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Abstract

A number of recent studies have investigated machine learning techniques for predicting

individual behaviour from fMRI. Even though encouraging results have been obtained, excessive

scan times – especially in resting state fMRI – are a limiting factor.

Here we present a new machine learning algorithm for predicting individual behaviour of

healthy human subjects using both resting state (rsfMRI) as well as task-based fMRI (tfMRI).

It achieves dimensionality reduction via ensemble learning and partial least squares regression

rather than via brain parcellations or ICA decompositions. In addition, it introduces Ricci-

Forman curvature as a novel type of edge weight.

As a proof of concept, we focus on predicting fluid, crystallized and general intelligence

scores. In a cohort of 390 unrelated test subjects of the Human Connectome Project, we found

correlations between the observed and the predicted general intelligence of more than 50 percent

in tfMRI, and of around 59 percent (R2 ≈ 0.29) when results from two tasks are combined. We

compare these results against a benchmark of existing methods that produced correlations below

50 percent in both rsfMRI and tfMRI. We conclude that with novel machine learning techniques

applied to tfMRI it is possible to obtain significantly better prediction accuracies at a fraction

of the scan time.

Introduction

Many neurological and psychiatric conditions evade detection by standard anatomical MRI. There

is a growing hope that functional MRI (fMRI) may help to fill this gap. In this context, the

suitability of fMRI for predicting individual behaviour has been investigated in a number of recent

studies [1–9].
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Predictive modelling generally proceeds in three stages [10]. First, a dimensionality reduction via

brain parcellations or ICA decomposition is performed. Second, the interaction between the brain

parcels or components is estimated. Finally, a classifier or regressor is trained to predict behavioural

traits or other quantities of interest. The various methods differ with respect to the choice of the

strategies used in those three stages. The methodological challenges and best practices are discussed

in [11–14].

Here we introduce a new algorithm for predicting intelligence from fMRI data of the human brain,

and describe its application to data of the Human Connectome Project (HCP) [15,16]. Specifically,

we investigate the predictability of general intelligence as defined by Dubois et al. [17], and of

fluid, crystalline, and total intelligence as defined in the behavioural testing protocol of the Human

Connectome Project [18]. However, the proposed algorithm is not intended to be limited to the

prediction of intelligence. Rather, we view this as a proof of concept for a wider range of potential

applications.

We call our algorithm VEGA (VoxEl-Graph machine learning Algorithm). VEGA differs in several

respects from the predictive modelling strategy that is generally adopted in other studies. First, it

does not perform brain parcellations or ICA decompositions for dimensionality reduction. Instead, it

employs ensemble learning and partial least squares regression to deal with the high dimensionality

of the data. We also use the novel concept of Ricci-Forman curvature to define a brain mask to

further constrain dimensionality. Second, VEGA works directly in voxel space, it does not require

a surface extraction as some other methods do. This may be advantageous in situations where

data quality is poor so that image segmentations and surface extractions may be problematic. This

is particularly relevant in clinical environments where data quality can be an issue. And finally,

VEGA is designed to work on both resting state (rsfMRI) as well as on task-based fMRI (tfMRI).

We will show that its performance on tfMRI is particularly encouraging even though the scan times

were very short.

Experimental data and preprocessing

We downloaded fMRI data of 390 unrelated subjects (202 female, 188 male, aged 22-36, median age

28) acquired at 3 Tesla by the Human Connectome Project (HCP), WU-Minn Consortium [15,16,19].

Only subjects for whom all necessary data sets, i.e. rsfMRI, tfMRI and intelligence test scores were

complete and fully available were included. We excluded data sets for which data quality problems

due to instability of the head coil were reported [20]. All subjects gave written, informed consent

according to the protocol by the Human Connectome Project consortium.

The rsfMRI data were acquired in two sessions on two separate days with two different phase

encoding directions (left-right and right-left) with spatial resolution (2mm)3, multiband factor 8.

Each scan hat 1200 volumes acquired at TR=0.72 seconds so that the total scan time across all four

sessions was approximately 58 minutes. The rsfMRI data were minimally preprocessed and cleaned
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Overview of the algorithm VEGA

1. Split list of subjects into training and test for 6-fold crossvalidation.

2. For all subjects s = 1, ..., n:

(a) Compute linear correlation matrix Cs.

(b) Compute Ricci-Forman curvature matrix Rs based on Cs.

3. Compute a curvature map from Rs, s = 1, . . . , n.

Voxelwise average across the curvature maps of all subjects in the training set.

