on the convolutional neural network (CNN), a predominant ANN for image clas-

sification in computer vision. Their model was highly predictive of neural responses in the

visual V4 and inferior temporal (IT) cortex, two of the top layers in the ventral visual hierarchy.

Güçlü et al. (9) proposed a CNN that accurately captured the hierarchical organization of voxel

responses in functional Magnetic Response Imaging (fMRI) across the visual ventral stream.

From visual V1 to lateral occipital cortex (LO), the voxels were best predicted by an increasing

level of feature complexity (from low-level features, such as edge, contrast, to high-level fea-

tures, object regions and patterns). Overall, the vision-to-category transformation is likely to

occur hierarchically along the ventral visual pathway, as observed in CNN models.

Functional processing hierarchies have been found in various cognitive systems of the brain

(10–12). By decomposing functional connectivity, Margulies et al. (13) revealed a global gra-

dient that connects the primary sensorimotor regions and the transmodal regions in the default

mode network (DMN). The global gradient is called the principal gradient (PG) because it

accounts for the highest variability in human resting-state functional connectivity. A meta-

analysis using the NeuroSynth database (14) further suggested the relationship between the

PG score and cognitive functions. A low PG score is associated with sensory perception and

motion (unimodal regions) whereas a higher score is associated with the high-order abstract

and memory-related processes, such as emotion and social recognition (transmodal regions).
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Therefore, the transformation of visual information into subjective valuations (i.e., vision-to-

value transformation) may be a hierarchical process along the PG.

In this study, we developed a group of CNNs that are capable of predicting the subjective val-

uations of art pieces (oil paintings) by various participants (one CNN per individual). We aimed

to use the intrinsic hierarchy of the CNN (i.e., the output of each layer is the input of the next

one) to unveil a hierarchical structure during vision-to-value transformation in the human brain.

We then constructed maps between the brain activity and the CNN computations by perform-

ing the representational similarity analysis between fMRI signals and the output of the CNN

hidden layers. Based on these maps, we assigned a PG score to every voxel contained within a

region that corresponds to each CNN layer. Then we investigated the correlation between the

arrangement of the CNN layers and the PG. Finally, we obtained visual representations of the

hidden layer computations and their correspondence with brain activity.

Results

CNN optimization per participant

To optimize the CNN to reflect the aesthetic preferences of each participant, we applied transfer

learning as illustrated in Fig. 1A. First, a baseline CNN was built using the VGG-16 archi-

tecture, a contest-winning CNN, with batch normalization (see section Materials and Methods

in the Supplementary Materials for details). As the original VGG-16 structure is pre-trained

on the ImageNet dataset for object classification, the baseline CNN was modified by transfer

learning to perform regression on an art auction dataset (38,059 art items with hammer prices)

that was retrieved from the LiveAuctioneers (https://www.liveauctioneers.com/). The baseline

CNN achieved a median Spearman correlation coefficient of 0.41 and 0.34 on the validation (n

= 3054) and test (n = 7517) sets, respectively.

Then, for each of the 37 participants, we obtained the corresponding individually optimized
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Figure 1: Optimization of the CNN to reflect the aesthetic preferences of each participant.
(A) Overview of the CNN development and analysis. Black arrows indicate a behavioral data
during fMRI to obtain ground truth values (y). Blue arrows indicate the computation of the CNN
model on each input to obtain predicted values (y’). Orange arrows indicate backpropagation
for updating the parameters of the CNN model. The green arrow indicates representational
similarity analysis (RSA). (B) Four stages of transfer learning in sequential order. At each
stage, a portion of the model (bar) was trained. (C) Change in correlation between ground
truth and predicted values as a function of training epochs of a typical, on training (blue) and
validation (red) datasets. (D) Plot of the rank of ground truth values as a function of the rank
of predicted values of a typical IO-CNN, on the validation dataset. (E) Improvement of all
IO-CNN Spearman correlations on the test dataset, before and after individual optimization.
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CNN (IO-CNN), which was derived from the baseline CNN but subject to additional transfer

learning over the valuation data of each participant. The valuation data were obtained during an

fMRI experiment in which the participants were asked to quote their prices for the art pieces.

The additional training based on transfer learning was conducted over four stages (Fig. 1B).

During the first three stages, the layers were gradually unfrozen, starting from the last three

fully connected layers followed by all the fully connected layers and finally all the layers (see

section Materials and Methods in the Supplementary Materials for details). Figure 1C shows

the learning curve of a typical IO-CNN (110 epochs in total) and Fig. 1D shows the correlation

between the predicted and ground truth values (Spearman correlation coefficient r = 0.53 on

the test set). The IO-CNNs suitably predicted the participants’ individual aesthetic preferences,

with a median correlation coefficient of 0.35 on the test set. From 37 networks, 33 had a cor-

relation coefficient higher than 0.15 (p < .05) (Fig. 1E). Obviously, the baseline CNN without

individual optimization showed a poor predictive power (median Spearman correlation coeffi-

cient of 0.0016) across all subjects on the test set, justifying the individual CNN optimization

to predict aesthetic preferences.

