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Abstract 

DNA determines where and when genes are expressed, but the full set of sequence 

determinants that control gene expression is not known. To obtain a global and unbiased view 

of the relative importance of different sequence determinants in gene expression, we measured 

transcriptional activity of DNA sequences that are in aggregate ~100 times longer than the 

human genome in three different cell types. We show that enhancers can be classified to three 

main types: classical enhancers1, closed chromatin enhancers and chromatin-dependent 

enhancers, which act via different mechanisms and differ in motif content. Transcription factors 

(TFs) act generally in an additive manner with weak grammar, with classical enhancers 

increasing expression from promoters by a mechanism that does not involve specific TF-TF 

interactions. Few TFs are strongly active in a cell, with most activities similar between cell 

types. Chromatin-dependent enhancers are enriched in forkhead motifs, whereas classical 

enhancers contain motifs for TFs with strong transactivator domains such as ETS and bZIP; 

these motifs are also found at transcription start site (TSS)-proximal positions. However, some 

TFs, such as NRF1 only activate transcription when placed close to the TSS, and others such 

as YY1 display positional preference with respect to the TSS. TFs can thus be classified into 

four non-exclusive subtypes based on their transcriptional activity: chromatin opening, 

enhancing, promoting and TSS determining factors – consistent with the view that the binding 

motif is the only atomic unit of gene expression.
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Introduction  

The temporal and spatial pattern of gene expression is encoded in the DNA sequence; 

this information is read and interpreted by transcription factors (TF), which recognize and bind 

specific short DNA sequence motifs2,3. Major efforts have been undertaken to determine the 

DNA binding specificities of TFs in vitro4,5,6,7,8 and in mapping their binding positions in 

vivo9,10,11. TFs regulate gene expression by binding to distal enhancer elements, and to 

promoters located close to the transcription start site (TSS)1,10,12. Both enhancers and promoters 

are characterized by RNA transcription13,14, presence of open chromatin15,16 and histone H3 

lysine 27 acetylation17 (H3K27ac). In addition, promoters and enhancers are marked by histone 

H3 lysine 4 (H3K4) trimethylation and monomethylation18, respectively. Although these 

features can be mapped genome-wide in a high-throughput manner, they are correlative in 

nature and do not establish that an element can act as an enhancer. To more directly measure 

enhancer activity, several investigators have developed massively parallel reporter assays 

(MPRAs) and used them to study the activity of yeast19,20, Drosophila21,22 and 

human23,24,25,26,27,28 gene-regulatory elements on a genome-wide scale. However, unbiased 

discovery of sequence-determinants of human gene expression by only analyzing genomic 

sequences is made difficult by the fact that the genome is repetitive and evolved to perform 

multiple functions in addition to transcription. Furthermore, the human genome is too short to 

even encode all combinations, orientations and spacings of the 1639 TFs2 in multiple 

independent sequence contexts. Thus, despite the vast amount of information generated by the 

genome-scale experiments, most sequence determinants that drive the activity of human 

enhancers and promoters, and the interactions between them remain unknown. 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2021.03.18.435942doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435942


3 

Results 

Ultra-complex MPRA libraries with 100 times human genome coverage 

To comprehensively characterize the sequence determinants of human gene regulatory 

element activity, we developed a set of four MPRA libraries that cover more than 100 times the 

sequence space of the human genome (see Methods for details). The libraries are based on the 

STARR-seq design21, in which putative enhancers are cloned to an exon, and the enhancer 

activity is then read using RNA-sequencing (Fig. 1a). Three libraries were designed to measure 

enhancer activities of (i) combinations of known TF binding motifs, (ii) ~500 bp fragments of 

genomic DNA and (iii) synthetic random 170 bp sequences, and the fourth library was designed 

(iv) to measure both enhancer and promoter activities of synthetic random 150 bp sequences. 

To enable analysis of the effect of DNA methylation on transcriptional activity, we developed 

a MPRA vector that is devoid of CG dinucleotides: in designs i to iii, the Lucia reporter gene 

is driven by CG depleted minimal promoters, whereas in design iv, the promoter is replaced by 

150 bp random DNA sequences (Fig. 1a; see Methods and Tables S1, S2). Sequencing of the 

input libraries revealed their ultra-high complexity reaching billions of unique fragments (Fig. 

S1a,b; see Methods). 

 

Few TFs display strong transcriptional activity in cells 

To measure the enhancer activity of the known TF consensus sequences, we transfected 

GP5d colon carcinoma cells with the motif libraries (Fig. 1a, i), and purified total poly(A+) 

RNA from the transfected cells. The synthetic motif sequences that were transcribed to RNA 

were recovered using RT-PCR and the abundance of each sequence then quantified by 

massively parallel sequencing (see Methods). Comparison of the median activities of the 

individual TF consensus sequences revealed that several TFs had enhancer activity in GP5d 

cells (Fig. 1b; Fig. S2a; Table S5). The most active motifs displayed similar activities when 

placed in different sequence contexts, and between experiments using two different basal 
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promoters, δ1-crystallin and CpG-free EF1α promoters (Fig. S2a,b). Although the method used 

measures activities of consensus sequences and/or motifs, the TFs or groups of TFs that bind 

to the sequences can be inferred from the motifs and TF expression levels29. Such combined 

analysis revealed that TFs that express at a relatively high level in GP5d cells can bind to the 

strongly active motifs (average 102 transcripts per million (tpm) vs. 26 tpm for all genes and 

20 tpm for all TFs from ref.2); however, the correlation between motif activity and expression 

of corresponding TFs was weak (Fig. 1c), indicating that expression alone does not determine 

transcriptional activity. The consensus sequence corresponding to the p53 protein family (p53, 

p63 and p73) displayed the strongest enhancer activity in this assay (Fig. 1b). As the library 

contained each single-base substitution to the p53 family consensus sequence, we were able to 

generate an activity position weight matrix (PWM) for the consensus. The activity PWM was 

highly similar to the SELEX-derived motif for the p53 family (Fig. S2c), indicating that the 

measured enhancer-activity originated from a p53 family TF, and that the assay can be used to 

faithfully measure TF activities in cells. 

 

Quantitative analysis revealed that only three other motifs, representing interferon 

regulatory factor (IRF), grainy-head like (GRHL) and E26 transformation-specific (ETS) TFs 

had activity that was within 1% of the maximal activity observed for the p53 family motif (Fig. 

1b, dotted line). Of note, the two most enriched motifs, p53 and IRF, are bound by TFs that 

respond to cellular alarm signals such as DNA damage (p53) and cytoplasmic DNA (IRF), 

suggesting that ordinary transfection can induce these alarm signals. 

 

Comparison of enhancer activities of motifs with the DNA binding activities of 

respective TFs measured by active TF identification (ATI) assay29 revealed that the 

transcriptional and DNA binding activities were only weakly correlated (log2 fold change, 
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Pearson R2= 0.032), with only a subset of motifs with moderate enhancer activity (e.g. YY) 

also displaying moderate DNA binding activity (Fig. 1d). 

 

Synergy, additivity and saturation of activity 

Apart from simple cellular alarm signals, most transcription is thought to require 

combinatorial action of many TFs30,31,32. Consistently with this, we observed that the average 

activity of all consensus sequences was very low, and for the majority of the TFs, the enhancer 

activity increased as a function of the number of consensus sequences (Fig. S2d, red horizontal 

lines). Conversely, for the TFs that can activate transcription alone (e.g. p53, IRF HT2 with A-

rich 5’ sequence), two consensus sequences had lower activity than that predicted from an 

additive model (Fig. 1e, red dotted line), presumably due to saturation of both the occupancy 

and the downstream transcriptional activation. For TFs with intermediate activity levels (e.g. 

NFAT and YY), activity increased linearly rather than synergistically as a function of the 

number of binding sites (Fig. S2d). The simplest model consistent with these observations is 

that human enhancer activation requires overcoming a repressive activity, after which 

activation is linear (additive) until it starts to saturate as it approaches a maximum level. 

 

Transcriptional enhancers can readily evolve de novo from random sequences 

To discover sequence features that contribute to human enhancer activity in an unbiased 

manner, we measured the activity of sequences from the extremely complex random enhancer 

library (Fig. 1a, iii) in GP5d cells. Motif-mapping across replicate experiments indicated that 

motif activities were highly reproducible (Fig. S3a); we also observed a linear increase in 

enhancer activity as a function of the number of motif matches for TFs with moderate activity 

(e.g. bZIP TRE), and a saturation of the enhancing effect of multiple matches of p53 family 

motifs (Fig. S4a,b). Importantly, we also detected enrichment of motifs corresponding to 

known TFs specific to colon cancer and intestinal lineage, such as TCF/LEF, GRHL, and HNF4 
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(Fig. S4a). De novo motif mining identified several TF motifs; most of these were for individual 

TFs or conventional heterodimers, suggesting that the backbone of the transcriptional system 

is based on individual TFs acting together without strict spacing preferences or grammar. 

However, one strong de novo motif identified was for a new ETS-bZIP composite motif, 

revealing a potential role for ETS-bZIP combinatorial control in colon cancer cells (Fig. S5a). 

These results indicate that transcriptional enhancers are relatively simple low information 

content sequence features that can be evolved from random sequence in a single enrichment 

step. 

 

To determine all sequence features present in the de novo evolved enhancers, we used 

machine learning classifiers, with 70%, 15% and 15% of the data used for training, validation 

and test sets, respectively. First, we determined the importance of known motif features using 

a logistic regression model (see Methods); we found that only a handful of known TF binding 

motifs are needed for optimal logistic regression classification (Fig. 1f; Fig. S4c; see Methods 

for details) of the active enhancer sequences from the inactive ones, and that their interactions 

were largely additive, as specific pairwise combinations did not add substantially to the 

predictive power. The most predictive features were motifs for known TFs important for 

tumorigenesis and for colon development (Fig. 1f). Next, to identify all sequence features, we 

trained a convolutional neural network (CNN)-based classifier similar to DeepBind33 on the 

sequence data. This method is capable of learning the sequence motifs, their combinations, and 

their relative weights de novo. The CNN classifier performed substantially better than logistic 

regression using the same training, validation and test sets (Fig. S4c,d; see Methods for details). 

Analysis of the CNN classifier revealed that it had learned motif features similar to those 

identified by the logistic regression (Fig. 1g). No other motifs were detected, suggesting that 

the CNN can either improve the PWM motifs themselves, or that there are other types of 
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sequence features, or interactions between features (Fig. 1g) that are important in classification 

that are not captured by the logistic regression model (see Methods).  

 

Transcriptional landscape of a cell is dominated by housekeeping TFs 

To determine whether enhancers are similar between cell types, we used the random 

enhancer library (Fig. 1a, iii) to identify sequence features important for enhancer activity in 

HepG2 hepatocellular carcinoma cells. Comparison of enhancer motifs between the GP5d and 

HepG2 cells revealed that most motifs had similar enhancer activity across the cell lines (Fig. 

1h). The motifs that had differential activity corresponded to lineage-determining TFs (GRHL 

in GP5d), TFs important for tissue function (TEAD and ATF4:CEBPB in HepG2), or were 

related to the known deficiency of the HepG2 cells in interferon signaling (IRF3)34. 

Importantly, the lineage-determining factors showed clear differential expression between the 

two cell types (Fig. S6), indicating that activities of individual TFs are commonly affected by 

expression level, despite the differences in specific activities of TFs leading to a low correlation 

between expression and activity across all TFs (see Fig. 1c). Taken together, the transcriptional 

landscape of a cell is dominated by cell-biological or “housekeeping” TFs; the strongest 

differences between cells represent known TFs that are important for specification and/or 

function of the specific lineages. 

 

Comparison of genomic enhancers and de novo evolved enhancers  

To determine how sequence features combine to generate functional genomic 

enhancers, we assayed enhancer activity in GP5d and HepG2 cells using ~500 bp fragments 

derived from GP5d genome (Fig. 1a, ii) before and after methylation of the library. To 

determine the role of p53 in enhancer activity, we performed similar experiments also in p53-/- 

GP5d cells (Fig. S7a-c). The high complexity of the library (2.09 x 109 distinct clones; Fig. 

S1), replicate concordance and excellent signal-to-noise ratio  allowed detection of enhancer 
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activity at ~1.5 bp resolution (Fig. S3c,d; see Methods). Consistent with the known association 

between accessible chromatin, TF binding and enhancer activity, the STARR-seq peaks 

overlapped significantly with chromatin accessibility (Fig. 2a-c; Fig. S7d-g). Furthermore, 

ATAC-seq peaks could be predicted by a CNN trained using genomic or random STARR-seq 

sequences (Fig. S7i), indicating that the sequence features discovered using STARR-seq 

correspond partially to the features that are associated with open chromatin in vivo. However, 

the overlap between ATAC-seq and STARR-seq was only partial; detailed analysis (Fig. 2a,c) 

revealed six classes of elements: i) closed chromatin enhancers (STARR-seq+, ATAC-seq-), ii) 

cryptic enhancers (silenced STARR-seq+ regions), iii) promoters (ATAC-seq+ with or without 

STARR-seq), iv) chromatin-dependent enhancers (STARR-seq-/low, ATAC-seq+ with active 

histone marks), v) structural chromatin elements (STARR-seq-, ATAC-seq+, CTCF+) and vi) 

classical enhancers (STARR-seq+, ATAC-seq+). 

 

All three types of enhancer (closed chromatin, chromatin dependent and classical) 

appeared active based on the fact that inclusion of the corresponding features improved 

prediction of differential gene expression between GP5d and HepG2 cells (Table S6; see 

Methods). Analysis of ChIP-seq peaks and motifs present in the different classes of elements 

revealed that classical and closed-chromatin enhancers bound to TFs and contained motifs that 

were similar to those that were found in active elements selected from random sequences (Fig. 

S5b; see also Fig. 1h). Chromatin-dependent enhancers contained an additional set of motifs 

that were not present on random STARR-seq, including motifs for FOXA and HNF4A. These 

results indicate that cells contain three distinct classes of enhancers. One of these is the classical 

enhancer described by Banerji et al. (ref.1); these elements contain open chromatin and 

transactivate a heterologous promoter regardless of position or orientation. The other main type 

of cellular enhancer appears dependent on chromatin and cannot be effectively detected using 

STARR-seq (see also ref.35); these elements are associated with strong signal for open 
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chromatin and the activating histone mark H3K27ac. Conversely, closed chromatin contains a 

third type of enhancer activity that cannot be detected using these classical marks, and whose 

detection requires STARR-seq.  