Apply a threshold to obtain a core mask.

4. Repeat until convergence and average the resulting predictions at the end:

(a) Randomly select a list of edges with endpoints in the core mask.

(b) Partial least squares regression (PLS) using the subjects of the training set

and the selected edges.

(c) Apply the parameters learned in the previous step to each subject in the test set

to obtain predictions of intelligence.

Figure 1: Overview of the algorithm. The proposed algorithm VEGA consists of the four steps as

depicted in this overview. A main difference to existing algorithm is that it handles high-dimensionality

via ensemble learning, partial least squares and Ricci-Forman curvature maps rather than via brain

parcellations or ICA decompositions. A detailed description of each step is given in the main text.

using FSL-FIX [21–23].

In addition, we downloaded minimally preprocessed tfMRI data from two tasks, namely the language

task and the working memory task [19]. The working memory task followed an N-back paradigm

where participants were presented with pictures of places, tools, faces and body parts. The language

paradigm consisted of a story comprehension task interleaved with a math task, see [24]. We chose

those two tasks because they appear to be more closely linked to intelligence than any of the other

tasks included in HCP. The tfMRI data were acquired in two sessions each (left-right and right-left

phase encodings). The language task had 316 volumes per session (total scan time ≈ 7.5 min). The

working memory task had 405 volumes per session (total scan time ≈ 10 min).

The tfMRI data were additionally subjected to a temporal highpass-filter (cutoff frequency 1/100

Hz) to remove baseline drifts. For both rsfMRI and tfMRI data, we reduced the spatial resolution

to (3mm)3 via trilinear interpolation to limit the computational load. Furthermore, to counteract

intersubject anatomical variability, we applied a spatial Gaussian filter using fwhm=6mm.
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PicVocab ReadEng CardSort Flanker ListSort PMAT PicSeq ProcSpeed VSPLOT IWRD

G-factor X X X X X X X X X X

CogTotal X X X X X X X - - -

CogCrystal X X - - - - - - - -

CogFluid - - X X X X X - - -

Table 1: Components of the four measures of intelligence. The four measures result from

averaging across the normalized test scores of the cognitive tests listed in this table. The acronyms

are as in HCP [25]. For the G-factor, we used a weighted average of the ten test scores where the

weights are as in [17], i.e. 0.624, 0.642, 0.364, 0.259, 0.451, 0.626, 0.354, 0.232, 0.578, 0.294 (in the

same order as in the table).

Measures of Intelligence

We used four measures of intelligence that resulted from cognitive tests performed by the Human

Connectome Project (HCP). For ease of notation, we use the same acronyms as in HCP to denote

the various cognitive tests, see [18,25]. The first two measures are fluid cognition (CogFluidUnadj)

and crystallized cognition (CogCrystalUnadj). They are defined via averaging normalized scores of

several tests as shown in table 1. The third measure (CogTotalUnadj) is a combination of the first

two. The fourth measure is a general intelligence score (G-factor). Here we closely followed the

work by Dubois et al. [17] who used a weighted average of normalized scores of a wider range of

cognitive tests. We used the same test scores and the same weights for the average.

Potential confounds. As in [17] we used multiple linear regression to regress out several poten-

tial confounds from the intelligence scores, namely handedness, gender, age (Age in Y rs), brain

size (FS BrainSeg V ol) and the multiband reconstruction algorithm (xfMRI 3T ReconV rs). To

avoid leakage from training to test, the multiple linear regression was fitted on the training data,

and the resulting weights were then used to remove the confounds in both training and test.

A new algorithm for predicting intelligence from fMRI

We propose a new algorithm called “VEGA” for predicting intelligence from fMRI data of the

human brain. It consists of four steps that are described in the following. For an overview, see

Figure 1.

Step 1 (Crossvalidation)

The set of n = 390 subjects is randomly split into six folds for crossvalidation. In each fold,

325 subjects are used for training a regression model that is subsequently tested on the remaining

65 subjects. This procedure is repeated for each of the six folds so that every subject is tested

exactly once. In our experiments, we used twenty different and randomly selected train/test splits.
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Step 2 (Connectivity matrices)

For each subject s = 1, ..., n symmetric connectivity matrices Cs, Rs are computed using two differ-

ent measures of connectivity. Both matrices are of dimension k× k where k denotes the number of

voxels in a brain mask. In the experiments reported below, the mask covers the entire brain with

k = 55, 856 voxels, see Supplementary Figure 1.