Mapping representational correspondences between IO-CNNs and brain
regions

To examine the representational correspondence between each layer of the IO-CNN and brain

regions, we conducted a representational similarity analysis (15). Two kinds of correlation

matrices were constructed, one for neural activity at every searchlight (33 voxels) and one for

every layer of the IO-CNN (Fig. 1A). The correlation matrix of neural activity across the art

images at a given searchlight was transformed into a vector. Then, the vector was subjected to

a multivariate linear regression considering the vectors from the correlation matrices of the IO-

CNN layer across images as independent variables. The regression coefficients were computed
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for each layer and then subjected to one sample t-tests across participants. We found that early

visual areas (e.g., V1 and V2) are associated with shallow IO-CNN layers (Fig. 2), whereas

higher areas in the visual cortex (e.g., the parahippocampal and fusiform gyri) are associated

with deeper IO-CNN layers (Fig. 2A). These findings are consistent with previous studies that

employed CNNs for object recognition (9, 16, 17). Furthermore, the valuation information (i.e.

in layer FC 18) obtained in this study is related to activity in multiple brain regions such as the

ventromedial prefrontal cortex and lateral orbitofrontal cortex, also being consistent with the

previous studies (1, 18). These value representations are not limited to “hedonic hotspots” such

as the orbitofrontal cortex and insula (19), but they also covered broad regions of the DMN (20).

Importantly, we found that broad regions in the prefrontal and parietal cortices are associated

with the intermediate representations between visual and valuation information, rather than with

valuation exclusively. To visualize these layer-to-region relationships, we numbered the layers

consecutively from 1 (Conv 1) to 18 (FC 18), assigned a colormap to the number sequence and

highlighted the voxel with the highest association to the layer activation, obtaining the results

shown in Fig. 2B.

The correspondence maps show that the activity corresponding to deeper CNN layers grad-

ually shifted from visual areas to the DMN. This pattern resembles the PG of cortical connectiv-

ity (13), which is the primary axis of an intrinsic coordinate system characterizing the cortical

architecture and bound by primary sensorimotor areas and transmodal areas. To analyze the rep-

resentational IO-CNN gradients according to the PG, we assigned color-coded PG scores to all

voxels contained within a region corresponding to each IO-CNN layer. A high score indicates

that the voxel distribution over the cortex is closer to the transmodal PG pole (i.e., the DMN),

and a low score indicates a distribution close to the sensory pole (Fig. 2C). The PG scores for all

voxels were obtained from Margulies et al. (13)(https://www.neuroconnlab.org/data/index.html).

Figure 2B-D show the sequential arrangement of the IO-CNN layers is highly correlated with
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Figure 2: Brain–CNN correspondence maps. (A) Correspondence maps between the neural
network’s layer activation and the brain’s voxel activation. The background image was over-
laid by Gordon’s parcellation (21) for better visualizations. (Conv, convolution layer; FC, fully
connected layer). Red: DMN, blue: Visual network, pink: Auditory network, dark purple:
Cingulooperc network, green: Dorsal Attention network, yellow: Frontoparietal network, cyan:
Somatomotor network, ochre: Somatomotor lateral network, dark green: Ventral Attention net-
work. (B) Summary map of brain-CNN correspondence (upper: lateral view, lower: medial
view). Voxels where representations are associated with the lower layers of the neural network
are indicated in black to red, while voxels where representations are associated with higher
layers are indicated in yellow. (C) The principal gradient of cortical connectivity arranges the
cortex into a continuous spectrum from the primary sensory regions to the DMN. (D) The linear
relationship between the averaged principal gradient scores (PG scores) and corresponding lay-
ers. The violin plots represents the distributions of PG score. The boxes span the first to third
quartiles. The black dot inside the boxes represents the median. The gray line connects all the
means of the boxes.
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the PG score (r = 0.25; p < 0.001) (Fig. 2D). The significant positive correlation between

the PG score and the CNN sequential layers indicates that the pathway for the vision-to-value

transformation revealed by the IO-CNNs is aligned with the PG. Therefore, concrete, unimodal

sensory information is likely to be sequentially transformed into abstract, transmodal cogni-

tive representations through hierarchical processing along the PG, confirming the meta-analysis

in (13) and studies on intracranial electric stimulation (22) and task-related fMRI scans based

on encoding models (23, 24). These results also indicate that the hierarchical vision-to-value

transformation is a global process involving areas on the whole brain.

To further evaluate the existence of a hierarchical processing structure on the cerebral cortex,

we counted the number of significant voxels per CNN layer in various regions of interest (Fig.

3). As expected, the primary visual cortex (V1) is associated with shallow layers, such as Conv

1 and 2. Interestingly, multiple regions, including anterior inferior frontal sulcus (Fig. 3D),

area posterior 32 (p32) (Fig. 3E), and 31a (Fig. 3F) are associated with valuation, while their

surrounding regions, including area anterior 9-46v (a9-46v) (Fig. 3D), 10 dorsal (10d) (Fig.