 

Consistently with few TFs determining the overall transcriptional landscape of a cell, 

the genomic STARR-seq peaks were enriched for relatively few motifs. The motifs themselves 

were similar to known monomeric, dimeric and composite TF motifs determined using HT-

SELEX6 and CAP-SELEX36 (Fig. S5a). The motifs discovered from genomic and random 

enhancers were largely similar (Fig. S5a). The main difference was the discovery of the pioneer 

factor FOXA from genomic fragments, suggesting that although FOXA proteins do not strongly 

activate transcription, their motifs are associated with classical genomic enhancers because of 

the ability of FOXA to displace nucleosomes and/or to open higher order chromatin. This is 

also consistent with the fact that FOXA motifs were strongly enriched in chromatin-dependent 

enhancers that lacked STARR-seq signal (Fig. S5b). Many of the motifs discovered from 

genomic STARR-seq also displayed strong DNA binding activity in an ATI assay (Fig. S5a), 

indicating that strong DNA binders are important for in vivo enhancer activity, potentially 

because they are capable of opening chromatin29. In summary, the sequence features of classical 

genomic enhancers are highly similar to those evolved from random sequence; these motifs 

define the classical enhancer activity of a cell. In addition to this activity, additional chromatin-

dependent enhancers confer tissue-specificity to genes; these elements are characterized by 

motifs for TFs that have lower transactivation activity, suggesting that these TFs act via 

chromatin to facilitate the activity of promoters and associated classical enhancers. Consistently 

with this view, the strongest cellular enhancers, super-enhancers, typically consist of arrays of 

chromatin-dependent elements associated with a classical enhancer (Fig. 2b; Fig. S7h). 
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Sequence features of promoters and enhancers evolved from random sequences 

 To identify sequence determinants of human promoter activity, we assayed the activity 

of the “binary STARR-seq” library consisting of random sequences placed in the position of 

both the promoter and the enhancer (Fig. 1a, iv). For this analysis, we used two tumor cell lines 

(GP5d and HepG2) and an untransformed cell line derived from retinal pigment epithelium 

(RPE1). Robust promoter activity was observed in all three cell lines from a subset of the 

random sequences, and motif-mapping across replicate experiments in GP5d cells showed that 

motif activities were highly reproducible (Fig. S3b). As observed for the motifs at active 

enhancers, most motifs enriched at promoters were similar in all cell types. The motifs that 

displayed differential activity were linked to lineage determination (e.g. HNF1A) and 

specialized cell functions (ATF4:CEBP in HepG2; Fig. 3a). Comparison of the evolved 

sequences in GP5d cells revealed that many sequence motifs were enriched in both the promoter 

and the enhancer positions (Fig. 3b). However, elements with preferential enrichment were also 

detected. For example, while p53 and YY motifs were similarly enriched at promoters and 

enhancers, ETS motifs were preferentially, and NRF1 motifs almost exclusively enriched at 

promoters (Fig. 3c). No motif enriched only at enhancers, indicating that all motifs with 

enhancing activity can also act from a proximal position at the promoter (Fig. 3b).  

 

A novel G-rich element that interacts with the TSS 

To evaluate the positioning of the different features relative to the TSS, we first determined the 

TSS position within the promoters derived from random sequences by recovering the 5’ end of 

the transcript using a template switch (Fig. 4a), yielding 85,217 unique TSS positions. The 

obtained reads preferentially mapped to positions that displayed a 10 bp periodicity relative to 

the STARR-seq vector (Fig. S8a). The pattern was consistent with the loading of the RNA 

polymerase II pre-initiation complex onto the random sequence, as the periodic pattern 

weakened when the ~100 bp region occupied by the pol II complex included plasmid-derived 
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constant sequences. Similar, but very weak periodicity was also observed in p53 motif 

positioning at the enhancer, suggesting that plasmid supercoiling, or some sequence feature in 

the vector makes one side of the DNA more accessible (Fig. S8b). 

 

Alignment of the recovered sequences with respect to the TSS positions (see Methods) 

revealed a relatively high information content feature located at the TSS that corresponded to 

the classic Initiator motif (Fig. 4b). In addition, a clear AT-rich region was observed at the 

canonical -30 position of the TATA-box. However, we did not detect other TSS-proximal 

motifs that have previously been described (BRE, DPE, MTE, DCE, X-core promoter element, 

and TCT32,37,38,39,40). The transcript side was characterized by a modest increase in G across a 

relatively wide region (+10 to +35); this, to our knowledge novel feature is also observed in 

genomic promoters (Fig. S8c). To identify interactions between the features, we performed 

mutual information analysis41. Strongest signal was for very short-range interactions located 5' 

to the TSS; this signal represents enrichment of individual TF motifs. Two mutually exclusive 

longer-range interactions were detected, one between the TATA-box and the TSS, and the other 

between the TSS and the G-rich downstream sequence (Fig. 4c). This pattern is consistent with 

the loading of the RNA polymerase II either “heel first” (TFIID) or “toe first” (TFIIH) with 

respect to the TSS. 

 

Motif mapping revealed that many TF motifs were also specifically positioned and 

oriented relative to the TSS (Fig. 4d,e). The strongest positional signals were observed for the 

TATA-box, Initiator and YY (YY1). YY1 motifs were mainly enriched on the transcript side 

(the first C of the CCAT sequence occurring on the - strand at position +12), oriented in such a 

way that the YY1 protein can position and orient the RNA polymerase II to direct transcription 

towards the YY motif (Fig. 4d; see ref.42). In addition, many TF motifs preferentially enriched 

close to the TSS (Fig. 4d). On the 5’ side, the strongest enrichment occurs close to the TSS, 
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slowly decreasing as a function of distance. On the 3’ side, the enrichment declines more 

sharply so that very little enrichment of most motifs is observed beyond the +20 position from 

the TSS (Fig. 4d,e).  

 

Prediction of cellular transcriptional activity using the sequence features 

To determine how well transcription can be predicted based on the evolved promoter 

sequences, we used the sequences to train a CNN model (see Methods), and to predict the TSS 

positions genome-wide. To test the CNN, we first used it to score wild-type and mutant forms 

of the TERT promoter43,44,45,46; the model correctly predicted that known cancer-associated 

mutations45 increase the activity of this promoter (Fig. 4f; Fig. S9a-d). We next used the CNN 

to predict the positions of active TSSs in GP5d cells. The TSS annotation was derived from the 

EPD database47, and the activity of the TSSs was determined using cap analysis of gene 

expression (CAGE; see Methods). This analysis revealed that promoters evolved from random 

sequences were more predictive than the genomic sequences themselves (Fig. 4g; Fig. S9e). A 

novel mutual information based analysis of interactions learned by the CNN classifiers (see 

Methods) revealed that the classifiers trained on STARR-seq data learned a stronger position-

specific signal than the classifiers trained on the EPD data, which relied more on information 

present at a relatively short region around the TSS (Fig. S9f,g; see Methods). These results 

highlight the power of unbiased interrogation of sequence-space that is 100 times longer than 

the human genome. 

 

Local enhancer-promoter interactions are additive and non-specific in nature  

 The binary STARR-seq approach allows identification of interactions between 

promoters and enhancers. For this analysis, we counted single motif matches at the promoter 

and enhancer positions, and all pairs of motif matches. When promoters and enhancers were 

analyzed separately, almost all pairs of TF motifs enriched independently of each other. 
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Strikingly, even across promoters and enhancers, all motifs were independently enriched, 

suggesting that enhancers activate promoters – but in a very non-specific manner (Fig. 5a). 

Some highly enriched TF-TF pairs, however, displayed weaker activity than that expected from 

a model that assumes additive action of the enhancer and promoter (Fig. 5b). No TF-TF pair 

was identified that would display substantially stronger transcriptional activity than that 

expected from independent action of the individual TFs (see also Fig. S10a).  

 

Unbiased machine learning analysis also supported a general mechanism of integration 

of promoter and enhancer activities (Fig. 5c). A classifier using only promoter sequences 

outperformed a classifier using the enhancer sequences, indicating that the promoter-elements 

contained more information required for classification of regulatory element activity. As 

expected, combining the promoters with the correct enhancer sequences increased classification 

performance significantly. However, permutating the pairings between the promoters and 

enhancers resulted in similar performance, indicating that there was no predictive power in the 

specific pairing of individual promoters and enhancers. Taken together, these results indicate 

that the mechanisms that control transcription are very general, and that the activities of all TFs 

can independently contribute to transcriptional activity.   
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Discussion 

Learning the rules by which DNA sequence determines where and when genes are 

expressed has proven surprisingly hard, despite the availability of full genome sequences of 

several mammals48, extensive maps of genomic features9,10,15,18, and genome-scale data about 

TF protein expression levels and TF DNA binding in vitro6,8,49. Direct comparison of activities 

between TFs has remained difficult, and therefore we generally lack parameters describing the 

relative strength of the different sequence features and their interactions that are required to 

predict their aggregate activity. To address this, we have here defined sequence determinants 

of human regulatory element activity in an unbiased manner, using a molecular evolution 

approach where genomic, designed and random sequences are identified that display promoter 

or enhancer activity.  

 

We found that the cellular gene regulatory system is relatively complex, consisting of 

several distinct kinds of elements. However, the motif grammar within the elements is relatively 

loose. In the evolved sequences, precise TF arrangements such as those found in the interferon 

enhanceosome50,51 are rare, with most elements consisting of TFs acting together largely in an 

additive manner30,31,32,52,53,54,55,56. Cells are very similar to each other, and the topology of the 

gene regulatory network is hierarchical, with few TFs displaying very strong transactivation 

activity. Our findings contrast with the known tissue-specificity of many putative enhancer 

elements in vivo57,58. Interestingly, the level of conservation of many endogenous promoters 

and enhancers appears to be higher59 than the elements selected in our assay (Fig. S10b). The 

simplest explanation for these two facts is that enhancers in vivo evolve to be specific, and that 

due to the similarity between cells, specificity is more difficult to achieve than activity. 

Specificity is also required to silence strongly active elements in cell types where a protein is 

not needed, due to the significant fitness cost of protein expression60. 
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The original functional definition described enhancers as genetic elements that can 

activate a promoter from a distance, irrespective of their orientation relative to the TSS1. We 

find here that in addition to these elements, two other types of enhancing gene regulatory 

elements exist: chromatin-dependent enhancers and closed chromatin enhancers (Fig. 5d). The 

chromatin-dependent enhancers are characterized by forkhead motifs, and binding of Mediator 

and p300 protein, and strong signal for H3K27 acetylation. Unlike classical enhancers, 

chromatin-dependent enhancers do not transactivate a heterologous promoter strongly, most 

likely due to lack of binding of TFs with strong transactivator domains. Their presence is, 

however, strongly predictive of tissue-specific gene expression, suggesting that they act to 

increase gene expression via chromatin modification or structural changes in higher-order 

chromatin. Several chromatin-dependent enhancers also combine with a single classical 

enhancer to form super-enhancers (see Fig. 2b), indicating that these elements may be required 

for driving high levels of gene-expression from distal promoters. 

 

Closed chromatin enhancers, in turn, are located in regions that show little or no signal 

for DNase I hypersensitivity or ATAC-seq. They are not silenced by CpG methylation. These 

elements appear to consist of only a single TF (e.g. p53; see also ref.61) or a set of closely bound 

TFs that fit between or associate directly with well-ordered nucleosomes41. The prevalence of 

both the closed chromatin enhancers and chromatin-dependent enhancers suggests that they 

may contribute significantly to regional control of gene expression56,62. 

 

By using machine learning approaches, we show here that transcriptional activity in 

human cells can be predicted from sequence features (see also refs63,64,65,66). Interestingly, we 

found that the promoters enriched from completely random synthetic sequences in a single 

experimental step are even more predictive of transcriptional activity than the genomic 

sequences themselves. By analysis of de novo evolved promoters, we discovered a novel G-
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rich element that interacts with the TSS, potentially positioning RNA polymerase II to the TSS 

independently of the TATA box. Overall, TF activities could be classified into three groups: 

TSS position determining activity (e.g. TATA-box, YY), short range promoting activity (e.g. 

NRF1), and enhancing activity (many TFs). We did not detect a separate class of distal 

enhancing activity, suggesting that activities that would allow an enhancer to selectively act at 

a very long range is likely to be associated with chromatin-dependent enhancers and not 

classical enhancers67,68,69,70,71. The three classes of activities detected are not mutually 

exclusive, suggesting that TFs act at multiple levels and/or scales to regulate transcription (Fig. 

5d). For example, YY1 acts both as an enhancing TF and as a TSS-determining one, and that 

FOXA motifs are present at both chromatin-dependent and classical enhancer elements. Our 

results thus indicate that gene regulatory elements are not the atomic units of gene expression, 

and that TF motifs should ultimately be the basis of analysis and prediction of genomic gene 

regulatory activity.  

 

Our random promoter-enhancer design allowed unbiased discovery of features that 

facilitate interactions between classical enhancers and promoters at a relatively short range. No 

specific pair of motifs controlling such interactions was found. This, together with the fact that 

no specific TF that only acts from an enhancer was found is consistent with a generic and 

indirect mechanism of action, where the activities of individual TFs bound to an enhancer are 

aggregated, and their total activity then activates the promoter. Molecularly, these results are 

consistent with mediation of the effect by the least specific type of biochemical interaction, 

steric hindrance. The simplest mechanism for enhancer action would involve opening of higher 

order and local chromatin in such a way that the steric hindrance that prevents large 

macromolecular complexes such as mediator or RNA polymerase II from loading to DNA is 

decreased (Fig. 5d; see ref.72). In summary, we show here that direct experimentation to 

interrogate transcriptional activities of sequences that are on aggregate >100 times longer than 
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the human genome can be used to determine mechanisms of action of, and interaction between, 

gene regulatory elements. The experiments revealed unexpected simplicity of gene regulatory 

logic. The discovery of the relative simplicity of the interactions, together with the ability to 

measure transcriptional activities of all TFs in a cell represents a significant step toward 

achieving the ultimate aim of regulatory genomics – predicting gene expression from sequence. 
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Figures and figure legends 

 

 

Fig. 1. Few TFs display strong transcriptional activity in cells.  

a, Schematic representation of the MPRA (STARR-seq) reporter construct and its variations 

used in the study. Design of the MPRA reporter constructs and experimental workflow for 

measuring promoter or enhancer activity in mammalian cells is shown. For enhancer activity 
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assays, DNA library comprising of either synthetic TF motifs (i), human genomic fragments 

(ii), or completely random synthetic DNA oligonucleotides (iii) is cloned within the 3’UTR of 

the reporter gene (ORF) driven by a minimal δ1-crystallin gene (Sasaki) promoter or CpG-free 

EF1α promoter. For random promoter and random enhancer (iv) activity assays random 

synthetic DNA sequences are cloned upstream of the ORF in place of the minimal promoter 

and downstream of the ORF in the 3’ UTR. The motif library (i) comprises a total of 92,918 

individual sequence patterns including 1121 TF consensus sequences6,8 and 30,123 mutant 

consensus sequences in two motif-depleted sequence contexts (to control for effect of flanking 

bases). Each pattern only contained one type of consensus sequence, present once, twice and/or 

three times. Multiple consensus sequences were arranged in different spacings and orientations 

relative to each other (see Methods and Tables S3, S4 for details). In the experiments, the 

MPRA reporter libraries are transfected into human cell lines and total RNA is isolated after 24 

hours of transfection followed by enrichment of reporter-specific RNA and Illumina library 

preparation, sequencing and data analysis. The active promoters are recovered by mapping their 

transcribed enhancers to the input DNA and taking the corresponding promoter pairs. 