Linear correlation. The first connectivity matrix Cs is based on the linear Pearson correlation

coefficient. Its elements ci,j , i, j = 1, ...k record the linear correlation between the fMRI time series

in voxels i and j where k is the number of voxels in the brain mask. The matrix Cs is initially

dense, i.e. it is computed for every pair of voxels in the brain mask so that the number of edges

is k(k − 1)/2 ≈ 1.69. From this large set of edges, we randomly select 1 million edges to which all

subsequent analysis steps involving Cs, s = 1, . . . , n are restricted. The purpose of this step is to

reduce the memory load and computational burden. Note that we preselect edges, not voxels. Since

the number of preselected edges is very large, all voxels in the brain mask serve at least once as an

endpoint to one of those edges. This strategy provides a dense coverage of the brain that allows us

to visualize brain areas that are predictive of intelligence (Supplementary Figure 3).

Ricci-Forman curvature. Using the dense correlation matrix Cs computed in the previous step,

a second connectivity matrix Rs is computed for every subject s = 1, . . . , n. It is based on the

novel concept of Ricci-Forman curvature [26–28]. The motivation to apply this concept here is

that it allows to attribute weights to edges that reflect their importance for the cohesiveness of a

graph, and thus help to identify edges that are more reliable predictors. Ricci-Forman curvature

has been previously applied to fMRI data [29], and more recently to diffusion weighted imaging

(DWI) [30]. It defines a curvature for an edge e in a set of edges E as follows. Let e = (v1, v2) ∈ E
and ev1 , ev2 ∈ E be any edges adjacent to e at vertices v1 and v2 with edge weights ω(e) and node

weights ω(v). Then the Ricci-Forman curvature RicF of edge e is defined as

RicF (e) = ω(e)

ω(v1)

ω(e)
+
ω(v2)

ω(e)
−

∑
ω(ev1 )∼e
ω(ev2 )∼e

(
ω(v1)√
ω(e)ω(ev1)

+
ω(v2)√
ω(e)ω(ev2)

) (1)

Figure 2 illustrates the geometric intuition behind this concept. Edges connecting vertices of large

degree have strongly negative curvature values and may be interpreted as being most important

for the cohesion of the network. For more information about the theoretical background of Ricci

Forman curvature see [27,28,31].

In the present context, vertices correspond to voxels and have a constant weight of 1. The edges

correspond to correlations between fMRI time series of those voxels. From equation 1 we see that

the edge weights ω(e) must be positive so that the Pearson linear correlation coefficient cannot

be directly used as an edge weight. We therefore define an edge weight function ω applied to the

correlation coefficient x as ω(x) = max(x, ε) where ε is a small positive constant. In our experiments,

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2021.03.18.435935doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435935
http://creativecommons.org/licenses/by-nc-nd/4.0/


’’
v1

e

’’’e
v1

’e
1v v2

e

v2

e’’

e

v v1 2

’

Figure 2: Illustration of Ricci-Forman curvature. Edge e with adjacent vertices v1 and v2

and parallel edges {e′v1
, e′′v1

, e′′′v1
} (adjacent to v1) and {e′v2

, e′′v2
} (adjacent to v2). The Ricci-Forman

curvature of edge e is strongly negative if the edges parallel to its endpoints have large weights.

this constant was set to ε = 1/k where k is the number of voxels in the brain mask. With these

definitions, we now compute a dense Ricci curvature matrix Rs for every subject s = 1, ..., n using

the corresponding correlation matrix Cs as input where each correlation value is first transformed

via the weight function defined above. Note that the matrix Rs is symmetric and has k(k − 1)/2

distinct edges.

Step 3 (Core mask)

Edges with strongly negative Ricci-Forman curvatures may be viewed as backbones of the correla-

tional structure in the brain. We hypothesize that such edges may be particularly robust features

for predicting intelligence. Here we use this idea to derive a new brain mask to which all subsequent

analysis steps are constrained. This mask is obtained as follows.

First, we compute a “curvature map” separately for every subject. This is done by projecting

all edges of Rs to a map in which a voxel value represents the average Ricci-Forman curvature of

all edges whose endpoints touch this voxel. Second, a voxelwise average is computed across the

curvature maps of all subjects in the training set. Finally, the resulting average map is thresholded

using the median of its histogram as the cutoff. This yields the “core mask” to which all subsequent

analysis steps are constrained. Supplementary Figure 2 shows an example.