3E), and 23d (Fig. 3F) are associated with the intermediate representations between vision and

valuation. These results further confirm that vision is transformed into valuation via hierarchical

processing on the parietal and frontal cortices.

A high variability regarding appreciation of beauty (i.e., valuation) may be expected be-

tween participants. For measuring the reliability of valuation, we analyzed the reproducibility

of ratings for the same paintings. The participants completed a reproducibility check in a be-

havioral experiment, where they were asked to rate the same art piece twice in an interval of

approximately 2 hours. We then calculated the correlation between these two scores per partici-

pant (median r = 0.68). Based on this reliability score, we split the participants into reliable and

unreliable groups (the participant showing the median correlation was excluded). Hence, while

participants showing processing via the ventral visual pathway were automatically included re-
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Figure 3: Brain–CNN correspondence within ROIs. (A-C) The proportion of significant vox-
els in the group analysis of brain–CNN correspondence for each layer in V1 (A), 10d (B), p32
(C). The color of a bar indicates the depth of the layer (yellow: FC 18 (value), orange: interme-
diate FC layers between vision and value, red: convolution layers). (D-F) The Visualization of
the difference in brain–CNN correspondence across regions in the lateral prefrontal cortex (D),
medial prefrontal cortex (E) and medial parietal cortex (F). The layer color showing the highest
proportion was given to each of the HCP MMP ROIs. 44: Area 44, IFSp: Posterior Inferior
Frontal Sulcus, p9-46v: Area posterior 9-46v, 46: Area 46, a9-46v: Area anterior 9-46v, IFSa:
Anterior Inferior Frontal Sulcus, 45: Area 45, 47l: Area 47 lateral, d32: Area dorsal 32, 9m:
Area 9 medial, 10d: Area 10 dorsal, p32: Area posterior 32, 10r: Area 10 rostral, a24: Area an-
terior 24, p24: Area posterior 24, 23c: Area 23c, 31a: Area 31a, PCV: PreCuneus Visual Area,
31pd: Area 31pd, 7m: Area 7 medial, v23ab: Area ventral 23 a+b, 31pv: Area 31p ventral,
d23ab: Area dorsal 23 a+b, 23d: Area 23d
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gardless of their valuation scores, those showing deviation from the pathway for vision-to-value

transformation were only retained when they showed an eye for beauty. Figure 4A and B show

that the voxels in the frontal and parietal cortices correspond to deep IO-CNN layers in reliable

participants but not in the unreliable ones. While participants showing processing via the ventral

visual pathway were automatically included regardless of their valuation scores, those showing

deviation from the pathway for vision-to-value transformation were only retained when they

showed an eye for beauty.

To elucidate the difference in brain–CNN correspondence between the reliable and unreli-

able groups, we obtained the layer-wise proportion of brain–CNN correspondence on the occip-

ital, temporal, parietal and frontal cortices as well as that on the insula and cingulate cortex for

the reliable (Fig. 4C) and unreliable (Fig. 4D) groups. The transition from visual to transmodal

areas is more prominent in participants from the reliable group. In these participants, the ventral

visual pathway consisting of the occipital and temporal cortices was first recruited, followed by

the frontal and parietal cortices were recruited for further computation (Fig. 4C). In contrast,

for the unreliable group, even the processing close to the valuation output (i.e. FC 14–18) relies

primarily on the ventral visual pathway but not on the frontal and parietal cortices (Fig. 4D).

The IO-CNNs in both the reliable and unreliable groups performed comparably well on their

training dataset, which contains the art-prices pairs obtained from the fMRI experiment. Hence,

the prominent difference between these groups on the frontal and parietal cortices indicates the

crucial role of these brain areas for reliable vision-to-value transformation from object to value.

Brain–CNN correspondence for interpreting CNN representations

A major drawback of deep ANNs (including CNNs) is the difficulty to understand their in-

ner computations. We demonstrate the use of brain–CNN correspondence to visualize internal

CNN representations and improve interpretability. Figure 5 shows the correlation between the

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.18.435929doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435929


B

D

A

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

C

C
on

v 
1

C
on

v 
4

C
on

v 
7

FC
 1

8

FC
 1

4

C
on

v 
13

C
on

v 
10

CNN Layer

conv FC

P
ro

p
o

rt
io

n

C
on

v 
1

C
on

v 
4

C
on

v 
7

FC
 1

8

FC
 1

4

C
on

v 
13

C
on

v 
10

CNN Layer

conv FC

P
ro

p
o

rt
io

n

1 18
CNN layer

1 18
CNN layer

Figure 4: Comparison of Brain–CNN correspondence maps between reliable and unreli-
able participants. (A) The brain–CNN correspondence map for reliable participant groups.
The background image was overlaid by Gordon’s parcellation (21), and the colors are encoded
in similar manner as in Fig. 2A. (B) The brain–CNN correspondence map for unreliable par-
ticipant groups. (C) The layer-wise proportion of significant voxels in the occipital (dark blue),
temporal (blue), parietal (gold), frontal (orange), insula and cingulate (red) and other cortices
for the reliable group. (D) The layer-wise proportion of significant voxels for the unreliable
group. The color codes are similar to (C).
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actual and predicted valuations according to the individual CNN optimization. Although a suit-

able prediction is achieved on the test dataset was achieved at the first training stage, the further

optimization slightly improved the prediction in Fig. 5B. At early stages of CNN training, only

voxels in the occipital and temporal cortices correspond to CNN representations (Fig. 6A and