 

b, Enhancer activity of HT-SELEX motifs. Synthetic TF motif library was transfected into 

GP5d cells and motifs were analyzed for enhancer activity. Median fold change (fc) of the 

sequence patterns containing once the motif consensus or its reverse complement over the input 

library is shown. Red dotted line marks 1% activity related to the strongest motif. Dimeric 

motifs are indicated by orientation with respect to core consensus sequence (GGAA for ETS, 

ACAA for SOX, AACCGG for GRHL and GAAA for IRF; HH head to head, HT head to tail, 

TT tail to tail, followed by gap length between the core sequences). Asterisk indicates an A rich 

sequence 5’ of the IRF HT2 dimer. Table S5 describes the naming of the motifs in each figure.  
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c, Expression level (tpm; reads per transcript per million) in GP5d cells for TFs that bind to the 

motifs with strong activity in panel (b). The motif that the TF can bind is shown in parentheses. 

Note that the order is the same as in panel (b). 

 

d, Comparison between motif transcriptional activity (x-axis) and biochemical binding activity 

from ATI assay (y-axis) in GP5d cells. Note that the Pearson correlation between the 

transcriptional activity and the biochemical activity is relatively low (R=0.032) indicating that 

the TF motifs responsible for the activities are largely distinct. Note also that some TFs can 

bind to two or more slightly different motifs that can have somewhat different activities (e.g. 

p53-family motif is bound by all p53 family members, p53, p63 and p73, whereas the p53-

specific motif is only bound by p53). 

 

e, Analysis of the effect of number of TF binding sites on enhancer activity from synthetic motif 

library in GP5d cells. For each TF motif, the fold change (log2) compared to the input is shown 

for one versus two binding sites. The dashed line represents the expected fold change if two 

sites have the same effect as one, and the red dotted line represents the expected fold change if 

the two sites act in an additive manner. Note that additive effect in the logarithmic space equals 

multiplication of fold changes. 

 

f, Regression coefficients for different TFs and TF pairs from logistic regression analysis of 

enhancer activities measured from random enhancer library in GP5d cells (see Methods for 

details). Coefficient value (y-axis) is shown for all TFs and pairs of TFs, with features with the 

strongest predictive power indicated by labels.  

 

g, Non-linear effect of multiple motifs inserted into sequences scored using the CNN trained 

on GP5d random enhancer STARR-seq data. Note that a pair of the same motifs (indicated by 
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labels) increases the predicted enhancer probability of the sequence above that expected from 

a single motif (dashed black line), but not above that expected from a model assuming 

independent binding to two motifs in the same sequence (red dotted line). Note that CNN 

identifies similar features than the enrichment analysis shown in Fig. S4a. 

 

h, Comparison of enhancer activity of motifs measured from random enhancer library in two 

mammalian cell lines, GP5d colon cancer and the HepG2 liver cancer cell lines, showing the 

fold change of motif match count over input in each cell line (black dashed line indicates 

identical activity between the cell lines). 
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Fig. 2. Genomic STARR-seq reveals six types of regulatory elements.  

a, Six types of regulatory elements classified on the basis of STARR-seq signal and chromatin 

features such as accessibility (ATAC-seq), TF binding, and epigenetic modifications. Euler 
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diagrams (bottom) show the overlap between genomic STARR-seq peaks and different 

genomic features (left) and between ATAC-seq peaks and different genomic features (middle) 

in HepG2 cells. Some of the small intersections are not shown, see Fig. S7g for the full list. 

Genome browser snapshots showing examples of different types of regulatory features in 

HepG2 and GP5d cells are also shown. Colored boxes marked with roman numerals correspond 

to the different types of elements listed in panel c; clockwise from top: closed chromatin 

enhancer (I) devoid of H3K27ac or ATAC-seq signal at TP53-target gene RRM2B, both plus 

and minus strand STARR-seq signal is shown; cryptic enhancer (II) overlapping with 

repressive histone marks; promoters (III) and chromatin-dependent enhancers (IV) and 

structural CTCF element (V) at the fibrinogen locus, the Encode ChIP-seq track includes 

combined ChIP-seq signal for 206 TFs11; tissue-specific classical enhancers (VI) detected for 

ELF5 (higher expression in HepG2, blue) and for EHF (higher expression in GP5d, red). Note 

that the STARR-seq peaks are specific to the cell types where the adjacent gene is expressed. 

 

b, Chromatin-dependent enhancers and classical enhancers combine to form super-enhancers. 

Genome browser snapshot of a MYC super-enhancer in HepG2 cells marked by STARR-seq 

peak overlapping with the binding site for TF with strong transactivation activity (NFE2L2) 

converging on equidistant chromatin enhancers bound by cohesin, mediator, forkhead and other 

liver specific TFs.  

 

c, Summary of the features that define the six genomic element types. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2021.03.18.435942doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435942


24 

 

 

Fig. 3. Comparison of sequence features of de novo evolved human promoters and 

enhancers. 

a, Plot showing the enrichment of TF motif matches in promoters selected from completely 

random sequences across three mammalian cell lines: GP5d colon cancer, HepG2 liver cancer, 

and RPE1 retinal pigmented epithelial cells (dashed line marks identical activity). Dimeric 

motifs are indicated by orientation with respect to core consensus sequence as described in 

legend to Fig. 1b. 

 

b, Comparison between enrichment of motif matches at enhancers (x-axis) vs promoters (y-

axis) in GP5d cells (active sequences selected from random promoter and enhancer sequences). 

The motifs marked with italic typeface are de novo motifs mined from the GP5d TSS-aligned 

sequences. 
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c, Motifs that enrich specifically in the promoter position, as measured by a difference in log2 

fold change. The motifs that are enriched the most are indicated by red circles and labeled. The 

motifs marked with italic typeface are de novo motifs mined from the GP5d TSS-aligned 

sequences. Note also that the motifs with negative difference in log2 fold change (below dotted 

line) are repressive and decrease promoter activity; no motif specifically enriches at enhancers 

(see panel b). 
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Fig. 4. Analysis of positional specificity of sequence elements defining human promoters.  

a, Cartoon showing the design of the template-switch chemistry used to capture the 5’ sequence 

of the transcribed RNA using a template switch oligo (TSO) to determine the precise location 

of the transcription start site (TSS) within the random DNA sequences cloned at the place of 

the promoter. 
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b, Sequence logo constructed from the 50,787 evolved GP5d promoter sequences aligned based 

on the measured position of their TSS (+1). 

 

c, Mutual information (MI) plot from the random promoter measurements. Note that most MI 

is observed close to the diagonal (indicating presence of TF motifs), but that two longer-range 

interactions are also observed, one between the TATA-box and TSS, and the other between the 

TSS and a G-rich element 3’ of it. 

 

d, Heat map showing positional preferences of the TF motifs from panel (e). Heat map color 

indicates the number of matches for the motif in one strand (p-value cut-off 5 x 10-4). The motifs 

marked with italic typeface are de novo motifs mined from the GP5d TSS-aligned sequences. 

 

e, Sequence logos of the motifs shown in the heat map (d). The information content center 

column used to position the matches in the heat map is highlighted. The motifs marked with 

italic typeface are de novo motifs mined from the GP5d TSS-aligned sequences.  

 

f, CNN predictor correctly identifies cancer-associated mutations in the TERT promoter. Top: 

predicted sequence determinants at the TERT promoter as determined by DeepLIFT73 analysis 

of the CNN. Bottom: the effect of three different driver mutations43,44,45 on predicted activity 

of the TERT promoter (the exact mutated bases highlighted with arrows). Note that the 

predictor identifies the ETS motifs that are generated by the driver mutations and the predicted 

promoter probabilities (Ppromoter) are higher for the mutant promoters. 

 

g, CNN trained on random promoter data outperforms PWM-based models, regression models, 

and CNN trained on genomic promoter data in predicting active TSS positions in GP5d cells. 

The cumulative distance of the predicted TSS positions from the annotated is shown against a 
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test set of GP5d genomic TSSs (~1200 sequences) for CNN trained on human genomic TSS 

data (orange), and for PWM based model (red), regression model using positional match data 

(blue) and CNN (green) trained on promoters evolved from random sequences. The genomic 

TSS positions are all aligned at 0; the curves mark predicted TSS positions for each model, 

sorted by distance from the annotated TSS position. The score indicates the fraction of predicted 

TSS positions falling within ±25 bp (the area shaded with green) from the annotated TSS 

positions in the genome for each model separately. Models trained on STARR-seq promoters 

evolved from random sequences are better at finding the correct annotated TSS position in the 

genome than models trained on genomic promoter sequences. 
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Fig. 5. Enhancer-promoter interactions are additive and non-specific in nature. 

a, Plot showing the number of observed promoter-enhancer pairs from the activity 

measurements from random promoter and random enhancer in the same experiment. For each 

motif pair, the observed log2 fold change of promoter-enhancer pairs compared to input DNA 

(y-axis) is plotted against the expected change (x-axis) assuming that the promoter motif and 

the enhancer motif act independently of each other (see Methods for details). The motif 

matching was done using a p-value threshold 5 x 10-5. 
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b, Magnified image from the right upper-hand corner of panel (a) with the pairs including ETS, 

p53 family motif and YY1 colored as indicated. 

 

c, No sequence features that determine specificity of enhancer-promoter interactions can be 

identified using unbiased machine learning. Four CNN classifiers with identical architecture 

were trained on different training data sets from the GP5d binary STARR-seq experiment to 

classify between active and inactive promoter-enhancer pairs. In the “paired” training data the 

pairing between the promoter and enhancer sequences was retained, whereas in the 

“permutated” training data, the pairs were shuffled so that any specific interactions between 

promoter-enhancer pairs are lost. In the “enhancer from input” and “promoter from input” 

training sets, the promoters and enhancers, respectively, were paired with a randomly sampled 

sequence from the input library, so the classification is purely based on the promoter or 

enhancer features. Separate models were trained for 24 different hyperparameter combinations 

(x-axis; see Methods for details): the area under precision-recall curve (AUprc) for all the tested 

hyperparameter combinations is shown. Note that the classifiers trained on paired data (blue) 

outperform classifiers trained on enhancer (violet) or promoter (red) data, but not those trained 

with permutated data (green, paired Student’s t-test p-value ≈1.34x10-1). 

 

d, The relationship between the three TF classes and key processes that control transcription at 

different scales. TFs affect the gene regulatory process in three ways: First, by directly or 

indirectly affecting higher-order chromatin structure (left); second, by displacing nucleosomes 

and opening local chromatin (middle); and third, by recruiting and positioning RNA polymerase 

II to the gene regulatory elements (right). Gene regulatory unit with classical (orange) and 

chromatin-dependent (dark blue) enhancers interacting with a gene promoter (brown) is shown. 

Mediator, a strong feature of both chromatin-dependent enhancers and promoters is shown in 

light blue. How the hierarchical structure could lead to TFs having chromatin-dependent 
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enhancer (FOXA, SOX), classical enhancing (YY1, ETS), promoting (ETS, CREB, NRF1) and 

TSS-determining (TATA, YY1) activities is indicated. The relative non-specificity of 

interactions between TFs, classical enhancers and promoters would be explained by an 

important role of non-specific molecular interactions such as indirect steric hindrance (size 

exclusion72) and nucleosome-mediated cooperativity (direct steric hindrance74) in regulation of 

transcription. In addition, our general observations are consistent with a role for processes that 

allow low selectivity such as phase separation and recruitment in the transcription process75. 
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Methods 

STARR-seq vector design  

We designed a modified STARR-seq reporter construct pGL4.10-Sasaki-SS (a) based 

on the earlier published design21 in pGL4.10 backbone (Promega, #E6651). The sequence 

between SacI and AfeI was replaced with a sequence containing the chicken lens δ1-crystallin 

gene (Sasaki) promoter76, a synthetic intron (pIRESpuro3, Clonetech, #631619), an ORF 

(fusion of Nanoluc-EmGFP),  homology arms for library cloning with AgeI and SalI RE sites 

flanking the ccdB gene, a small 52 bp DNA stuffer (a part of the neomycin resistance cassette) 

and a 20 bp sequence from the 3’-Illumina adapter for optimally sized final library for Illumina 

sequencing, and the SV40 late polyA-signal from pGL3 backbone (Promega, #E1751).  

 

To enable the analysis of CpG methylation on enhancer activity, we designed modified 

STARR-seq vectors in a CpG-free backbone with Lucia reporter gene (Invivogen, #pcpgf-

promlc) driven either by the EF1α promoter (b. pCpG-free- EF1α-SS) or the Sasaki promoter 

(c. pCpG-free-Sasaki-SS-v1) as above. To facilitate the cloning of the synthetic DNA library 

to the 3’-UTR of the reporter gene, the cloning cassette from the pGL4.10-Sasaki-SS vector (a) 

containing the homology arms with AgeI and SalI RE sites, the 52 bp DNA stuffer, and the 20 

bp sequence from the 3’-Illumina adapter as above was introduced to the CpG-free vectors 

using the NheI site.  

 

Standard Illumina adapters harbor CG dinucleotides, and to make our modified 

STARR-seq design completely CpG-free, we designed custom adapters for Illumina 

sequencing (see Oligos 3 and 4 in Table S2). To accommodate the cloning of genomic DNA 

and random sequence inserts with flanking CpG-free custom adapters, the cloning cassette in 

CpG-free-Sasaki-SS-v1 was modified by removing the 3’-Illumina adapter and the 52 bp 

stuffer. In addition, this vector was further improved by replacing the AgeI and SalI RE sites 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2021.03.18.435942doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435942


33 

with the AflII and PvuII sites devoid of CG dinucleotides, and by introducing a DNA stuffer of 

1.2 kb between the RE sites to the resulting pCpG-free-Sasaki-SS-v2 vector (d) to 

unambiguously detect and purify the linearized reporter backbone for downstream cloning.  