Step 4 (Learning a regression model)

We use an ensemble learning approach in which multiple learners are trained independently using

different subsets of the feature space [32–34]. More precisely, a large number of subsets of the

feature space are randomly selected, and each subset is then used in a regression model to generate

predictions of intelligence scores for the subjects of the test set. Finally, those predictions are

averaged separately for each fold, see Supplementary Fig 3 for an illustration. In the experiments

reported below, we found that 2000 subsets sufficed to reach convergence. In the following, those

computations are described in more detail.
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Selection of edges from the core mask. A subset of the feature space is obtained by randomly

selecting m edges whose endpoints are required to be within the core mask. In the experiments

reported below, the number of edges in the core mask was around 250,000 from which m = 1000

edges were selected randomly for each subset. As we will show later, the VEGA algorithm is quite

robust with regard to the setting of the hyperparameter m (Supplementary Figures 12,13,14).

Partial least squares regression. Based on the m edges selected in the previous step, a linear

model of the form

Y train = Xtrainβ + ε

is set up to estimate the intelligence scores of the training set and learn the parameter β.

Here Xtrain is an n×m matrix of predictors, Y train is a vector of length n of intelligence scores and

ε an error term. The entries of Xtrain are correlation values extracted from Cs, s = 1, ..., n where

n = 325 is the number of subjects in the training set and m the number of randomly selected edges.

Several types of linear models might be considered for this purpose, e.g. ordinary least squares

regression (OLS) or its extensions such as Lasso, Ridge, and ElasticNet. Another option would be

support vector regression [35]. Here we decided to use partial least squares regression (PLS) [36,37]

because it is particularly well suited to handle problems where the predictors are highly collinear

and where number of independent variables greatly exceeds the number of data points [38]. As

noted above, we typically select m = 1000 edges, while the number of subjects in the training set

is only n = 325 so that m � n. PLS projects both X and Y to a new space that maximizes their

covariance so that the predictors are projected into directions that make them more relevant for

the prediction.

The PLS model is defined as

X = TP T + E

Y = UQT + F

where T,U are projections of X and Y whose covariances are maximized. P,Q are their loading

matrices, and the matrices E,F are error terms. The dimension of matrix P is m × p where

p represents an intrinsic dimensionality. In the experiments reported below, we used p = 10.

However, the results were quite robust with respect to the choice of this parameter (Supplementary

Figures 12,13,14). The matrix Q is of dimension m× q where q is the number of columns in Y . In

the present case, Y is a vector containing intelligence scores so that q = 1.

There exist several methods for computing PLS. Here we implemented the SIMPLS algorithm [38].

SIMPLS iteratively computes projections T,U and loading matrices P,Q together with a weight

matrix R such that β = RQT and hence Y train ≈ Xtrain β.

Prior to PLS regression, the matrices Xtrain and Xtest are row and column-centered. For details on

this point, see equations 2,3,4 on the last page of the supplementary material. Likewise, the vector

Y train is mean-centered and its mean is used to center the test vector Y test.
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voxel space grayordinate space

label correlation type parcellation label parcellation paradigm

PS partial correlation S R-100 ICA-100 resting state

PP partial correlation P R-300 ICA-300 resting state

CS linear correlation S R-MMP MMP resting state

CP linear correlation P L-MMP MMP language task

TS tangent correlation S W-MMP MMP working memory task

TP tangent correlation P

Table 2: Baseline methods included into the benchmark. Our proposed algorithm VEGA

was tested against a battery of competing methods that are based on the CPM framework using

various connectivity types and parcellation schemes as described in the text. The parcellations are

denoted as S [39], P [40] and MMP [41]. For resting state data in grayordinate space, we also used

ICA decompositions with 100 and 300 nodes (ICA-100, ICA-300). The correlation types are partial

correlation, Pearson linear correlation and tangent correlation [11]. In grayordinate space, tangent

correlation was used throughout. The labels correspond to those in Figures 3,6,5,4.

Apply learned parameters to the test set. Once β has been learned from the training data,

predictions for the test subjects can be obtained using Y test ≈ Xtest β. Finally, the predictions are

averaged within each fold.

Benchmarks

We implemented a range of methods for benchmarking using the scikit-learn library [42, 43]. All

methods are derived from the general framework called “connectome-based predictive modeling

(CPM)” [2,4,5,44]. CPM reflects the state of the art in the field of predicting behaviour from fMRI

data and can therefore serve as a useful point of reference.