6B). As training proceeds, the CNN representations, especially those of the fully connected

layers, become similar to the representations of the frontal and parietal cortices. Notably, the

representations are substantially altered during training stage 3 despite the negligible prediction

improvement of aesthetic preferences on the test dataset. Thus, the CNN prediction perfor-

mance does not fully reflect the representation variations in the hidden CNN layers.

To statistically evaluate the variation in CNN representations after individual optimization,

we calculated the PG scores for the reliable and unreliable groups at every optimization stage

(Fig. 6C). Then, the correlation between the CNN depth and PG scores was obtained. The

CNN representations became increasingly more aligned with the hierarchical structure across

the human brain along with the improving CNN prediction accuracy for individual aesthetic

preferences (Table S1). Furthermore, in the brain regions corresponding to fully connected

layers (FC 14–18), the PG scores gradually increased as training proceeded. Given that these

PG scores are strongly associated with a spectrum of concrete-to-abstract cognitive domains

(13),our results indicate that CNN representations in higher layers become increasingly abstract

and remote from sensory information as individual optimization proceeds.

Finally, to confirm that the layer–PG correspondence is shared in the internal representa-

tions across IO-CNNs, we obtained the correspondence after replacing the baseline VGG-16 by

three popular CNN architectures, namely, DenseNet, ResNet, and Inception Network. These

architectures also achieve high layer–PG correspondence (Fig. 7; Table S2),indicating that hi-

erarchical sequential computations similar to the PG may be characteristic across families of

CNNs. Overall, these results suggest that examining relations between CNN computations and
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Figure 5: Comparison of prediction performance between the reliable and unreliable
groups. (A) The change of prediction performance for the training dataset over individual
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Figure 6: Visualizing change in CNN representations over individual optimization. (A)
Brain–CNN correspondence maps underwent reconfiguration after each optimization stage.
The background image was overlaid by Gordon’s parcellation (21), and the colors are encoded
in similar manner as in Fig. 2A. (B) The layer-wise proportion of significant voxels in the oc-
cipital (dark blue), temporal (blue), parietal (gold), frontal (orange), insula and cingulate (red)
and other cortices for the reliable and unreliable groups. (C) Mean gradient score was computed
for brain regions corresponding to each layer at each training stage. Compared to the unreliable
group (gray), the reliable group (black) showed more pronounced variation in PG scores across
corresponding layers, particularly in brain regions corresponding to fully connected layers (FC
14–18).
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brain activity is useful for investigating the internal CNN representations regardless of the spe-

cific CNN architecture.

Discussion

In this study, we demonstrated the usefulness of IO-CNNs to investigate the hierarchical pro-

cessing during vision-to-value transformation. Although the correlation between the IO-CNN

predicted values and ground-truth values varied between the participants, it was generally im-

proved compared with the baseline CNN (Fig. 1E). By analyzing the correspondence between

the IO-CNN and human brain activity, we unveiled a hierarchy of vision-to-value transfor-

mation in the brain as a gradient-guided process from the visual area to the DMN (Fig. 2).

The brain–CNN correspondence maps were not biased toward a hierarchical structure by us-

ing ANNs because the assignment of voxels to the CNN layers was conducted independently

of the network architecture via multivariate linear regression. The hierarchical vision-to-value

transformation revealed by the IO-CNNs is aligned with the PG (Fig. 3). We also found a

high CNN layer–PG correspondence for reliable participants compared with unreliable partici-

pants. We observed the most prominent difference in the frontal and parietal cortices, indicating

that reliable vision-to-value transformation is supported by the activity in transmodal regions.

These results were reproduced across various CNN architectures including VGG-16, DenseNet,

ResNet, and Inception Network, suggesting that hierarchical sequential computations similar to

the PG are a shared characteristic between CNNs. Overall, our results indicate that valuation is

the result of the gradual transformation of external information through the PG pathway, which

begins with sensory representations and ends in DMN processes.
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Value representations over the sensation-to-value gradient

In a previous work (1), we showed that information from multiple sensory modalities is con-

verted into a common supra-modal valuation code on the medial and lateral orbitofrontal cor-

tex. This organization mode suggests that gradients of representational structures exist along

sensation-to-value pathways for each sensory modality, where low- or mid-level sensory fea-

tures are gradually integrated with valuation-relevant information throughout processing. Given

the current knowledge about the brain structure and function, this sort of gradual representation

integration is more reasonable than a sharp modular division of labor between sensory areas

and valuation-related areas of the brain (25). Using IO-CNNs as models, we reached findings

consistent with such processing pathway in the present study.