 

For the binary STARR-seq approach in which random sequences were cloned as both 

promoters and enhancers, the pCpG-free-Sasaki-SS-v2 vector (d) was modified by replacing 

the Sasaki promoter with a custom CpG-free 5’-adapter sequence and an AgeI RE site, and by 

introducing a SalI RE site and a custom CpG-free 3’adapter immediately downstream of the 

ORF. Moreover, to optimize the random promoter and random enhancer library size for 

Illumina sequencing, the Lucia reporter gene was replaced by a small eleven amino acid ORF 

from Drosophila melanogaster (Dm tal-1A) in the pCpG-free-promoter-enhancer-SS vector 

(e). The cloned random promoter-random enhancer input library is paired-end sequenced to 

map the promoter-enhancer pairs, and thus the random enhancer sequences obtained after 

sequencing the reporter-specific RNA library can be used to identify the corresponding 

promoter sequence from the input library. In total, the constant sequence between promoter and 

enhancer elements is 872 bp in the pCpG-free-Sasaki-SS-v2 construct and 215 bp in the pCpG-

free-promoter-enhancer-SS construct. 

 

The new reporter vectors (a-e) were used in different experiments as summarized below, 

and their complete sequences are provided in Table S1. 

a. pGL4.10-Sasaki-SS (5,754 bp) used for experiments with synthetic motif library shown in 

Fig. S2b,c 

 b. pCpG-free- EF1α-SS (3,497 bp) used for experiments with synthetic motif library shown 

in Fig. 1b-e, Fig. S2a,b,d 

c. pCpG-free-Sasaki-SS-v1 (3,388 bp) intermediate plasmid not used in the experiments 
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d. pCpG-free-Sasaki-SS-v2 (4,458 bp) used for all experiments with genomic fragments and 

random enhancer (N170) sequences  

e. pCpG-free-promoter-enhancer-SS (2,551 bp) used for all experiments with random 

promoter (N150)-random enhancer (N150) sequences 

 

STARR-seq reporter library construction and cloning 

We have generated STARR-seq reporter libraries from rationally designed 

oligonucleotides harboring TF binding motifs, from fragmented human genomic DNA, and 

from random oligonucleotide sequences as detailed below. All the oligonucleotides that were 

used for the cloning of the libraries were purchased from Integrated DNA Technologies and 

their sequences are provided in Table S2. 

 

TF motif input DNA library 

A pool of 92,918 oligos with a length of 79 nucleotides (nt) was designed with a 49-nt 

variable region and two 15-nt flanking regions with constant sequences for the library cloning 

(see Motif library design for more details), and synthesized by CustomArray Inc. The oligo 

pool was prepared for cloning in a two-step protocol using Phusion DNA polymerase (Thermo 

Fisher) and Oligos 1 and 2. Frist, 2.5 pmol of the oligo pool was double-stranded using 100 

pmol of Oligo 2 in two parallel reactions [98 C for 3 minutes (min), followed by 5 cycles of 98 

C for 10 seconds (s), 55 C for 15 s, 72 C for 15 s, and the final extension at 72 C for 2 min]. 

The two reactions were then split into ten reactions and after adding 10 pmol of the Oligo 1 to 

the reactions the PCR was performed for ten additional cycles using the same conditions. Ten 

PCR reactions were pooled and the 127-bp product was gel-purified. The pGL4.10-Sasaki-SS 

(a) and pCpG-free- EF1α-SS (b) vectors were linearized by digestion with AgeI and SalI for 3 

h at 37 C and gel-purified. For each backbone, the In-Fusion cloning (Clonetech) was performed 

in 20 reactions using 200 ng of linearized vector and 50 ng of double-stranded oligo pool 
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according to the manufacturer's instructions. Five In-Fusion reactions were pooled and purified 

using MinElute PCR purification columns (Qiagen) and eluted in 12.5 ul nuclease-free water 

per column. The bacterial transformation was done by electroporation using Gene Pulser Xcell 

(Biorad) in 20 parallel reactions with 2.5 ul of purified eluate and 20 ul of E. cloni 10G 

SUPREME (Lucigen) or Transformax EC100D pir-116 (Lucigen) electrocompetent cells for 

the pGL4.10-Sasaki-SS (a) and pCpG-free- EF1α-SS (b) vectors, respectively, using the 

manufacturer's recommendations. To each electroporation cuvette, 1 ml of recovery media 

(Lucigen) was added, and the cells were incubated for 1 h at 37 C and 250 rpm. All cultures 

were then pooled and added to 5L of LB media with 100 ug/ml ampicillin (pGL4.10-Sasaki-

SS; a) or 25 ug/ml zeocin (pCpG-free- EF1α-SS; b) and grown overnight at 37 C and 250 rpm 

until the O.D. reached 1.0. The bacterial cells were harvested by centrifugation and plasmid 

DNA was isolated using EndoFree Plasmid Giga kit (Qiagen). 

 

Genomic DNA input library 

Genomic DNA was isolated from GP5d colon cancer cells using DNeasy Blood and 

Tissue kit (Qiagen) and treated with RNAseA (Thermo Fisher) followed by purification. The 

genomic DNA was fragmented to an average size of ~500 bp using Covaris S220 according to 

the manufacturer’s recommendations. The fragmented genomic DNA (400 ng per reaction in 

ten reactions) was end-repaired, dA-tailed, and ligated to custom CpG-free annealed adapters 

(Oligo 3 - Custom CpG-free P7 adapter and Oligo 4 - Custom CpG-free P5 adapter; annealed 

according to the standard Illumina protocol). The adapter-ligated gDNA was purified and 

amplified in 20 reactions using KAPA HiFi master mix (Roche) and Oligos 5 and 6 which add 

the homology flanks for the NEB HiFi DNA assembly. The PCR product was pooled and 

purified using 0.8x volume of AMPure XP beads (Beckman Coulter) using the manufacturer's 

instructions followed by MinElute column purification. The pCpG-free-Sasaki-SS-v2 vector 

(d) was linearized using AflII and PvuII for 3h at 37 C and gel-purified. The PCR fragments 
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were recombined to the vector in 50 parallel NEBuilder HiFi DNA assembly reactions (NEB) 

according to the manufacturer's instructions using 150 ng of linearized vector and 50 ng of 

custom CpG-free adapter-ligated genomic DNA. The reaction products were pooled (five 

reactions per column) and purified using MinElute columns (Qiagen) and eluted in water. The 

bacterial transformation was done in 50 reactions using 2.5 ul of purified eluate and 20 ul of 

Transformax EC100D pir-116 (Lucigen) by electroporation (Gene Pulser Xcell, Biorad) using 

the manufacturer's recommendations. To each electroporation cuvette, 1 ml of recovery media 

(Lucigen) was added, and the cells were incubated for 1 h at 37 C and 250 rpm. The 50 cultures 

were then pooled and added to 6L of LB media with 25 ug/ml zeocin and grown overnight at 

37 C and 250 rpm until O.D. reached 1.0. The bacterial cells were harvested by centrifugation 

and plasmid DNA was isolated using EndoFree Plasmid Giga kit (Qiagen). 

 

Random enhancer oligonucleotide DNA input library 

The random enhancer library was constructed from a 200-nt single-stranded Ultramer 

oligonucleotide (Oligo 7) harboring a 170-nt random sequence (170N) flanked by 15-nt 

constant sequences for library cloning. Double-stranded library was produced by employing a 

similar PCR strategy as described above for the TF motif library using Phusion DNA 

polymerase (Thermo Fisher) and Oligos 8 and 9 that introduce custom CpG-free sequencing 

adapters and flanking sequences homologous to the pCpG-free-Sasaki-SS-v2 vector (d). The 

NEB HiFi assembly between the random enhancer PCR product and the AflII-PvuII fragment 

from the pCpG-free-Sasaki-SS-v2, as well as electro-transformation and plasmid DNA 

isolation were performed as described above for the genomic DNA library. 

 

Random promoter and random enhancer oligonucleotide DNA input library 

The random promoter-random enhancer library was constructed by using two 190-nt 

single-stranded Ultramer oligonucleotides (Oligos 10 and 11) with 150-nt random sequences 
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(150N). Each oligo harbors two 20-nt constant sequences that facilitate the library cloning to 

the pCpG-free-promoter-enhancer-SS vector (e). First, the constant sequences at the 3’ ends of 

the oligos anneal to the pCpG-free-promoter-enhancer-SS vector in a PCR reaction with 

Phusion DNA Polymerase (Thermo Fisher), amplifying the region between AgeI and SalI sites 

from the backbone. Then, the PCR product constituting the random promoter-random enhancer 

library (of size 555 bp) was cloned into the pCpG-free-promoter-enhancer-SS vector (e) 

linearized using AgeI-SalI using the constant sequences introduced by the 5’ends of the oligos. 

The NEB HiFi assembly, electro-transformation, and plasmid DNA isolation were performed 

as described above for the genomic DNA library.  

 

CpG methylation of STARR-seq input DNA library 

The genomic DNA library cloned into the pCpG-free-Sasaki-SS-v2 vector was 

methylated using bacterial CpG methylase M.SssI (NEB). The reaction was performed for 4 h 

at 37 C as per manufacturer’s recommendation with the reaction volumes scaled for 62.5 ug of 

plasmid DNA per reaction, and inactivated for 20 min at 65 C, followed by purification and 

ethanol precipitation to have the transfection-ready methylated library. 

  

Cell lines and generation of TP53-null cell line by genome editing 

The cell lines used in this study were colon cancer cell line GP5d (Sigma #95090715), 

liver cancer cell line HepG2 (ATCC #HB-8065), and retinal pigmented epithelial cell line 

hTERT-RPE1 (ATCC #CRL-4000). The cells were maintained in their respective media (GP5d 

in DMEM, HepG2 in MEM and RPE1 in DMEM/F12) supplemented with 10% FBS, 2nM L-

glutamine, and 1% Penicillin-Streptomycin.  

 

TP53-null GP5d cell line was generated by targeting exon 4 of the TP53 gene using 

CRISPR-Cas9 genome editing. sgRNA duplex was annealed from crRNA (Oligo 12) and 
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tracrRNA with atto550 (Integrated DNA Technologies) and used for ribonucleoprotein (RNP) 

complex formation with Cas9-HiFi protein (Integrated DNA Technologies) as per 

manufacturer’s recommendations, and the RNP complex was transfected to GP5 cells using 

CRISPRMAX reagent (Invitrogen). On the next day, atto550-positive cells were FACS sorted 

and single cell colonies were cultured to produce a clonal TP53-null cell line. The clonal cells 

lines were screened for TP53 depletion by western blotting and the clones were verified by 

Sanger sequencing of PCR products from isolated genomic DNA using Oligos 13 and 14. 

  

Transfection and RNA isolation 

In the STARR-seq experiments, 1 ug of each input library DNA was transfected per 

million cells. For TF motif DNA libraries, a total of 50 and 35 million GP5d cells were 

transfected for the libraries in pGL4.10-Sasaki-SS (a) and pCpG-free-EF1α-SS (b) vectors, 

respectively. Experiments were performed in two replicates with random enhancer libraries in 

GP5d and HepG2 cells and with random promoter-enhancer libraries in GP5d cells (250 million 

cells per each replicate). Genomic STARR-seq experiments were performed in two replicates 

in HepG2 cells (170 million cells per replicate) and in four different conditions in GP5d cells 

(wild type and TP53-null GP5d cells using both methylated and non-methylated input DNA 

libraries, 500 million cells per condition). For random promoter-enhancer libraries in HepG2 

and RPE1 cells, a total of 400 and 480 million cells were transfected, respectively. Briefly, a 

day before transfection, 6.7-10 million cells were plated per 15-cm dish in their respective 

media without antibiotics. Next morning, plasmid DNA was mixed with transfection reagent 

optimized for each cell line [Transfex (ATCC) for GP5d, Transfectin (BioRad) for HepG2, and 

FuGENE HD (Promega) for RPE1] in 1:3 ratio in Opti-MEM media (Gibco), incubated for 15 

min at RT, and added dropwise to the cells. The cells were incubated for 24 h in a 37 ˚C 

incubator with 5% CO2.  
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Cells were harvested and total RNA isolated 24 h after transfection using RNeasy Maxi 

kit (Qiagen) with on-column DNaseI digestion as per manufacturer’s instruction. PolyA(+) 

RNA fraction was purified using Dynabeads™ mRNA DIRECT™ Purification Kit (Invitrogen, 

#61012) as per the manufacturer's recommendation followed by DNase treatment using 

TurboDNase (Ambion) and purification using RNeasy Minelute kit (Qiagen) as described 

previously described21. 

  

STARR-seq reporter library and input DNA library construction 

The reporter library preparation protocol was adapted from ref.21 essentially in all steps 

but with primers matching our modified STARR-seq vectors. First strand cDNA synthesis was 

done with 2.5-5 ug of polyA(+) RNA and with Superscript III (Invitrogen, #18080-044) using 

a reporter-RNA specific primer (Oligo 15) in 10-20 reactions depending on polyA(+) RNA 

yield. This was followed by RNase A treatment for 1 h at 37˚C and purification using MinElute 

PCR purification columns (Qiagen). cDNA amplification was performed with reporter-specific 

nested cDNA primers (Oligos 16 and 17 for libraries in vectors d and e, Oligos 16 and 18 for 

libraries in vector b, and Oligos 19 and 18 for libraries in vector a) using KAPA HiFi PCR 

Master mix (Roche) in the same number of reactions as done for the reverse transcription (98 

C for 2 min, followed by 15 cycles of 98 C for 15 s, 65 C for 30 s and 72 C for 30-70 s). The 

PCR products were purified using 0.9X AMPure XP beads as per manufacturer’s instruction 

followed by elution in nuclease-free water. The final PCR reactions to produce Illumina-

compatible sequencing libraries were prepared from the entire amplified cDNA using KAPA 

HiFi PCR Master mix (Roche) at 98 C for 2 min, followed by 8-10 cycles of 98 C for 15 s, 65 

C for 30 s and 72 C for 30 s. The primers used for different libraries are as follows: TF motif 

libraries in pGL4.10-Sasaki-SS (a) and pCpG-free- EF1α-SS (b) vectors were amplified using 

standard Illumina Universal and index primers (NEB #E7335S) and sequenced using standard 

Illumina chemistry. Genomic DNA and random enhancer libraries in pCpG-free-Sasaki-SS-v2 
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vector (d) were amplified using custom CpG-free primers (Oligos 20 and 21) and random 

promoter-random enhancer libraries in pCpG-free-promoter-enhancer-SS vector (e) using 

Oligos 22 and 21. All custom CpG-free libraries were sequenced using custom read 1 and read 

2 primers (Oligos 23 and 24) and custom i7 index read primer (Oligo 25). For preparing 

sequencing libraries from the input DNA, plasmid DNA from each library design was amplified 

in ten parallel reactions (10 ng DNA per reaction) using Phusion DNA Polymerase (Thermo 

Fisher) as above. For TF motif libraries in pGL4.10-Sasaki-SS (a) and pCpG-free- EF1α-SS (b) 

vectors, standard Illumina primers (NEB #E7335S) and sequencing chemistry were used, and 

for all the libraries in pCpG-free-Sasaki-SS-v2 (d) and pCpG-free-promoter-enhancer-SS (e) 

vectors, Oligos 20 and 21 were used for PCR amplification and Oligos 23-25 for sequencing. 