The framework consists of the following steps. First, a dimensionality reduction is performed

by some form of brain parcellation or ICA decomposition, see e.g. [45]. Second, a whole-brain

connectivity pattern is calculated by correlating the fMRI activity time courses of every pair of

parcels or components extracted in the first step. Third, a linear model relates this pattern to the

behavioral score of interest. Finally, the model is applied to previously unseen data to generate a

behavioral prediction.

The methods included into this benchmark differ with regard to the input data representation.

The first set of benchmark methods expects input data represented in the voxel space. For these

methods, we include two types of parcellations, namely the parcellations by Shen et al [39], and

that by Power et al. [40].

The second set of benchmark methods expects input data to be represented in a surface represen-

tation called “ grayordinate space (CIFTI)” which is specific to the Human Connectome Project
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(HCP). In grayordinate space, two types of dimensionality reduction are most common. The first

is the atlas-based multimodal parcellation (MMP) [41]. The second is derived from ICA decompo-

sitions so that a node is defined as an ICA component. ICA decompositions were included in our

benchmark because they were used in the “megatrawl” release [1], and are thus a highly relevant

reference in our context. However, analogous ICA decompositions are not available for task fMRI

data in the HCP database and were thus only included as a benchmark for resting state data.

Furthermore, we included three measures of connectivity. Those are partial correlation, Pearson

linear correlation and tangent correlation [46]. For all three measures, covariances are estimated

using the Ledoit Wolf method [47]. In grayordinate space, we only used the tangent correlation as

this was expected to produce the best results [11].

To establish the linear model, we used ridge regression throughout and relied on a generalized cross-

validation procedure over the training set to select the regularisation parameter [48]. This method

provided the best results over appropriate CPM alternatives and reinforced earlier observations

about its performance benefits [11]. Therefore, no feature selection step was performed as in [4].

Table 2 gives an overview of all methods included into the benchmark. All evaluations were done

between the same train/test splits.

Results

In our experiments, we used 390 subjects and 6-fold cross validations so that each training set

had 325 subjects, and each test set had 65 subjects. We recorded the Pearson linear correlation

and the predictive coefficient R2 between the observed and the predicted intelligence scores where

R2 = 1 − SSres/SStotal. Here SSres is the residual sum of squares, and SStotal is total sum

of squares. We also report the mean absolute error (MAE). We randomly defined 20 different

training/test splits resulting in 6 × 20 = 120 different correlation scores, R2 and MAE values. We

used the same training/test splits for the benchmark methods described in the previous section.

Figures 3,4,5,6 show the resulting Pearson correlations between the observed and the predicted

intelligence scores for the G-factor, total, crystallized and fluid intelligence, respectively. The cor-

responding R2 values and mean absolute errors are in the supplementary material (Supplementary

Figures 4,5,6,7). We first note that the results obtained by VEGA in the two task conditions were

clearly better than the results in the resting state condition.

All results were obtained with m = 1000, p = 10 as hyperparameters where m denotes the number

of edges randomly selected in each subset of the ensemble learning, and p denotes the intrinsic

dimensionality of the PLS regression. We then investigated the influence of those two hyperparam-

eters. We found that the results remained almost unchanged with m = 100, 500, 1000, 2000, 5000,

and p = 3, 10, 20, 50. At m = 100 the prediction accuracy decreased, see Supplementary Fig-

ures 12,13,14.
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Figure 3: Correlations between observed and predicted G-factor. The boxplots show the

Pearson linear correlations between the observed versus predicted intelligence scores of 65 test subjects

resulting from 6-fold crossvalidations in 20 different train/test splits (6× 20 = 120 correlation values).

The corresponding R2 values are in the supplement. The results of the new method VEGA (’V’) are

shown in orange. It was tested against several competing methods using the same data and train/test

splits, see table 2. Note that in the language and working memory tasks, VEGA outperformed

all competing methods. In resting state data (voxel space), its accuracy is comparable to the best

competing methods.

Figure 7 shows scatter plots from one of the twenty training/test splits obtained by VEGA. Here

we also included an average of the results between the two tasks. A systematic evaluation of the

effect of combining the two tasks is shown in Supplementary Figure 15. For example, the median

correlation between observed and predicted G-factor improved to 0.587 (R2=0.294). And the median

correlation between the observed and predicted CogTotal improved to 0.526 (R2=0.241).

The boxplots of Figures 3,4,5,6 show that VEGA outperformed all benchmark methods in the two

task conditions. To assess statistical significance, we additionally performed an inference for the

generalization error based on the Z-transformed Pearson correlation scores. Note that standard

t-tests are not valid in this context because the results are derived from the same pool of subjects

so that independence assumptions are violated. Therefore, we used a modified t-test that corrects

for this problem [49,50]. In comparing the two task-based results of VEGA against the best voxel-

based benchmarks, we found that VEGA was indeed significantly better in all cases (p < 0.025).