In future research, the levels of the processing hierarchy that elicit neural representations

of valuation should be identified. In addition, the variations of these levels according to the

task demands and learning should be determined. Although our results suggest an abstract

representational format distributed over the DMN, these representations are not always required

for tasks involving valuation. We may explore heuristic strategies to obtain efficient solutions

to a value-inference problem through matching with familiar sensory representations. Such

strategies are expected to be consistent with the proposal of Kahneman (26) in his cognitive

heuristic of substitution. For instance, if a person is asked how much money they would like

to contribute to save an endangered species, they are likely to decide based on an emotional

response to ideas such as a dying dolphin rather than on a cost–benefit calculation. In the

absence of a reliable or efficient way to estimate subjective valuation in abstract terms, a value-

laden sensory image may serve as a concrete surrogate.

The notion that abstract mental representations are grounded in sensorimotor imagery has

a long history in the cognitive sciences (27) and is supported by evidence from human neu-

roimaging studies (28), mainly related to concepts and language. We expect that an analogous
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organization may characterize valuation. As our findings suggest that the transformation from

sensory input into abstract value unfolds gradually across the PG, the human brain is likely to

exploit intermediate value representations that retain sensorimotor features. This processing

strategy may play an important role in cultural responses such as the appreciation of visual arts

and other behaviors. More generally, this strategy suggests that sensory experience is influenced

by emotions before any subsequent appraisal (29).

Role of DMN in functional organization of valuation

Although previous studies have mainly focused on the representation of valuation in the or-

bitofrontal cortex (1,30–32), we found multiple representations of valuation across several areas

associated with the DMN, such as the temporoparietal junction, parietal cortex, and ventrome-

dial prefrontal cortex (Fig. 2). Thus, DMN activity may be essential during valuation.

There may also be a more intrinsic relationship between valuation and the DMN. Various

studies have demonstrated an immediate encoding of value information in areas coinciding

with the DMN, and coordinate-based meta-analyses of the brain networks involved in valuation

have indicated significant overlap with the DMN, particularly in areas such as the ventromedial

prefrontal cortex and posterior cingulate cortex (33, 34). Acikalin et al. (33) suggested that

there may be an underexplored link between the computational function of the “simulation

of internalized experience” and valuation. This finding complements recent developments in

reinforcement learning that go beyond the classical emphasis on motor sequences by uncovering

strategic interactions between the reinforcement learning system and cognitive operations such

as episodic memory (35) and prospection (36), which are commonly associated with the DMN.

Although the DMN has often been characterized as a “task-negative network” that deploys

neural resources toward internally oriented cognition at the expense of engagement with the

external world, the DMN processes may be employed for the realization of external goals
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through coupling either with striatal reinforcement learning or with functional networks that

guide action (37,38). In our behavioral experiment, the participants received novel visual stim-

uli from the environment and projected this information onto a subjective measurement space

that registers a personal value judgment. The task thus merged externally and internally oriented

processes, requiring the activation of the PG (13) across its full spectrum, from early sensory

features to abstract transmodal representations that encode internalized experience. Hence, we

speculate that the PG may represent an external–internal cognition axis.

Several recent studies have found evidence of an intrinsic link between DMN activity and

aesthetic appreciation (39,40), suggesting that the DMN serves as a core for assessing domain-

general aesthetic appeal. Our results support this finding and extend it by identifying the DMN

as the functional locus. Across both anatomical and representational levels, our correspondence

maps show the pathway over which visual input is transformed into value judgments, thus offer-

ing insights into the architecture and brain-wide dynamics of aesthetic experience. The richness

of CNN models also allow to model individual differences in representational structures that un-

derpin variations in aesthetic preferences.

Variation in representational structure over time

The high performance of the IO-CNNs maintained for both the 200 (fMRI experiment) and 400

(behavioral experiment) art-piece datasets indicates that these models successfully captured the

individual aesthetic preferences of each participant. The experiment trials were performed on

different days, and although some participants were more reliable than others in reproducing

their initial valuations, the overall preferences did not shift in any systematic way over time.

Over longer time frames, participants may shift their aesthetic preferences due to either new

external information or internal changes. If we retrain the IO-CNNs over a longer period by

performing transfer learning with new data, it would be possible to analyze the corresponding
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variations in intermediate representations. Given the potential of our method to capture rich in-

dividual differences among participants, determining individual trajectories of representational

variation over time is a promising research area. The methods in this study can be employed to

improve our understanding, both across individuals and over time, about the variability in rep-

resentational structures that explains changes in valuation. By mapping these representations

onto brain regions, our method may also provide insights about known mechanisms of neural

plasticity mediating these changes.

ANNs for investigating brain function

Our findings in this study demonstrate the feasibility to extract the novel insights about brain

mechanisms by applying supervised learning to IO-CNNs tailored for different individuals.