All libraries were sequenced either single-end or paired-end as per Illumina’s standard 

instructions and protocols on suitable Illumina platforms like MiSeq, NextSeq500, HiSeq4000 

and NovaSeq. 

  

Template switch library preparation 

For generating a sequencing library using a template switch strategy, a 40-ug aliquot of 

total RNA from the random promoter-random enhancer STARR-seq experiment in GP5d cell 

line was used. Briefly, TurboDNase-treated RNA was incubated at 72 C for 3 min with a custom 

biotinylated STARR-seq specific RT-primer (Oligo 26) and dNTPs in two reactions having 25 

ng of RNA per reaction, followed by immediate chill on ice. The first strand synthesis was 

performed using 100 units of Superscript IV RT (Invitrogen) in 1x SS-IV RT buffer containing 

10 units of RNase OUT (Invitrogen), 5 mM DTT, 6 mM MgCl2 (Sigma), 1M Betaine (Sigma) 

and 1 uM custom template switch oligo (Oligo 27) compatible with the custom CpG-free 

Illumina sequencing by incubating the reactions at 50 C for 15 min followed by 80 C for 10 

min. cDNA was purified using AMPure XP beads (Beckman Coulter) and one cDNA reaction 

product was split into two for PCR amplification using KAPA HiFi master mix (Roche) 
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together with USER enzyme (NEB) and Oligos 28 and 17 for enrichment of STARR-seq 

reporter-specific template (98 C for 3 min, followed by 15 cycles of 98 C for 20 s, 67 C for 15 

s, 72 C for 6 min and final extension at 72 C for 5 min). The PCR product was purified using 

AMPure XP beads (Beckman Coulter) followed by a second PCR for a total of 5 cycles for 

Illumina library preparation using custom CpG-free Oligos 20 and 21. The final library was 

purified and sequenced using Oligos 23-25 on NextSeq and NovaSeq platforms.  

  

Chromatin immunoprecipitation (ChIP-seq) and gene expression analysis (RNA-seq and 

CAGE) 

Chromatin immunoprecipitation (ChIP) was performed as previously described8. For 

analyzing genomic occupancy of TP53, cells were treated with 350 uM 5-fluorouracil (Sigma) 

24 h before harvesting the cells. Briefly, fresh formaldehyde-crosslinked chromatin from GP5d 

cells was used to immunoprecipitate DNA using Dynal-bead coupled antibodies for H3K27ac, 

H3K9me3, and H3K27me3 (C15410196, C15410193, and C15410195, Diagenode, 

respectively), FOXA1 (ab23738, Abcam), p53, HNF4a, and CTCF (sc-135773x, sc-8987x, and 

sc-15914x, Santa Cruz, respectively), SMC1 (A300-055A, Bethyl lab), and for normal rabbit, 

mouse and goat IgG (sc‐2027, sc‐2025, and sc‐2028, Santa Cruz, respectively), followed by 

standard ChIP-seq library preparation for Illumina sequencing. The libraries were single-read 

sequenced on HiSeq4000. The Illumina raw files were demultiplexed using bcl2fastq 

conversion, followed by alignment to the human genome (hg19) using bowtie277 and peak 

calling (narrow peaks for TF ChIP-seq and broad peaks for histone modifications) was 

performed using MACS278 using default parameters. Super-enhancers were calculated using 

SMC1 and H3K27ac ChIP-seq data using the ROSE pipeline79. The peak files were filtered for 

the ENCODE blacklisted region (accession ENCSR636HFF) before further downstream 

analysis. 
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For gene expression analysis, the transcript abundances (transcripts per million; tpm) 

for three replicate samples were taken from RNA-seq data from previous studies for GP5d 

(from ref.80) and HepG2 (from ref.81). The expression of each TF in GP5d cells was summarized 

by taking the mean expression of its most highly expressed transcript over the replicates. For 

comparison between GP5d and HepG2, pseudocount 1 was added to the expression values 

(tpm), and the genes with mean tpm < 2 across all experiments were excluded (36% of the 

protein coding genes). Differential expression between GP5d and HepG2 cell lines was then 

estimated for the remaining 12,586 genes with the limma package82 using eBayes with 

parameter trend set to true. CAGE library was prepared from total RNA isolated from GP5d 

cells as described in ref.14 with an input of 1 µg total RNA. Sequencing of the CAGE library 

was carried out on HiSeq 2000 (Illumina). 

 

Chromatin accessibility (ATAC-seq)  

The ATAC-seq library was prepared from 50,000 GP5d cells as previously described83. 

The cells were washed in ice-cold PBS and resuspended in 50 ul of lysis buffer and incubated 

for 10 min on ice. The pellet from lysed was transposed with Tn5 transposase in 2X 

tagmentation buffer (Illumina kit) and incubated for 30 min at 37 C. The reaction was purified 

using a MinElute purification kit and eluted in nuclease-free water. The samples were amplified 

for 5-8 cycles as determined by qPCR for Illumina sequencing using Nextera library preparation 

kit (Illumina) and samples were paired-end sequenced on HiSeq4000. The samples were 

demultiplexed and paired-end fastq files were processed using an in-house pipeline comprising 

of TrimGalore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), BWA 

aligner84, Picard (http://broadinstitute.github.io/picard/) and broad-peak calling by MACS278. 

The peak files were filtered for the ENCODE blacklisted regions as described earlier.  
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Active transcription factor identification (ATI) assay 

The assay was performed in vitro by mixing 5 μl nuclear protein extracted from GP5d 

cells (2ug/ul), 5 μl 140 bp double stranded DNA (dsDNA) oligos29 containing 40 bp random 

sequence in the middle (10 pmol), and 5 μl 3 × protein binding buffer (420 mM KCl, 15 mM 

NaCl, 3 mM K2HPO4, 6 mM MgSO4, 300 μM EGTA and 9 μM ZnSO4, 60 mM HEPES, pH = 

7.5) and incubating for 30 min at room temperature. The poly-dIdC was supplemented in the 

reaction (5 ng/ μl final concentration) to decrease non-specific binding. Electrophoretic 

mobility shift assay (EMSA) was then conducted using commercial DNA Retardation Gel 

(Invitrogen, #EC63652BOX) in 0.5 × TBE buffer (1 mM EDTA in 45 mM Tris-borate, pH 8.0) 

at 106 V voltage for 70 min. The gel above the 300 bp DNA marker was collected, eluted in 

300 μl Tris buffer (10 mM Tris-Cl, pH 8.0) and incubated at 65 °C for 3 h. The eluted DNA 

was amplified with Phusion polymerases (Thermo Scientific, #F530L); 4 pmol of each primer 

were used for the amplification. Before the final step of amplification, the same amount of 

primers was added to convert the remaining single stranded DNA (ssDNA) to dsDNA. The 

amplified DNA library was incubated again with an aliquot of the same protein extract as above 

and the whole process was repeated for three more times. The PCR products from different 

cycles of ATI were purified and sequenced by Illumina Hiseq4000.  

 

Transient transcriptome sequencing (TT-seq) 

Transcribed enhancer regions defined using TT-seq data are based on Lidschreiber et 

al., 2020 (manuscript in preparation). Briefly, TT-seq from GP5d colon cancer cells was 

performed in two biological replicates as described85. TT-seq libraries were sequenced to a 

depth of ~120 million uniquely mapped paired-end reads and data analysis for identification of 

genomic intervals corresponding to continuous uninterrupted transcription (defined as 

transcription unit, TU) was performed using GenoSTAN86. TUs were classified into two 
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groups: those overlapping with annotated protein-coding genes were defined as mRNAs and 

remaining as non-coding RNAs (ncRNAs). Putative enhancer RNAs (eRNAs) were further 

subclassified using histone modification patterns by defining a large set of putative enhancer 

regions from the publicly available datasets covering the non-coding regulatory genome9,57. 

eRNAs were further defined from the pool of ncRNAs on the basis of three criteria; first, origin 

should overlap within TSS ±500 bp (enhancer region), second, it should be outside of TSS ± 1 

kbp (promoter region), and third, transcription is bidirectional as measured with TT-seq. This 

annotation led to identification of 6774 enhancer regions in GP5d colon cancer cells. The 

annotated enhancers were filtered for blacklisted regions as described before and also for 

chromosomes other than 1-22 and X. 

 

Motif collection  

For testing activities of known TF motifs, a set of 3226 HT-SELEX motifs were 

collected (Refs 6,8,87 and unpublished draft motifs). A more compact set of motifs representing 

different binding specificities was generated by first constructing a dominating set (880 PWMs) 

covering motifs from the above sources using the same method and motif distance threshold as 

in ref.6. Then, in order to retain information of TF binding differences between methylated and 

non-methylated DNA ligand8, for each methyl (or non-methyl) motif in the dominating set, the 

closest non-methyl (methyl) motif of the same TF was added to the representative set 

(respectively) if it was not yet in the set. This resulted in a representative set of 1121 HT-SELEX 

motifs (Table S3). In cases where HT-SELEX motifs for several TFs are highly similar, the 

motifs have been named in figures according to TF class or subclass, in order to highlight that 

we do not know which of the TFs that have similar motifs binds to the motif in the cells. Same 

principle has been applied also when specificities of closely related TFs have not been measured 

and thus can reasonably be expected to be similar. Table S5 shows the naming for the motifs 
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in each figure. A control set of reversed but not complemented motifs was generated by 

reversing the column order of each motif matrix. Additionally, the following promoter core 

motifs were collected for TSS analyses from literature: TATA box, Initiator, CCAAT-box, GC-

box from ref.88, and BRE, MTE, DPE from ref.89. 

 

Motif library design 

The synthetic oligo library design contained the 1121 HT-SELEX motifs in various 

sequence patterns. A pattern is defined as the combination and number of the motif consensus 

sequences, their relative orientation and spacings, and positions of degenerate N bases. Each of 

727 monomeric and homodimeric motifs was included in the following patterns: consensus and 

its reverse complement (if palindromic added twice), reversed but not complemented control, 

each position of consensus at a time replaced with a degenerate base N, and two and three copies 

of the consensus sequence in different orientations and spacings (three copies only for the 

motifs shorter than fifteen bases). Putting a degenerate base N at every position (in total 10,041 

positions) generated in total 30,123 mutant consensus sequences.  

 

In the patterns containing two and three copies of the consensus, the most defined 

position of the motif (position with maximum probability for any base in any position) was 

replaced with N.  The two copy patterns included three relative orientations of the consensus C 

and its reverse complement R (CC, CR, and RC) and three copy patterns included four relative 

orientations (CCC, CCR, CRC, RCC). In the case of two copies, each orientation was included 

with all gap lengths from zero to six bases between the two copies. In the case of three copies 

the gap length was varied from zero to four bases (oligo length permitting) but the same gap 

length was used for both gaps in one pattern.  Also, the consensus and reverse complement of 

the 394 heterodimeric motifs36 was included. A subset of 245 heterodimeric motifs were also 
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cut into two half-sites and the half-sites were added in the same patterns as two copies of a 

monomeric motif.  

 

Each of the 43,251 motif patterns was embedded in two different sequence contexts. 

The contexts were chosen from two human genomic loci (context 1, chr10:77103489-77103535 

and context 2, chr8:21525556-21525602, in hg19 coordinates) that do not contain high affinity 

sites of known motifs. Finally, 2-6 bases long random sequence (UMI) was put to the 5’ end of 

the sequence to create an approximately uniform base distribution for sequencing. Both context 

sequences were also included alone with five different UMI lengths. Thus, in total 86,512 

sequences were used for testing TF activity. The sequences and their embedded motif patterns 

are given in Table S4. The remaining 6,406 oligos from the total 92,918 sequence patterns were 

composed of 3,576 SELEX nucleosome bound and unbound sequences, 1,182 draft HT-SELEX 

models for RNA binding proteins90 and 1,648 for tiling genomic regions corresponding to 

enhancer regions for MYC and CCND2 (Table S4).  

 

Motif library complexity 

Based on the sequencing of the pCpG-free-EF1α-SS input library, the motif library was 

estimated to contain approximately 26.9 x 106 distinct sequences when taking into account 

different UMIs (corresponding in total 1.3x109 bp), read counts are given in Table S7. 

 

Enhancer activity of TF motif consensus sequences 

For each TF consensus pattern, the reads containing the pattern were counted separately 

for the two sequence context and counts less than five in RNA and input DNA together were 

discarded from further analysis. The fold change between RNA and input DNA was estimated 

using the function PsiLFC in R package lfc version 0.2.191 for each pattern in each context. To 

summarize the activity of one, two, or three copies of the motif, the median fold change of all 
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the patterns in both contexts containing the given number of the consensus sequences was used. 

For an individual consensus sequence, this included the patterns containing it or its reverse 

complement in both contexts. In the case of two or three copies, all consensus spacings and 

orientations were summarized together. The average fold changes over all motifs in one, two, 

three copies were only calculated from those that could be detected with all copy numbers. If 

several sites acted without synergy, we assumed log2 fold changes to grow linearly as a function 

of number of sites. The motifs representing heterodimers were excluded from the analysis.  

 

Analysis allowing base substitutions and generation of activity position weight matrix 

For each pattern in a sequence context, the number of matching reads was counted both 

for the consensus sequence and its variations containing the designed base substitutions. The 

patterns detected at least 100 times in each context in RNA and input DNA together were 

considered. The fold change of a motif pattern in a context was estimated as the ratio of RNA 

and input DNA counts (with pseudocount one) normalized using the total count of all motif 

patterns considered. The activity PWM was generated using the counts of the consensus 

sequence and all its single base substitutions.  For each position of the consensus, the number 

of times each base was observed at that position in the sequences otherwise matching the 

consensus was counted both in RNA and input DNA. Finally, the PWM was constructed by 

dividing the RNA count by input DNA count in each position (adding pseudocount one).  

 

Preprocessing of random enhancer-library sequences 

First, 150 bases long STARR-seq RNA and input DNA paired-end reads were combined 

using the FLASH program92 and only combined sequences of length 170 were chosen. 