We then combined the two task-based results of VEGA and compared them against all benchmark

methods including the ones obtained in the grayordinate space, and found that the VEGA result
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Figure 4: Correlations between observed and predicted CogTotal. Results for the CogTotal

score, see caption of Figure 3 for more details.

was significantly better throughout (p < 0.015).

Furthermore, we investigated the effect of scan time on prediction accuracy in the resting state

condition. For example, we found that the median correlation between observed and predicted

G-factor declined slightly from 0.371 (full scan time, 58 min) to 0.360 and 0.347 when the scan time

was cut in half (29 min for each session). And it declined to 0.286, 0.306, 0.294, 0.258 when the scan

time was reduced even further (14.4 min for each run). For details, see Supplementary Figure 16.

We then tested whether or not Ricci-Forman curvature actually helped to increase prediction ac-

curacy. In the language task, we found that without Ricci-Forman curvature the results for the

prediction of the G-factor (median correlations and median R2) decreased from 0.54 (0.27) to 0.50

(0.23). In the working memory task, it decreased from 0.51 (0.23) to 0.49 (0.20). For rsfMRI, it did

not produce a better prediction. For details, see Supplementary Figure 17.

Finally, we investigated which brain areas are most relevant for predicting intelligence. Figure 8

shows these areas for the G-factor in the language task. Specifically, we compute the mean factor

loadings of X that are recorded in the load matrix P . We distinguish between positive and negative
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Figure 5: Correlations between observed and predicted CogCrystal. Results for the

CogCrystal score, see caption of Figure 3 for more details.

factor loadings so that for each edge i, we have

wposi =
∑

Pi,j>0

Pi,j

wnegi =
∑

Pi,j<0

Pi,j

where the index j = 1, ...p denotes the latent factors. The weights wposi, wnegi are then mapped

onto a positive and a negative weight map as shown in Figure 8. Supplementary Figures 18, 19

show similar images for the working memory task and the resting state data.

Discussion

We have introduced a new machine learning method for predicting intelligence from fMRI data. In

contrast to existing methods, it does not require a presegmentation or a brain atlas, nor does it

depend on an ICA decomposition. Rather, it handles the high dimensionality and multicollinearity

of the data via partial least squares regression and ensemble learning.

Recently, Faskowitz et al. [51] have noted that the traditional metric of functional connectivity

should be complemented by more complex edge weights and introduced an edge-centric measure.

Here we have proposed Ricci-Forman-curvature as an alternative concept. It incorporates informa-

tion from adjacent edges and helps to improve predictability by reducing dimensionality.
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Figure 6: Correlations between observed and predicted CogFluid. Results for the CogFluid

score, see caption of Figure 3 for more details.

We implemented a range of existing methods for establishing a benchmark against which we com-

pared our proposed method, see also [52]. We first note that the results in Fig 3(R-100) are approx-

imately consistent with the results previously published by Dubois et al. [17]. Also in agreement

with the literature, the benchmark showed that tangent correlation is generally superior to other

measures of correlation [11]. Both observations demonstrate the replicability of earlier publications,

and also the realism of our benchmark.

A comparison against the benchmark showed that the proposed algorithm VEGA offers a significant

improvement in prediction accuracy in tfMRI data. This is remarkable because this improvement

was achieved at a fraction of the scan time required for rsfMRI. Specifically, the scan time of

the rsfMRI data was almost 1 hour, whereas the scan time for the language task was only about

7.5 minutes, and for the working memory task is was about 10 minutes. Dubois et al [17] report

a noticeable decline in prediction accuracy when the scan time in rsfMRI was reduced to about

30 minutes, an observation that is supported by our own data (Supplementary Fig. 16). This

suggests that rsfMRI may be too unspecific to permit good prediction accuracies at scan times that

will eventually be feasible in clinical applications.

Therefore, we believe that tfMRI may be a better choice for predicting individual behaviour provided

the task is suitable for the application at hand. This is in line with a new initiative for evaluating the

reliability of tfMRI data [53], and it agrees with Greene et al. [54] who reported that task-induced

brain state manipulation improves prediction of individual traits. Surprisingly, the methods included
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in our benchmark failed to exploit the advantages of tfMRI data. We speculate that dimensionality

reduction via brain parcellations may be the primary reason for this failure. In essence, current

parcellation schemes may not be able to reflect the continuous nature of brain topography [55].