The IO-CNNs can describe the intrinsic transition of cognitive processing from perception of

the external environment to the monitoring of internal states, converging with the functional

organization of the cortex and its connectivity PG (13). Hence, our study extends the domain

of utility of CNNs compared with previous works (8, 9, 41).

There are various limitations that remain to be addressed regarding the use of CNNs to

analyze brain functions. First, interpretability is limited due to the lack of a comprehensive

method for both analyzing deep ANNs and understanding internal states of the brain. Changes

in the similarity matrix occurred across all CNN layers per trial, and regions of interest in the

brain could be visualized using the representational similarity analysis. However, the exact

intermediate representations per trial remain difficult to describe. Second, training a group

of IO-CNNs is complicated due to interpersonal variability and requires a long computational

time. In this study, identical hyperparameters were applied to all the IO-CNNs for simplicity

and efficiency. These hyperparameters were selected mainly by trial and error. Nevertheless,

the CNN performance may be improved by individually tuning the CNN hyperparameters given
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the differences in aesthetic preferences between participants.

The use of CNNs in neuroscience to resemble biological brain computations is growing

but remains controversial. As CNNs have many degrees of freedom, there are countless ways

to project an input onto a desired output. Thus, CNNs can achieve high performance without

mimicking the brain computations. Therefore, additional constraints derived from physiologi-

cal observations should be included to reduce the wide diversity and help guiding the training

of CNNs. In our study and various others (5,8,9,41), a constraint has been related to the archi-

tecture mostly consisting of convolutions, inspired by single-cell receptive fields (42, 43)), and

nonlinear activation, inspired by the rate of action potential firing (44)). A second constraint has

been structural and provided by stacked convolutional layers that gradually increase the recep-

tive field (45). For example, stacking of two 3 × 3 convolutional layers yield an 5 × 5 receptive

field. This approach resembles the increasing size of receptive fields in processing throughout

the visual hierarchy (46).

In future work, we plan to build CNNs to mimic the brain in finer details by implement-

ing neuroscience-based techniques, as is done in various state-of-the-art ANNs such as COR-

net_S (47), ResNet (48), DenseNet (49) for the object recognition task. A brief evaluation of

these ANNs based on their behavioral predictivity of the ventral stream has already been con-

ducted by Schrimpf et al. (50), who showed another way beside ours for estimating the the

capacity of CNNs to mimic the computations in a specific brain region. Future similar studies

considering other behavioral tasks will help discover more appropriate CNN architectures for

every brain region and hopefully provide insights about their integration to model whole-brain

computations.
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Methods
Participants

Thirty-seven right-handed healthy participants [10 males; age 22.9 ± 0.6 years; range, 18 – 32

years] with no history of neurological or psychiatric disorders were recruited from our locality

via email for this study. They provided informed consent to participate in the study. The study

was approved by the Ethical Committee of the National Institute for Physiological Sciences of

Japan.
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Experimental procedure

The experiment consisted of two sessions, with a session of functional magnetic resonance

imaging (fMRI) recordings on one day and a session of behavioral experiments on another

day. The two experiments took place 29 to 147 days apart (79.3 ± 7.0 days). The order of the

experiments was balanced across participants.

Visual stimuli

A total of 105,714 art images with price tags were downloaded from an art auction website

(https://www.liveauctioneers.com/). From the images, 43,757 art pieces were actually traded.

We excluded the art images with price tags above USD 5000 for most of the art images to be

from non-widely known artists. This exclusion criteria aimed for the pricing of the participants

to be based on their aesthetic preferences instead of the knowledge about an artist. We used

200 art images for the fMRI experiment, 400 images for the behavioral experiment, and 38,059

images for training the baseline convolutional neural network (CNN).

fMRI experiment

In the fMRI session, 200 art images were randomly presented over five rounds per participant.

The participants were asked to quote the prices that they were willing to pay for each art piece.

In a trial, a photo of an oil painting was presented for 7 s followed by a blank screen for 1 s and

by a price for 6 s. The participants could move the price on the window up or down by pressing

the corresponding button. After a 4 s intertrial interval, the next photo was presented. The price

data obtained from the fMRI experiment were used to optimize the CNN for each participant

(IO-CNN).
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Behavioral experiment

The participants were asked to quote their target prices for a new set of 400 art pieces. Besides

the pricing task, the participants completed a reliability check, in which they were asked to rank

a separate set of 80 art pieces twice over a period of approximately 2 h. To measure reliability,

we calculated the correlation between these two ratings per participant and then divided the

participants into reliable and unreliable groups accordingly.