Duplicate reads were removed by sorting the sequences four times based on 45 bases long non-

overlapping subsequences from base 6 to 165 and taking only one sequence per identical 

subsequence at each sort step. This ensured that from sequences that had Hamming distance 
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less than 4, only one was taken. Only one representative sequence from the similar sequences 

was used for downstream analysis, so each sequence is either present or absent in the sample. 

The sequences are sampled from a huge input DNA library which prohibits precise 

determination of initial input frequencies of individual sequences. Thus, our analysis relies on 

finding common features of different selected sequences instead of their counts. The resulting 

numbers of preprocessed sequences used in downstream analysis are shown in Table S7. 

 

Genomic library complexity analysis 

Genomic STARR-seq input DNA library complexity was estimated using the preseq 

program93 lc_extrap tool that estimates how many distinct fragments would be observed based 

on reads in an initial sample if a given number of reads was sequenced. The preseq lc_extrap 

tool was given the mapped paired-end reads (bam) as input and the expected yield of 2.09 x 109 

distinct fragments (assuming 2 x 1010  reads were sequenced) was used as the complexity 

estimate (1012 bp). Thus, the library was estimated to cover the human genome (3.2 x 109 bp) 

with 1.53 bp resolution on average. The resolution of STARR-seq output fragments in highly 

active genomic regions was broadly consistent with the high input resolution, taking into 

account that the fragment activity depends on which part of the regulatory element it covers.  

 

Random library complexity and information analysis 

The complexity of random enhancer STARR-seq input DNA library was estimated by 

first creating a robust set of sequences originating from the same clones and their counts. This 

was done by clustering a randomly sampled set of input sequences using starcode94 so that first 

reads which edit distance four or less were connected and then reads in the same connected 

component were put to one cluster. The sizes of the sequence clusters were then given as input 

to preseq resulting in estimated 2.4 x 109 distinct sequences (corresponding in total 4.1 x 1011 

bp). The same approach gave an estimate of 0.9 x 109 promoter sequences (1.4 x 1011 bp) and 
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1.2 x 109 enhancer sequences (1.8 x 1011 bp) in the binary STARR-seq input library. To confirm 

that these extremely complex libraries are effectively transfected to the cells, we estimated the 

number of plasmid copies per cell based on the comparison of read coverage between plasmid 

and genomic DNA from a control ChIP-seq experiment using a non-specific IgG antibody. This 

analysis revealed over 2500 plasmid copies per cell and based on this we estimate that each 

distinct random enhancer sequence was transfected to cells over 500 times on average.  

 

To compare to the genomic conservation, we assumed that a TF motif typically has ~15 

bits of information content.  As it can be placed in ~320 positions in a 170 bp long random 

enhancer, one TF binding site contributes approximately 15-log2(320) = 6.7 bits of information 

(see ref.95). Thus,  a site would correspond to approximately 7 conserved bases (>1 bit of 

information). 

 

 Genomic STARR-seq analysis 

First, demultiplexed Illumina STARR-seq RNA and input DNA paired-end reads 

(trimmed to common length 2 x 37 bp) were aligned to the human genome (hg19) using 

bowtie277. Before peak calling the mapped read pairs were deduplicated and paired-end reads 

that had mapping quality <20 or mapped in a discordant orientation were discarded. MACS278 

was used to call peaks in paired-end mode (-f BAMBE) so that the fragment endpoints were 

inferred from alignment results. Input DNA was used as control in peak calling and the called 

peaks were filtered for the ENCODE blacklisted regions (accession ENCSR636HFF) before 

subsequent downstream analysis. For masking repeats, a RepeatMasker file from UCSC table 

browser (for hg19) was used. 

 

All STARR-seq RNA fragments from each cell line were used in peak calling (Table 

S7) unless otherwise stated. Peaks were also called separately from two replicates in HepG2 
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cell line with 3295 peaks overlapping out of 6414 and 7376 peaks. IDR software96 was then 

used together with combined sample peaks to call high confidence peaks (2186 peaks with IDR 

< 0.1). In GP5d cells, genomic STARR-seq analysis was performed in two sublines (p53 wt 

and null) under two conditions (methylated or not), but due to the very large size of the 

experiments, replicates were not included for each condition. To enable calling reproducible 

peaks from the GP5d data, we utilized an internal control approach wherein two sets of peaks 

are built from a single replicate by splitting the fragments to two sets based on their mapping 

to either even or odd positions of the genome. These “in silico” replicates were then used for 

IDR analysis resulting in 1970 and 3250 high confidence in silico peaks (IDR < 0.1) in  HepG2 

and GP5d wt cells, respectively. Comparison of the high confidence peaks from biological and 

in silico replicates in HepG2 cells revealed that this IDR method yields similar peak-calls 

(~90% specificity if biological replicate analysis is considered ground truth; see Fig. S3c). 

Together, these analyses show the high reproducibility of the strong genomic STARR-seq 

peaks.  

 

Genomic feature overlap analysis 

Overlaps between the GP5d genomic STARR-seq and other genomic features were 

calculated from peaks called with MACS278, with the exception of the TT-seq enhancers for 

which the estimated enhancer regions were used. Only chromosomes 1-22 & X were used in 

the analysis. All overlaps between the peaks were calculated using Bedtools97. The motifs used 

in calculating the matches to STARR-seq peaks are listed in Table S5. For comparison of 

STARR-seq peak overlap with ATAC-seq, H3K27ac ChIP-seq and TT-seq enhancers (Fig. S7f, 

upper part), 1 kb regions centered at peak summits instead of the peak boundaries were used in 

computing the Venn diagrams. Fisher’s exact test p-values were calculated using “bedtools 

fisher”97 after filtering out the positions in the ENCODE blacklist (peaks hitting these regions 

would not be considered).  
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Genomic STARR-seq in HepG2 cells was compared with data downloaded from the 

ENCODE project: ATAC-seq (ENCSR042AWH, replicate 1), histone modification ChIP-seq 

experiments for H3K27ac (ENCSR000AMO), H3K27me3 (ENCSR000AOL), and H3K9me3 

(ENCSR000ATD), as well as ChIP-seq data sets for TP53 (ENCSR980EGJ), MED1 

(ENCFF493UFO), and MED13 (ENCFF003HBS). The IDR-thresholded peaks and bigWig 

signal files showing fold change over control generated from all replicates were used except for 

ATAC-seq and TP53 ChIP-seq. The ATAC-seq replicate 1 reads were reanalyzed in hg19 

coordinates in the same way as GP5d ATAC-seq data resulting in 60,500 peaks. For TP53 

ChIP-seq, the ENCODE peaks were lifted over from GRCh38 to hg19 coordinates and replicate 

1 reads were remapped to hg19 and MACS2 was used to generate a normalized coverage file. 

For the rest of the TFs and other chromatin-associated proteins the ChIP-seq peaks were taken 

from ref.11 (GEO accession GSE1042479), and the corresponding bigWig files were 

downloaded from the ENCODE portal. Super-enhancers for HepG2 are from 

http://www.licpathway.net/sedb.  

 

The overlaps between different features were calculated using bedtools (chromosomes 

1-22, X and Y). The Euler (Fig. 2a; R package eulerr) and bar (Fig. S7g; R package UpSetR) 

diagrams show other features overlapping the top quartile of all ATAC-seq and STARR-seq 

peaks according to maximum fragment coverage. When calculating overlaps between 

chromatin-associated proteins in open regions with or without STARR-seq signal (Fig. S7e), 

only STARR-seq peaks with IDR < 0.1 calculated from two STARR-seq replicates were used. 

The PolII-associated proteins POLR2AphosphoS2, PAF1, POLR2A, ZC3H4, TBP, 

POLR2AphosphoS5, and SSRP1 were excluded from this overlap analysis resulting in 202 

proteins. In the overlap analysis, all Ensembl TSS (GRCh37, release 101) extended 1 kb to both 

directions were used. 
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De novo motif mining 

De novo motif mining for the peaks called from ATAC-seq, ChIP-seq and genomic 

STARR-seq were performed using HOMER98. Sequences used for motif mining of different 

enhancer classes in HepG2 cells were based on the intersections as in Euler/UpSet diagrams in 

Fig. 2a; Fig. S7g, with the overlaps calculated against top quartile of the ATAC or STARR-

seq peaks, respectively. In addition, the sequences overlapping TSS-regions (from Ensembl 

GRCh37, release 101, extended 1 kb to both directions) were excluded, resulting in 1,524 closed 

chromatin enhancers, 971 classical enhancers, and 3,797 chromatin-dependent enhancers that 

were used in the analysis. For the sequences enriched from the random enhancer and random 

promoter-random enhancer STARR-seq experiments and from the ATI assay, de novo motif 

mining was done using the “Autoseed” program as described earlier29. From the random 

enhancer STARR-seq in GP5d cells, the sequences were cut to 40 bp long non-overlapping 

subsequences starting from position 6 and ending at position 165, and the subsequences 

containing N were removed (see Table S7 for the numbers of analyzed subsequences). 

"Autoseed" program was also used to mine de novo motifs enriched at specific positions in 

relation to TSS using TSS-aligned sequences from GP5d cells and input DNA sequences 

sampled from the same positions (Table S7). The resulting seven de novo motifs were mined 

from the subsequences spanning the following positions in relation to TSS: two initiator motif 

variants from position one at TSS (only forward strand), CREB motif and two CREBMAF 

heterodimer variants from -30 to 30, and TATA box promoter from -30 to 23. These motifs 

were also included to motif enrichment comparison between promoter and enhancer sequences. 

   

Conservation of genomic STARR-seq elements 

Conservation of genomic STARR-seq peaks and input fragments was analyzed by 

calculating their average GERP scores99 using precomputed base-wise GERP scores (hg19) 

from ref.100 (http://mendel.stanford.edu/SidowLab/downloads/gerp/). In the analysis, only 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2021.03.18.435942doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435942


53 

chromosomes 1-22 were included, and the elements overlapping ENCODE blacklisted regions 

(ENCFF419RSJ) and UCSC RepeatMasker101 “Repeats” track were discarded. A base pair was 

deemed conserved if its GERP score was higher than the average GERP score (~2.2) of the 

coding sequence100. Additionally, the GERP scores were calculated for three known enhancers 

as detailed below. 

● GP5d genomic STARR-seq peaks, mean GERP score = 0.14. The average number of 

conserved base pairs in 170 bp surrounding the STARR-seq peak summits was ~50.8 

(~169.4 for whole peaks, corresponding to ~42.6 when the average width of a 

STARR-seq peak, ~675.5 bp, is scaled to 170 bp). 

● 100,000 randomly sampled genomic STARR-seq input fragments, mean GERP score 

= 0.01. 

● The MYC335 enhancer (chr8: 128413174-128414429)102, mean GERP score ≈ 3.07, 

number of conserved base pairs = 921. 

● The SHH enhancer (chr7: 156583796-156584568)103, mean GERP score ≈ 3.66, 

number of conserved base pairs = 642.  

● The Sox9 enhancer (chr17: 69480826-69481362)104 with respective coordinates for 

human SOX9 enhancer (hg19) obtained using UCSC genome LiftOver tool 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver), mean GERP score ≈ 0.70, number of 

conserved base pairs = 230. 

 
Preprocessing of the random promoter-enhancer pairs 

The STARR-seq enhancer sequences derived from RNA were mapped to corresponding 

promoter-enhancer pairs in the input DNA by exact matches of the first 20 bases of the 150 

bases long enhancer sequences. Duplicate sequences were removed as described for random 

enhancers, except that three 40 bases long subsequences from 16 to 135 were used thus ensuring 

that only one of the sequences with Hamming distance less than 3 was chosen.  Then, promoter 
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and enhancer sequences were filtered separately by removing 1) all adapter sequences that 

included some (partial) adapter sequence according to cutadapt105, 2) sequences that mapped to 

plasmid backbone sequence using bowtie277, and 3) outlier sequences in terms of nucleotide 

composition (count of any nucleotide more than 3 median absolute deviations higher than the 

median count). Input DNA sequences were processed the same way. For promoter-enhancer 

pair analyses, the remaining promoter-enhancer pairs were collected and pairs containing 

highly similar sequence as promoter and enhancer were removed. The numbers of sequences 

used in downstream analysis are shown in Table S7. 

 

Mapping TSS positions based on template switching 

First, sequences derived from spliced transcripts were identified using the constant 

sequence spanning the splice site after intron removal (cutadapt program); other sequences were 

not processed further.  Next, UMI sequence was removed from the 5’ end of each sequence and 

the last 20 bp of its random part was used to recognize the corresponding promoter from the 

input DNA. To accurately recognize the first base of the transcript and thus the position of the 

TSS, it was assumed that the template switch process had added at least 3 and at most 4 guanines 

to the 5’ end of the transcript. On this basis, only the RNA sequences starting with at least three 

Gs were used in the analysis. Each such sequence was aligned to the corresponding input DNA 

promoter sequence using an exact 20 bp match starting from the 6th base to allow for the extra 

Gs. Finally, the Gs added by the template switch were trimmed and discordant sequences 

removed according to the alignment. The frequency of the four Gs instead of three was 

estimated from the sequences that do not have G at the fourth position in the alignment to the 

input. For those that did have a G also in the input sequence, removing three or four Gs was 

decided randomly but so that the frequency of the fourth G matched the estimate. The two GP5d 

template switch libraries were processed separately and then merged so that only one transcript 

was kept for each input DNA promoter sequence to prevent duplicate promoter sequences. The 
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exact positions of the TSS at the promoters were recorded and the flanking sequences were used 

for further analysis. The numbers of sequences obtained are listed in Table S7 as the number 

of flanking sequences fitting to the random region depends on the flank sizes. The comparison 

to human endogenous promoters was done using TSS positions from EPD database (hsEPDnew 

006). 