The brain areas most relevant for intelligence prediction in the language task appear biologically

plausible as success in intelligence testing is based on focused mental activity during specific tasks.

Indeed, the strongest result regarding factor loadings (Figure 8) was a negative relationship between

connectivity of brain areas typically associated with internally-oriented thought processes (i.e. mind

wandering [56]) and intelligence which concurs with the fact that such processes are rather disruptive

than helpful during cognitive tasks.

We conclude that the prediction of individual behaviour from fMRI data can be greatly improved

with the help of new strategies. In particular, dimensionality reduction via ensemble learning and

the use of task-based fMRI instead of rsfMRI appear to be the most important aspects in this

endeavour.
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Figure 7: Scatter plots showing predictions of the G-factor. Scatter plots for the prediction

of the G-factor obtained by the proposed algorithm VEGA are shown. Each dot represents one of

the 390 test subjects. Note that the results from the two tasks are markedly better than that of the

resting state. The average of the two tasks yields the best result. All four scatter plots are derived

from the same training/test split.
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Figure 8: Predictive areas for general intelligence in the language task. The colors encode

factor loadings (matrix P ) estimated by partial least squares regression averaged over all folds. Strong

positive loadings indicate areas where connectivity with other brain regions is positively correlated

with general intelligence. Strong negative loadings indicate areas where connectivity with other brain

regions is negatively correlated with general intelligence. For example, the negative loadings seem to

highlight the default mode network (DMN). This suggests that a well connected DMN correlates with

low general intelligence. Note that the colors only show relative weights, they do not have interpretable

units.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2021.03.18.435935doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435935
http://creativecommons.org/licenses/by-nc-nd/4.0/


Software
The software will be made available soon.
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Supplementary Figure 1: The brain mask. The brain mask used for this study. It contains

55856 voxels.
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Supplementary Figure 2: The coremap computed using Ricci-Forman curvature. The red

areas show the coremap computed by thresholding the Ricci-Forman curvature map superimposed on

the original brain mask shown in blue. Here, an average of the coremaps across all folds in one of the

20 train-test splits is shown. It was computed for predicting the G-factor from the fMRI data of the

language task.
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Supplementary Figure 3: Ensemble learning. The top image shows voxels that are endpoints

in one subset (L=1) of 1000 randomly selected edges used for ensemble learning. The bottom images

shows the number of times voxels are visited in 2000 such subsets (L=2000). During ensemble learning,

each subset is used in a regression model to derive predictions of intelligence scores. For each subject

in the test set, the resulting 2000 predictions are averaged to reach a final prediction of intelligence.

In this example, voxels were visited about 143 times on average (µ = 143.22, σ = 36.03). Note that

the distribution of the voxels is constrained by the coremap derived from the Ricci-Forman curvature.
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Supplementary Figure 4: R2 between observed and predicted G-factor. The boxplots show

the coefficient of determination R2 between the observed versus predicted IQ scores of 65 test subjects

resulting from 6-fold crossvalidations in 20 different train/test splits (6× 20 = 120 correlation values).

The corresponding R2 values are in the supplement. The results of the new proposed method VEGA

(’V’) are shown in orange. It was tested against several competing methods as listed in table?? using

the same data and train/test splits. Note that in the language and working memory tasks, the proposed

method outperformed all competing methods. In resting state data, its accuracy is comparable to the

best competing methods.
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Supplementary Figure 5: R2 between observed and predicted CogTotal. Results for the

CogTotal score, see caption of Supplementary Figure 4 for more details.
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Supplementary Figure 6: R2 between observed and predicted CogCrystal. Results for the

CogCrystal score, see caption of Supplementary Figure 4 for more details.
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Supplementary Figure 7: R2 between observed and predicted CogFluid. Results for the

CogFluid score, see caption of Supplementary Figure 4 for more details.