Imaging parameters

The fMRI scans were collected using a 3.0 T fMRI system (Verio; Siemens Erlangen, Germany)

with a 32-element phased-array head coil. T2*-weighted gradient echo-planar imaging (EPI)

was used to obtain functional images using the following parameters: repetition time TR = 750

ms, echo time TE = 31 ms, flip angle of 55◦, field of view of 192 mm, matrix size of 98 × 98,

72 slices with isotropic 2-mm voxels, and multiband echo-planar imaging with factor of 8. For

anatomical imaging, T1-weighted three-dimensional magnetization-prepared rapid-acquisition

with gradient echo sequence was employed using the following parameters: TR = 1800 ms, TE

= 1.98 ms, flip angle of 9◦,field of view of 256 mm; and voxel dimensions of 1.0×1.0×1.0mm.

Data analysis

Standard image preprocessing was performed using the Statistical Parametric Mapping SPM12

package. The fMRI scans were realigned to correct for head motion. Each T1-weighted im-

age per participant was co-registered with the mean image over all the functional images of

that participant. Then, the functional images were segmented and normalized to the MNI 152

space using the unified segmentation–normalization tool in SPM12. To obtain precise vox-

els in the gray matter from each participant, the first echo-planar imaging volume in the first

round was segmented into gray- and white-matter masks using the tissue probability map of
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SPM12. MELODIC (Multivariate Exploratory Linear Optimized Decomposition into Inde-

pendent Components) was used to decompose functional data into spatially independent com-

ponents, which were then manually labelled as either signal or noise (51). FIX (FMRIB’s

independent-component-analysis-based Xnoiseifier) was then applied for noise component re-

gression. Each stimulus presentation was modeled as a separate event using the canonical func-

tion in SPM12. To visualize the imaging results, Connectome Workbench and MRIcron were

used.

Representational Similarity Analysis

We used a searchlight analysis based on spheres of 4 mm in radius to include 33 voxels. A

correlation matrix of art images was constructed per voxel and its 33 neighbors. Then, the

matrix was described by multivariate linear regression of IO-CNN representational similarity

matrices (Fig. 1).

To improve the estimation of regression coefficients, we employed ridge regression. The

ridge parameter was determined based on a pilot study, and the same parameter was applied to

every voxel for all the participants. Parameter β defines the coefficient (weight) for each IO-

CNN representational similarity matrix. For group analysis, β maps for the respective layers

were smoothed with a 4 mm full width at half maximum Gaussian kernel and then subject

to a one sample t-test across participants. In this group analysis, the statistical threshold for

the spatial extent test on the clusters was set at p < 0.05 with family-wise error corrected for

multiple comparisons. The cluster-forming threshold was set at p < 0.001 (uncorrected). To

visualize the spatial configuration of brain–CNN correspondence, we assigned the layer with

the highest t-value to each voxel, thus obtaining overall maps of brain–CNN correspondence

(Figs. 2A, 2B, 4A, 4B, 6A and 7A). To analyze the brain–CNN correspondence in regions of

interest (ROIs), we counted the number of significant voxels per CNN layer in each ROI (Fig.

26

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.18.435929doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435929


3). Those numbers were divided by the number of significant voxels in the whole brain per

CNN layer to obtain the proportion of significant voxels per layer.

ROI definition

We used three atlases, namely, cortical area parcellation from resting-state correlations (Gordon

atlas) (333 ROIs) (21), Human Connectome Project multimodal parcellation (360 ROIs), and

anatomical automated labeling atlas (170 ROIs;) (52). The Gordon atlas was used to visualize

spatial relations between the brain–CNN correspondence maps and the default mode network

(Figs. 2A, 2B,4A, 4B, 6A and 7A). The multimodal parcellation was used to visualize the

distribution of the layer-wise correspondence between the brain and CNN (Fig. 3) in a finer

parcellation. The anatomical automated labeling atlas was used to define the occipital, temporal,

parietal, and frontal cortices as well as the insula and cingulate gyri.

The occipital cortex consists of the calcarine fissure and surrounding cortex, cuneus, lingual

gyrus, superior occipital lobe, middle occipital lobe, and inferior occipital lobe. The temporal

cortex consists of the hippocampus, parahippocampus, amygdala, fusiform gyrus, Heschl gyrus,

superior temporal gyrus, temporal pole, middle temporal gyrus and inferior temporal gyrus. The

parietal cortex consists of the postcentral gyrus, superior parietal gyrus, inferior parietal gyrus,

supramarginal gyrus, angular gyrus and precuneus. The frontal cortex consists of the precentral

gyrus, superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus, Rolandic operculum,

supplementary motor area, olfactory cortex, superior frontal gyrus, gyrus rectus, and paracentral

lobule.

Comparison between principal gradient scores and brain–CNN correspondence maps

The principal gradient map was retrieved from the Neuroanatomy & Connectivity Lab website

(https://www.neuroconnlab.org/data/index.html). To capture the correspondence between the

hierarchical structure of the brain and CNN, the principal gradient scores per CNN layer were
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plotted (Figs. 2D). For statistical evaluation, we also calculated the correlations between the

principal gradient scores per voxel at each CNN layer and the layer number (Fig. 2D, Tables S1

and S2).