 

Matching of known motifs 

The motifs were matched to sequences using MOODS106. The matching was done 

separately for each strand using p-value thresholds (1 x 10-6, unless otherwise stated) and 

strand- and sample-specific nucleotide frequencies. When calculating motif matches for logistic 

regression PWM features, affinity threshold of 0 was used instead of p-value. Motif matches 

that resulted in occupancy probabilities smaller than 0.01 were discarded (see Logistic 

regression classification for details). To determine the activity of an individual motif, the total 

number of its matches in the sequences was counted so that overlapping matches in different 

strands were counted only once. Then fold changes between the motif match counts in RNA 

and a randomly sampled subset of input DNA were estimated using the function PsiLFC in R 

package lfc. When comparing two different RNA samples (for example two replicates), two 

different random samples of input DNA were used to avoid overestimating similarities by using 

identical input counts. To estimate the effect of the number of binding sites in the same 

sequence, the number of sequences having exactly two non-overlapping motif matches was 

counted and the fold change was compared to the fold change of those having exactly one 

match. If the site occurrences are independent of each other, the expected frequency of several 

sites is the product of the individual frequencies. Thus, the expected log2 fold change assuming 

independent actions of several motif occurrences was calculated as the sum of their individual 

log2 fold changes. 
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Analysis of interactions between promoter and enhancer 

Both for RNA and randomly sampled input DNA promoter-enhancer pairs, the number 

of such pairs that one motif occurs in the promoter and a second one in the enhancer was 

counted for each motif pair (excluding heterodimers) and motif match strand combination (++, 

+-, -+, --). The counts over the strand combinations were summed to get the total number of 

pairs and the fold change of the number the pairs between input DNA and RNA was estimated 

using the function PsiLFC in R package lfc. If the promoter and enhancer occurrences are 

independent of each other, the expected frequency of the pair of sites is the product of the 

individual frequencies. The expected log2 fold change assuming independent actions of the 

promoter and enhancer motif was thus calculated as the sum of their individual log2 fold 

changes. The same analysis was done using the reversed but not complemented control motifs. 

 

Motif match positioning relative to TSS and STARR-seq vector 

Motifs were matched to TSS flanking promoter sequences and for each motif only the 

highest affinity match per sequence was considered. The number of matches for each motif was 

then counted separately at each position and strand.  To get positional activity scores for 

position-specific regression analysis, motif matching was done for TSS flanking sequences 

from position -100 to +20 in relation to TSS and for a control set generated by sampling for 

each TSS sequence a subsequence of same length from the same position from an input DNA 

promoter (p-value threshold 5 x 10-4). The log2 fold changes of the motif match counts between 

TSS flanking set and control set (estimated with the lfc package) were then used as a positional 

activity score for each position and strand. 

 

To study p53 motif match positioning relative to the STARR-seq vector, the motif was 

matched (p-value threshold 10-5) to highly selected sequences chosen by taking only sequences 

observed at least twice in both GP5d enhancer replicate experiments. A histogram of match 
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start positions was generated by counting only the highest affinity match in each sequence. A 

smoothed density estimate was generated using a gaussian kernel (R ggplot geom_density with 

adjust=0.5).  

 

Mutual information (MI) analysis 

The binding events on the aligned STARR-seq reads (40+40 bp surrounding TSS) were 

analyzed by calculating the mutual information (MI) between 3-mer distributions at two non-

overlapping positions of the aligned sequences. MI can be used to capture binding events, 

because if the binding contacts two continuous or spaced positions (3-bp wide) on the sequences 

at the same time, correlations will be observed for the 3-mer distributions at the two positions. 

Subsequently, the biased joint distribution will be detected as an increased MI between the 

positions. For two non-overlapping positions (pos1, pos2), the MI between them was estimated 

as reported previously41. The calculation uses the observed frequencies of a 3-mer pair (3+3-

mer), and of its constituent 3-mers at both positions: 

𝑀𝐼	(𝑝𝑜𝑠1, 𝑝𝑜𝑠2) = 𝛴	𝑃(3+3-mer)log2
!(#$#%&'()

!*+,-(#%&'()!*+,.(#%&'()
 

where P(3+3-mer) is the observed probability of the 3-mer pair (i.e. gapped or ungapped 6 

mer). Ppos1(3-mer) and Ppos2(3-mer), respectively, are the marginal probabilities of the 

constitutive 3-mers at position 1 and 2. The sum is calculated over all possible 3-mer pairs using 

50,787 TSS sequences. When calculating the positional 3-mer and the pairwise 3+3-mer 

distributions, a pseudocount of 10 was added to each k-mer. 

 

Data preprocessing for machine learning analysis 

The datasets used in each machine learning analysis and their division into training, test 

and validation sets are detailed in Table S7. To enable sequences from genomic measurements 

(genomic STARR-seq and ATAC-seq) to be scored on the CNNs that were trained on the 
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random enhancer STARR-seq data and vice versa, the length of the sequences fed to these 

models was standardized to 170 bp. Thus, additional preprocessing specific to machine learning 

analyses was done for the genomic STARR-seq and ATAC-seq data.  

 

First, an extended blacklist file was created to remove possibly problematic genomic 

regions that might cause the machine learning models to learn biases instead of real signals. In 

addition to the standard ENCODE blacklist (ENCFF419RSJ), this extended blacklist contains 

all positions ±1Mb from centromeres, all positions with Ns in the hg19 reference genome and 

non-uniquely mapping regions that were defined as follows: All unique 55-mers present in the 

hg19 reference genome were fetched and aligned back to hg19 reference with bwa aln84 

algorithm. Then each position that was not covered by reads mapped with MAPQ>20, was 

added to the extended blacklist. This extended blacklist covers around 12% of the hg19 

reference genome. 

 

GP5d genomic enhancer fragments were created by fetching the sequence (hg19) that 

maps between the paired end reads. The signal set (class 1) sequences were created by taking 

the 170 bp closest to the peak summit from each genomic STARR-seq fragment that overlaps 

with a GP5d genomic enhancer STARR-seq peak. Balanced control sets of 170 bp sequences 

(class 0) were sampled from the genomic STARR-seq input requiring that the reads map and 

do not overlap with regions covered by the extended blacklist or with GP5d genomic enhancer 

STARR-seq peaks. To ensure that the classifier does not learn any features possibly correlating 

with different input library coverage between the class 1 and class 0 sequences, the class 0 

sequences were sampled in such a way that their input library coverage histogram matched the 

input library coverage histogram of the class 1 sequences. Input library coverage of each class 

1 and class 0 sequence was calculated by counting how many input library fragments each of 

them overlaps. Then 36 evenly sized bins were created so that the first bin included coverages 
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between 0 and 9 and the last between 350 and 359 (354 was maximum coverage for class 1 

sequences). Then class 0 sequences were sampled so that their count in each bin equaled the 

count of class 1 sequences in that bin for each set (training, test, validation) separately. 

Sequences from random STARR-seq experiments were not mapped to any reference sequence 

at any point, so this precaution is not relevant with random STARR-seq experiments. 

 

The GP5d ATAC-seq single-end short reads were extended to the average fragment size 

of the library (300 bp) by adding 300-readlen to 3’-end of each read (where readlen is the length 

of each read). For the class 1 signal set, extended fragments that overlap with any ATAC-seq 

peak were selected and the 170 bp sequence closest to the overlapping peak summit was 

retrieved from the fragment. Exact duplicate sequences were discarded. A balanced negative 

set (class 0) was created by sampling random 170 bp sequences from the genome and not 

allowing them to overlap with ATAC-seq peaks or regions covered by the extended blacklist.  

 

Logistic regression classification 

The logistic regression classifiers were implemented using the LogisticRegression 

function from scikit-learn library107. All logistic regression models were regularized with L1 

norm. Using L1 norm as regularization is important for the interpretability of the model 

coefficients, as the set of PWMs used as features of the model (Table S10) contains several 

matrices that can be very similar to each other. Thus, a non-regularized model could split effects 

into coefficients of similar PWMs. Using the L1 norm that penalizes solutions with higher 

number of non-zero coefficients enables finding the best performing model with the lowest 

number of individual PWMs contributing to the model. The optimal regularization strength was 

chosen based on the area under precision-recall curve on the validation data (see Tables S8, S9 

for the tested and final values, respectively). Classification performance on unseen test data is 

shown for each trained hyperparameter combination in Fig. S9h. Otherwise the regression was 
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run on default parameters. First, a logistic regression classifier was trained using only features 

that count matches of individual PWMs (880 features, Table S10). After this, a more complex 

classifier was fit with additional features counting all self-pairs (Ai+Ai, i runs over all the 880 

PWMs), and all pairs of the top 20 strongest individual features (20 features with largest 

absolute value of the regression coefficient) from the simpler model (Table S11) with all other 

PWMs (Sj+Ai, i runs over all the 880 PWMs, j runs over the top 20 PWMs from the simple 

model of 880 features). Thus, this more complex model is expected to cover all meaningful 

general pairwise interactions between the binding motifs of HT-SELEX PWMs. 

 

For each feature (corresponding to a PWM, X), the probability that a given read is 

occupied by a given TF or TF-pair is calculated by using an approach derived from ref.108, 

where: 

𝑃 /,('12 	≈ 	1	 − 	 /
3!"#$!

451

(1+ [𝑋]/𝐾2,/,4)%1, 

where Nsites is the number of motif matches for PWM X in the read, [X] is the free concentration 

of the TF corresponding to the PWM X and 𝐾2,/,4 = 𝑒𝑥𝑝(−𝛥𝐺/,4/𝑅𝑇) is the equilibrium 

dissociation constant of the binding site i of the TF corresponding to the PWM X.  In ref.108, the 

free concentration of each TF was set to equal the Kd of the consensus sequence. However, for 

some TFs with a long PWM, exact matches to the consensus sequence are rare, and setting the 

scoring as described above will result in the occupancy scores 0 for many functional binding 

sites, reducing the variance of the scores of the variables corresponding to these TFs. To 

overcome this, we used a normalization approach based on the fact that TFs generally have 

~10000-300000 binding sites in the human genome and defined the free concentration of each 

protein to correspond to the Kd of the strength of its 10000th strongest binding site in the human 

genome. Thus, 
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𝑃 /,('12 	= 	1	 − 	 /
3!"#$!

451

(1+ 𝑒𝑥𝑝(𝑆/,4 − 𝑆/,10000))%1 

where PWM match score of the 10000th strongest match of the PWM X is SX,10000 and the PWM 

match score of the ith site in a read is SX,i, This normalization was calculated separately for each 

PWM and strand. The probability for a pair of TFs (X+Y) to occupy a sequence108 is 

𝑃/6,('12 ≈ 1 − /
3!"#$!

45-

?/
7!"#$!

85-

(1 + 𝑒𝑥𝑝(𝑆/,4 + 𝑆6,8 − 𝑆/,-9999))%-@ 

 

Position specific logistic regression classification 

The positional activity scores of the 880 dominating set PWMs and the 7 core promoter 

PWMs (see Table S12) were used to train a position-specific logistic regression classifier on 

the promoter capture STARR-seq data. In contrast to the simple logistic regression described 

above, the PWM match scores were weighted using the positional activity scores of the 

corresponding PWM. Thus, instead of occupancy probabilities, scores 

𝐴/,('12 =B
4

𝑎/,4 ⋅ 𝑆/,4 

were calculated for each sequence and PWM feature X, where aX,i is the positional activity score 

of PWM X at position i and i runs over all matches of PWM X in a sequence. Regression 

coefficients were learned separately for both strands for each PWM. Training of the position-

specific regression model was done similarly to the training of other logistic regression models. 

Final model was selected based on area under precision-recall curve on separate validation data. 

Classification performance on unseen test data is shown for each trained hyperparameter 

combination in Fig. S9h. 
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Convolutional neural network classification 

The CNN classifiers used the raw fasta sequences as input to learn the features during 

the training process. The random enhancer CNN was trained using also the reverse complement 

sequences of the training data, all other models were trained using one orientation only. The 

CNN models consist of convolutional modules with a 1D convolutional layer followed by batch 

normalization, ReLu activation and a dropout layer. The number of convolutional modules, the 

number of convolutional filters per layer, and the dropout rate are hyperparameters that were 

optimized based on the validation data. The convolutional modules used dilated convolution109 

so that the dilation rate of the ith layer is i2, which allows learning interactions with fewer 

parameters than fully connected (dense) layers. After the convolutional modules, the final layer 

is a dense layer of two nodes with sigmoid activation. All the machine learning models used in 

this work will be available at Zenodo (https://zenodo.org/). This CNN architecture was selected 

by testing it against architectures with varying sized dense layers after the convolutional layers. 

Adding the dense layers did not improve the performance of the models. The models were built 

on Keras (https://keras.io/) using TensorFlow 1.14.0 backend110. 

 

Models were trained using the Adam optimizer with default parameter values. Training 

was stopped once binary accuracy on validation data did not improve within 200 epochs or 

when the total training time on a single Nvidia Volta V100 GPU exceeded 72 hours (an 

exception being the “double input” CNN models trained to classify the “binary STARR-seq” 

data (see below for more details) where training was continued up until 144 hours if needed). 

Model parameters were initialized using the He uniform variance scaling initializer111. All 

models, except the double input CNN, were trained on batch size 128 as changing the batch 

size had a negligible effect on classification performance, and only had one convolutional body 

and no dense layers (except the final output layer). Batch size for the double input CNN models 

was determined over grid search between 32 and 64. The other hyperparameters of the CNN 
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models were determined by grid search over the values shown in Table S8, and the 

hyperparameters of the final selected models are shown in Table S9. Classification 

performance on unseen test data is shown for each trained hyperparameter combination for each 

trained CNN model in Fig. S9h. 

 

Note on optimal classification of random enhancer STARR-seq data 

As seen from Fig. S9h, classifying between random enhancer STARR-seq signal and 

input sequences is more difficult than for other datasets studied here. In addition to the logistic 

regression and CNN classifiers described in detail here, also random forest classifiers and 

support vector machines trained on PWM match data similarly to the logistic regression model 

failed to classify random enhancer STARR-seq data better than the CNN model (data not 

shown). We believe that this limited classification accuracy is mainly a feature of the 

experimental design. Transcription of one molecule of DNA is an inherently probabilistic 

single-molecule process, and therefore some transcription occurs at random. Some sequences 

are thus recovered due to this “transcriptional noise”, limiting the maximum classification 

accuracy. To determine whether a better classification is possible, the replicate experiment of 

the GP5d random enhancer STARR-seq was utilized to create an unseen test set that contains 

only those original test set sequences that were also observed in the replicate experiment (2.8% 

of sequences were observed in both replicates). A balanced number of input library sequences 

were used as class 0 sequences. Using the final GP5d random enhancer STARR-seq CNN 

model on this high-confidence test set resulted in ~4% increase in AUprc (Fig. S4d). The 

mean(AUprc) ± std from eight CNN models with different hyperparameters was 

AUprcall=0.614±0.004 for test set with all sequences and AUprccommon=0.641±0.003 for the 

common sequences between the replicates. 
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We also further removed the sequences observed more than once in the input library 

from the 371,390 common STARR-seq sequences between the GP5d random enhancer 

STARR-seq replicates to evaluate whether possible uneven sequence representation in the input 

library could affect the classification. For each common STARR-seq library sequence between 

replicates, the number of matches in the input library was counted by requiring the first 60 bases 

of the common sequence to match exactly to the first 60 bases of a read 1 sequence in the input 

library. There were only 6,213 (~0.02%) common sequences between replicates that were 

observed more than once in the input library (total 999,854,466 input sequences). Removing 

these 6,213 sequences had a negligible effect on the classification (Fig. S4d). 