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2021.03.18.435935doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435935
http://creativecommons.org/licenses/by-nc-nd/4.0/


 0.2

 0.4

 0.6

 0.8

PS PP CS CP TS TP V

Language task, voxel space

 0.2

 0.4

 0.6

 0.8

PS PP CS CP TS TP V

Working memory task, voxel space

 0.2

 0.4

 0.6

 0.8

PS PP CS CP TS TP V

Resting state, voxel space

 0.2

 0.4

 0.6

 0.8

R-100 R-300 R-MMP L-MMP W-MMP

Grayordinate space

Supplementary Figure 8: Mean absolute error (MAE) between observed and predicted

G-factor. The boxplots show the mean absolute error between the observed versus predicted IQ scores

of 65 test subjects resulting from 6-fold crossvalidations in 20 different train/test splits (6× 20 = 120

correlation values). The corresponding R2 values are in the supplement. The results of the proposed

method VEGA (’V’) are shown in orange. It was tested against several competing methods as listed

in table?? using the same data and train/test splits. Note that in the language and working memory

tasks, the proposed method outperformed all competing methods. In resting state data, its accuracy

is comparable to the best competing methods.
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Supplementary Figure 9: MAE between observed and predicted CogTotal. Results for the

CogTotal score, see caption of Supplementary Figure 4 for more details.
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Supplementary Figure 10: MAE between observed and predicted CogCrystal. Results for

the CogCrystal score, see caption of Supplementary Figure 4 for more details.
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Supplementary Figure 11: MAE between observed and predicted CogFluid. Results for

the CogFluid score, see caption of Supplementary Figure 4 for more details.
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Supplementary Figure 12: Prediction accuracy with various hyperparameter settings.

The plot shows correlations between observed and predicted G-factors using the language task. The

left boxplots (A) shows a variation of the parameter m = 100, 500, 2000, 5000, with p = 10 fixed. The

right plot (B) shows a variation of the parameter p = 3, 5, 10, 50 with m = 1000 fixed.
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Supplementary Figure 13: Prediction accuracy with various hyperparameter settings.

Same as Supplementary Figure 12, but for the working memory task.
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Supplementary Figure 14: Prediction accuracy with various hyperparameter settings.

Same as Supplementary Figure 12, but for resting state fMRI.
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Supplementary Figure 15: Combining two tasks. Prediction accuracy improves when the results

from the two tasks (language and working memory) are combined. The boxplots show Pearson linear

correlation and predictive R2 between observed and predicted intelligence scores.
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Supplementary Figure 16: The effect of scan time on prediction accuracy (resting state).

The boxplots show the reduction in predictive R2 as scan time is reduced. The leftmost boxplot

shows the results with the complete scan time (≈ 58 min). The next two boxplots (S1,S2) show the

results for session 1 and 2 (29 min each). The four rightmost boxplots show the results for each of the

four runs, i.e. session 1 with LR-phase encoding, session 1 with RL-phase encoding, session 2 with

LR-phase encoding, session 2 with RL-phase encoding (14.4 min each).
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Supplementary Figure 17: The effect of Ricci-Forman curvature maps on prediction

accuracy. The thresholded curvature maps were helpful in providing more accurate predictions of

the G-factor in task-fMRI, but not in resting state fMRI. The boxplots LG+ and LG- show R2 values

for the language task with and without curvature maps, respectively. Likewise, WM+, WM-, RS+,

RS- show R2 values for the working memory task and rs-fMRI with and without the thresholded

curvature map.
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Supplementary Figure 18: Predictive areas for general intelligence in the working mem-

ory task. The colors encode factor loadings (matrix P ) estimated by partial least squares regression.

Strong positive loadings indicate areas where connectivity with other brain regions is positively corre-

lated with general intelligence. Strong negative loadings indicate areas where connectivity with other

brain regions is negatively correlated with general intelligence. The colors only show relative weights,

they do not have interpretable units.
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Supplementary Figure 19: Predictive areas for general intelligence in resting state. The

colors encode factor loadings (matrix P ) estimated by partial least squares regression. Strong positive

loadings indicate areas where connectivity with other brain regions is positively correlated with general

intelligence. Strong negative loadings indicate areas where connectivity with other brain regions is

negatively correlated with general intelligence. The colors only show relative weights, they do not

have interpretable units.
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Row-column centering

Let Xtrain be the n×m training matrix. Let µ denote its total mean value, i.e.

µ =
1

nm

∑
i,j

Xtrain
i,j (2)

and let Xtrain
.j denote the mean values across column vectors j = 1, ...,m, and Xtrain

i. the mean

values across row vectors i = 1, ..., n.

Then the matrix Xtrain is centered as follows:

X̂train
i,j = Xtrain

i,j −Xtrain
i. −Xtrain

.j + µ (3)

And the test matrix Xtest is centered as follows:

X̂test
i,j = Xtest

i,j −Xtest
i. −Xtrain

.j + µ (4)

Note that the total mean µ and the column means Xtrain,
.j are derived from the training matrix.

But the row means Xtest
i. are derived from the test matrix because they correspond to individual

subjects.
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