CNN architecture

We used the VGG-16 architecture (45) with batch normalization and pretrained on ImageNet

dataset (53). The network was implemented using the PyTorch library (ver. 1.0.0) (54). Orig-

inally, the network consists of 16 convolutional layers with batch normalization and two fully

connected (FC) layers. Here, we replaced the last softmax function with three FC layers. Batch

normalization and dropout regularization (55) were applied after each additional FC layer, ex-

cept for the final layer which contained only one node for linear regression.. We applied Kaim-

ing He initialization to the newly added hidden layer (56).

Baseline CNN trained using transfer learning

A baseline CNN was created by training on a 38,059 art-price dataset (27,488, 3054, 7517

samples for training, validation, test sets respectively), retrieved from the art-auction website.

During transfer learning, it is usual to freeze (i.e., exclude from training) all layers except for the

last few layers, which process domain-general knowledge (57). However, choosing the number

of layers for freezing is not trivial and may lead to catastrophic forgetting if few layers are frozen

or slow convergence if many layers are frozen. Therefore, we fine-tuned the models over three

stages: training the three newly added FC layers, training all the FC layers, and finally training

all the layers. Then, training terminated after the performance converged. This approach is

similar to the gradual unfreezing method widely used in natural language processing (58–60).
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Individual CNN optimization

FFor each participant, transfer learning was applied to the CNN by using both the 200 art–price

pairs for training and 400 art–prices pairs for validation and test. Adam optimization (61) was

used with a weight decay of 0.00025.

All datasets were preprocessed as follows. First, we calculate the mean and standard devia-

tion from the outputs of baseline model on 200 art-prices dataset. First, we calculated the mean

and standard deviation from the outputs of the baseline CNN on the 200 art–price pairs. Then,

we normalized both the 200 and 400 art–price pairs to zero mean and unit standard deviation

using the calculated mean and standard deviation. This method prevents the unwanted influence

from different distributions between the baseline CNN output and art–price pairs. To prevent

overfitting, the training data were augmented as follows. Each image was randomly translated

in a range of 20% along the height and width directions. Then it was cropped for centering and

resized to 224×224 pixels. This step was repeated 5 times on the fly. Therefore, the augmented

training set (including the original dataset) was six times larger than the original training set.

On the other hand, the 400 art–prices pairs were equally distributed into the validation and test

sets for performance testing. To keep the distribution of these sets identical, we divided the

experimental data into 10 bins and randomly sampled the pairs for each bin.

For individual CNN optimization, we fine-tuned the models over four stages (Fig. 1B) , and

training terminated when the performance converged. For each of the first three training stages,

we performed a nearly exhaustive search for hyperparameters, such as learning rate and batch

size. To prevent exploding gradients, the gradient norm was truncated at 1.0. We tracked the

mean squared error (MSE) on the validation set and recorded the parameters that minimized

the MSE. Early stopping was used to terminate training after 10 epochs without performance

improvement, and the maximum number of epochs for training was 200. The performance of

each CNN was evaluated through the MSE between its output and the ground-truth values on
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the validation set.

In the fourth stage, we used Adam optimization with a high learning rate of 0.001 for restart.

This strategy is inspired by the stochastic gradient descent with warm restarts (SGDR) (62) , in

which the learning rate is restarted after a fixed number of iterations. This strategy aims to leave

any local optima and search for a better one (if any) while keeping track of the previous best

performance. Again, early stopping was used, and the maximum number of epochs for training

was 300. The parameters that minimized the MSE on the validation set were recorded.

The representational similarity matrices of all the IO-CNN layers were created from the

outputs of the convolutional layers (13 layers) and FC layers (5 layers) on the 200 art–price

pairs. We extracted and transformed the responses of each layer into a nimages by nnodes matrix.

Then, we constructed the nimages by nimages correlation matrix as the representational similarity

matrices for that layer.

Transfer learning of IO-CNNs based on ResNet, DenseNet, and Inception Network

We built IO-CNNs based on DenseNet, ResNet, and Inception Network using similar proce-

dures as those mentioned above. As each architecture has several variants, we used ResNet-50,

DenseNet-169, and Inception-v3 for convenience because they are already implemented in Py-

Torch as baseline CNNs pretrained on the ImageNet dataset (53). The last softmax layer was

replaced by three FC layers followed by batch normalization and dropout layers at the end of

each layer except for the last one.

First, the three newly added FC layers were trained in each CNN, and then all the other

layers were trained using the 38,059 art–price pairs. Then, for each subject, the baseline CNNs

were trained using the individual valuation data over three stages: training the FC layers, train-

ing all the layers, and finally training all the layers with high learning rate for restart.

The total number of representational similarity matrices that were extracted differed be-
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tween the architectures. For ResNet, we obtained 23 representations from the outputs of the

bottleneck blocks (20 representations), and FC layers (3 representations). For Inception Net-

work, 14 representations were obtained from the outputs of the inception blocks (11 represen-

tations) and FC layers (3 representations). For DenseNet, we obtained 10 representations from

the dense blocks (4 representations), transition blocks (3 representations), and FC layers (3

representations).
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