 

As an external evaluation we trained the previously published gapped k-mer SVM 

classifier112,113 on the high-confidence GP5d random enhancer STARR-seq data where the 

signal set (class 1) sequences were observed in both of the replicates. A balanced set of class 0 

sequences were sampled randomly from the input library. We used the default k-mer length 

(11) and the default decay strength for the center weighted gkm kernel, and tested both “gapped 

k-mer”, and “gapped k-mer + center weighted” kernels. We optimized the regularization 

strength over values (1, 0.1, 0.01, 0.001) with the validation data (by calculating area under 

precision-recall curve). The best hyperparameter combination was obtained by using gapped k-

mer kernel and regularization strength=0.1, producing AUprc=0.6207 on the validation data. 

With the unseen test set (high-confidence sequences) this model obtained AUprc=0.6086. With 

the full test set from GP5d random enhancer STARR-seq replicate 1 the gapped k-mer SVM 

obtained AUprc=0.57, which is slightly better than the pairwise logistic regression (0.56) but 

worse than the CNN (0.62). The gapped k-mer SVM training with the full GP5d random 

enhancer STARR-seq training set of 13,237,548 sequences did not complete within 

approximately three weeks of running time on our computational cluster with 16 parallel 
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threads (gapped k-mer SVM maximum), so performance of a model trained with the full data 

set could not be evaluated. 

 

Differential expression prediction 

 A lasso regression model was used to study the extent to which differential gene 

expression between GP5d and HepG2 cell lines could be predicted using STARR-seq and 

ATAC-seq derived features. Logarithmic fold change between GP5d and HepG2 expression 

values (tpm) was used as the target variable for regression (see section “Chromatin 

immunoprecipitation (ChIP-seq) and gene expression analysis (RNA-seq and CAGE)” above). 

The STARR-seq and ATAC-seq peaks were divided into 12 explanatory features based on the 

cell line in which the peaks were observed and the information about whether the ATAC-seq 

peaks were promoter proximal (less than 1kB distance to any gene in the target gene set) or not 

as follows: Common.ATAC.enh.noSTARR; Common.ATAC.enh.yesSTARR; 

Common.ATAC.prom; Common.STARR.noATAC; GP5d.ATAC.enh.noSTARR; 

GP5d.ATAC.enh.yesSTARR; GP5d.ATAC.prom; GP5d.STARR.noATAC; 

HepG2.ATAC.enh.noSTARR; HepG2.ATAC.enh.yesSTARR; HepG2.ATAC.prom; 

HepG2.STARR.noATAC. Naming “Common.STARR.noATAC” means STARR-seq peaks 

that were observed in both cell lines and that did not overlap with an ATAC-seq peak, and 

“HepG2.ATAC.enh.yesSTARR” means HepG2-specific ATAC-seq peaks that are not within 

1 kb from target gene TSSs and do overlap with STARR-seq peaks. 

 

 For each feature, the logarithmic fold change at peak summit reported by MACS2 (LFC) 

was used as the strength of the peak. Peak summit position was used as the position of the 

feature (ATAC-seq peak summits were used for all other features except the ones that had no 

overlap with ATAC-seq). Peak score S , meaning the effect of a peak to a TSS that is d bp away 

from the peak summit for each feature was calculated assuming it decays like: 
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S(peak) = LFC⋅	exp(-c ⋅	d / dmax), 

where LFC is the logarithmic fold change at peak summit, c is a scaling parameter and dmax is 

the maximum distance of a peak from the TSS for its effect to be included in the model. This 

peak score S was used to quantify the effect of each feature in the regression model. 

 

The target genes were split into training (8815 genes), validation (1449 genes) and test 

(2321 genes) sets according to chromosomes they are in (training: chr1, chr3, chr5, chr7, chr9, 

chr11, chr13, chr14, chr15, chr16, chr17, chr18, chr19, chr20, chr21, chr22, chrX; validation: 

chr4, chr6, chr8; test: chr2, chr10, chr11). A lasso regression model was trained using the 

LassoCV method in scikit-learn107 library (version 0.24.1) where the regularization strength 

(L1 norm) was determined using 5-fold cross-validation during training (n_alphas=100, no 

intercept term). On top of this, the model hyperparameters c and dmax were optimized using the 

validation data set with a grid search over the values shown in Table S8. Features were 

standardized by removing the mean and scaling to unit variance before model training. The best 

model had the following hyperparameters: dmax=100,000 bp; c=4.3; regularization strength 

α=0.013203848400344683. This means that the effect of a peak decays to ½ at approximately 

16,120 bp from the peak summit. This model obtained R2 = 0.1227036350306634. Regression 

coefficients of this best performing model are shown in Table S6. 

 

Interpretation of convolutional neural network classifiers 

To test which HT-SELEX PWMs the convolutional neural network had learned, the 

trained CNN was used as an “oracle” as in ref.66 by embedding 100 sequences drawn randomly 

from each PWM to random enhancer STARR-seq input library sequences (Table S10). Each 

such sequence was embedded at a random position to one of 100 different randomly chosen 

input sequences (same input sequences used as background for each PWM) and the average 

enhancer probability over the 100 sequences was calculated for each PWM. When embedding 
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a single PWM per input sequence, first, the position for the embedding was drawn from random 

uniform distribution. Next, the embedded sequence was drawn by random from the 

corresponding PWM.  When embedding a motif pair, first the positions of the embedded 

sequences were drawn at random not allowing overlap between the embedded sequences. Then, 

both of the embedded sequences were drawn independently from the corresponding PWMs. 

Thus, both the positions and the distance between the embedded sequences are random. The 

expected enhancer probability for a sequence with two embedded PWMs given that there are 

no interactions between them is 𝑝2 = 1− (1− 𝑝1)2, where pi is the enhancer probability of a 

sequence with i PWMs embedded, representing the cumulative probability for geometric 

distribution with two trials. 

 

The TERT promoter sequences were visualized with the DeepLIFT software73, which 

shows the importance of each position in a sequence for the final prediction verdict. Positive 

values correspond to sites that move the prediction verdict towards “promoter” class and 

negative values to sites that move the verdict towards “not promoter” class. The activation 

values from the wild type and mutated promoter sequences were compared against 15 randomly 

selected background sequences from the random promoter STARR-seq input and their average 

signals were visualized. Predicted promoter probabilities of the TERT promoters were obtained 

by scoring the sequences with the CNN trained on promoter capture STARR-seq data. 

 

To visualize pairwise position-specific interactions learned by the CNN classifiers 

trained on STARR-seq and EPD promoters, respectively, the high-confidence promoter 

sequences were visualized with the same mutual information (MI) analysis pipeline114 as 

described above. Here, we generated 10 million sequences of length 120bp from random 

uniform nucleotide background and scored each of them with the 10 best (according to binary 

accuracy on the validation data) STARR-seq promoter capture CNN models and 10 best EPD 
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promoter models. Those sequences obtaining a promoter probability of 0.9 or higher according 

to each of the 10 models were selected for MI analysis. This resulted in 51,131 sequences for 

STARR-seq promoter capture CNN and into 395,663 sequences for EPD promoter CNN. These 

numbers together with the MI-plot themselves in Fig. S9f,g indicate that the STARR-seq data 

allowed learning models with stricter positional dependencies. 

 

Validation of the predicted promoter mutation effects with external data 

To validate the effect of mutations predicted by the CNN model trained on promoter 

capture STARR-seq data, the model predictions were correlated with a saturation mutagenesis 

study of the same promoter46 (see Fig. S9b-d). The statistical significance of the mutation 

effects predicted by the CNN model was estimated as follows. First, the predicted promoter 

probabilities from the CNN model were transformed into log odds scores logit(p)=log(p/(1-p)), 

and the predicted effect of each mutation was calculated as the logarithm of odds ratio between 

the predicted promoter probability of the mutated sequence and the wild type sequence, namely 

predicted mutation effect = ME = logit(pmutated - pWT). 

Then, an empirical p-value was calculated for each predicted TERT promoter mutation effect 

by comparing if the predicted effect in TERT promoter is bigger than predicted effect on 

shuffled promoter sequences at the same position and for the same type of mutation. This was 

done by creating 10,000 shuffled sequences (dinucleotide frequencies preserved) of the TERT 

wild type promoter. For each of these, all possible SNPs were introduced, and the predicted 

mutation effects were calculated for each of them as the logarithm of odds ratio against the 

predicted promoter probability of the wild type (shuffled) promoter sequence. For each position 

and mutation type, the empirical p-value was calculated as the fraction of the predicted mutation 

effects on the shuffled sequences that were more extreme than the predicted effect on the wild 

type TERT promoter: 
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𝑝 − 𝑣𝑎𝑙𝑢𝑒	 = 	
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for cases where the predicted promoter probability increases due to the mutation and 

𝑝 − 𝑣𝑎𝑙𝑢𝑒	 = 	
1

𝑁!"#,%&'
	+
(

𝛿((𝑀𝐸 < 𝑀𝐸(), 

for cases where the predicted promoter probability decreases due to the mutation. Npos,mut is the 

total number of shuffled sequences where mutation mut was observed at position pos and the 

summation index i runs over all such sequences, δi(ME<MEi) is 1 if ME<Mi and otherwise 0. 

All mutations that were non-significant according to either the empirical p-value or the p-value 

from the saturation mutagenesis experiment from ref.46 were filtered out (threshold p-

value<0.05). The correlation of the model predictions between saturation mutagenesis 

logarithmic fold changes is shown in Fig. S9b-d. The saturation mutagenesis experiments used 

here are TERT-HEK (HEK293T cells) and TERT-GBM (primary glioblastoma SF7996 cells). 

 

Promoter-enhancer interaction analysis using machine learning 

 The “binary STARR-seq” design allows looking for relatively short-range interactions 

between promoters and enhancers. To comprehensively test for any such interactions, we 

trained several models with a double input CNN architecture, where the promoter and the 

enhancer parts of the sequence are read in with separate input convolutional bodies (a 

convolutional body consists of multiple layers of convolutional modules with dilated 

convolutions) and later connected with a fully connected layer to learn interactions between the 

outputs of the two convolutional bodies. Depth of the convolutional bodies was optimized with 

separate validation data along with other hyperparameters detailed in Table S8. The rationale 

of this design is that the convolutional modules with dilated convolutions are capable of 

learning interactions within the promoters and within the enhancers, while the subsequent fully 

connected layer then integrates information between the promoters and the enhancers. 
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 The search for interactions between promoters and enhancers was implemented by 

shuffling the training data of the models and keeping the model architecture constant, We 

trained double input CNN models with four different types of training data: i) The paired 

readout from the binary STARR-seq experiment with all possible information about 

interactions between promoters and enhancers intact, referred to as “binary STARR-seq CNN 

(paired)” in Fig. 5c. ii) Permutated training data, where the pairing between the promoter and 

the enhancer sequences is broken so that any specific interactions between the promoters and 

enhancers are killed, but all promoters and enhancers come from promoter+enhancer pairs that 

are active, referred to as “binary STARR-seq CNN (permutated)” in Fig. 5c. iii) Training data 

where only the promoter comes from active promoter+enhancer pairs and the enhancer 

sequences are sampled randomly from the inactive input pool of enhancer sequences, referred 

to as “binary STARR-seq CNN (enhancer from input)” in Fig. 5c. iv) Training data where only 

the enhancer comes from active promoter+enhancer pairs and the promoter sequences are 

sampled randomly from the inactive input pool of promoter sequences, referred to as “binary 

STARR-seq CNN (promoter from input)” in Fig. 5c. 

 

Transcription start site prediction 

All the promoter models were trained on data where the TSS is 100 bp from the start of 

the training sequence. Thus, scoring any 120 bp sequence with these models gives a probability 

that the position 100 in these sequences is a TSS of a functional promoter sequence. Each 

possible TSS position within ±500 bp from the TSSs of the active GP5d promoters (and 

separately of all EPD promoters) was analyzed by taking 100 bp upstream and 20 bp 

downstream from the candidate TSS and by scoring these sequences with the promoter models. 

For each test set active GP5d TSS and for each promoter model, the position obtaining the 

highest promoter probability from the corresponding model was taken as the predicted TSS 

position. 
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Preprocessing of genomic promoters 

Human promoter coordinates were obtained from the eukaryotic promoter database47 

(EDP, version 006, hg19) and sequences 100 bp upstream and 20 bp downstream of the TSS 

were fetched. Promoters overlapping with the extended blacklist described earlier or residing 

outside of chromosomes 1-22 or X were discarded. The division to training, test and validation 

sets for machine learning is detailed in Table S7. The genomic promoter control set (class 0) 

was generated by randomly drawing a balanced number of 120 bp sequences (according to the 

same training, test and validation split) that do not overlap with EPD promoters or regions in 

the extended blacklist described above. For cancer-associated mutation analysis, the genomic 

sequence 100 bp upstream and 20 bp downstream of the TSS for TERT transcript 

ENST00000310581.5 was downloaded from Ensembl GRCh37 release 99 Biomart. The top 

three mutation hotspots in the sequence as well as the recurring mutations (mutations observed 

in more than one patient) were obtained from ref.45. 

 

CAGE analysis 

The 5’ ends of the GP5d CAGE reads contain a 3-bp barcode (ATC) followed by a 6 bp constant 

sequence (CAGCAG). In addition to removing these, the next 2 bp that were mostly Gs, 

according to a FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) quality 

control report, were discarded. The reads were aligned to a combined Phi X 174 + hg19 

reference genomes using bwa mem115. Only the reads mapping to hg19 with MAPQ 30 or 

higher were extracted and duplicates were removed with samtools rmdup. The active promoters 

were discovered from the mapped CAGE reads by clustering the 5’-ends of the reads with 

paraclu software116. In total, paraclu called 7365 clusters (peaks) from the GP5d CAGE data 

fulfilling the following criteria: 1) Cluster is supported by more than 9 unique reads. 2) Cluster 

cannot be longer than 200 bp. 3) Remove clusters where the maximum 5’ end density per base 

divided by the baseline density is less than 2. 4) Remove any cluster that is contained within a 
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larger cluster. The active GP5d promoters, used as the test set in predicting TSS position, were 

defined as those EPD test set (see Table S7) promoters that overlap with a GP5d CAGE peak. 

Thus, the TSS positions come from EPD. 

 

Data and code availability 

All sequence data is available under ENA accession xxxxx, and custom code will be made 

available upon request. All pre-trained machine learning models are available at Zenodo with 

accession xxx. Training, test and validation data sets for the CNN models are available at 

Zenodo with accession yyy.  
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