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Abstract:  15 

The aetiology of Kawasaki Disease (KD), an acute inflammatory disorder of childhood, remains 16 
unknown despite various triggers of KD having been proposed. Host ‘omic profiles offer insights 17 
into the host response to infection and inflammation, with the interrogation of multiple ‘omic 18 
levels in parallel providing a more comprehensive picture. We used differential abundance 19 
analysis, pathway analysis, clustering and classification techniques to explore whether the host 20 
response in KD is more similar to the response to bacterial or viral infection at the transcriptomic 21 
and proteomic levels through comparison of ‘omic profiles from children with KD to those with 22 
bacterial and viral infections. Pathways activated in patients with KD included those involved in 23 
anti-viral and anti-bacterial responses. Unsupervised clustering showed that the majority of KD 24 
patients clustered with bacterial patients on both ‘omic levels, whilst application of diagnostic 25 
signatures specific for bacterial and viral infections revealed that many transcriptomic KD samples 26 
had low probabilities of having bacterial or viral infections, suggesting that KD may be triggered 27 
by a different process not typical of either common bacterial or viral infections. Clustering based 28 
on the transcriptomic and proteomic responses during KD revealed three clusters of KD patients 29 
on both ‘omic levels, suggesting heterogeneity within the inflammatory response during KD. The 30 
observed heterogeneity may reflect differences in the host response to a common trigger, or 31 
variation dependent on different triggers of the condition.  32 

Keywords: infectious diseases; paediatrics; transcriptomics; proteomics; Kawasaki Disease; host 33 
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 35 

1. Introduction 36 
Kawasaki disease (KD) is an acute inflammatory disorder first described in Japan over 50 years 37 

ago [1]. KD occurs most frequently in children under five years of age [2]. Untreated KD leads to the 38 
formation of coronary artery aneurysms (CAAs) in 10-30% of children [3–5], causing it to be the most 39 
common cause of acquired heart disease in children in Europe, Japan and North America [6]. 40 

The aetiology of KD remains unknown, however the seasonality and epidemicity seen in areas 41 
of high incidence, including Japan, suggest that it is caused by an infectious trigger [7]. The current 42 
consensus is that, in some genetically predisposed children, an infectious trigger initiates an 43 
abnormal immune response [8,9]. Multiple viral and bacterial pathogens have been suggested as 44 
candidates for the trigger, in addition to airborne environmental and fungal triggers [8,10]. Despite 45 
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the many theories postulated, none have been independently confirmed, and some studies have 46 
concluded that KD is likely to be caused by multiple environmental triggers [11]. 47 

As the coronavirus disease 2019 (COVID-19) pandemic evolved in early to mid-2020, an increase 48 
in cases of children with unusual febrile illnesses, some with features resembling KD, was observed 49 
[12]. This new condition, which was later termed “Paediatric Inflammatory Multisystem Syndrome 50 
Temporally associated with SARS-CoV-2”, or “Multisystem Inflammatory Syndrome in Children” 51 
(PIMS-TS or MIS-C) [12–15], tends to arise several weeks after SARS-CoV-2 infection [14]. The finding 52 
of increased KD-like cases after the emergence of a novel viral pathogen raises questions about 53 
whether more than one type of trigger might cause KD, and whether KD might represent a 54 
constellation of overlapping inflammatory syndromes.  55 

Study of host transcriptomic and proteomic profiles can reveal perturbations caused by infection 56 
or inflammation. Comparison of the transcriptional response in different diseases has revealed 57 
different host responses to individual pathogens such as TB, bacterial and viral infections [16,17]. 58 
Previous studies of host ‘omics in the context of KD have characterised the pathways involved in the 59 
disease and have established biomarker signatures with diagnostic potential [18,19]. Interrogating 60 
multiple ‘omic datasets in parallel provides more accurate insights into the molecular dynamics of 61 
infection as information captured in one ‘omic layer might not necessarily be captured in another 62 
‘omic layer.   63 

We explored the host transcriptomic and proteomic profiles of children with KD and those with 64 
viral and bacterial infections, aiming to elucidate whether the inflammatory response in KD is more 65 
similar to that of a bacterial or viral infection, or indeed neither. We also used the approach to explore 66 
the heterogeneity within the transcriptional and translational response of patients with KD.  67 

2. Results 68 

2.1. Description of datasets 69 

Whole blood transcriptomic profiles generated from 414 children were included in the 70 
analysis, obtained from children with Kawasaki Disease (KD; n = 178), confirmed (definite) bacterial 71 
infection (DB; n = 54), confirmed (definite) viral infection (DV; n = 120), and healthy controls (HC; n 72 
= 62). Two transcriptomic datasets were used. The ‘discovery’ transcriptomic dataset, which was 73 
generated by HumanHT-12 version 4.0 BeadChips, was used for all steps of the analysis. The 74 
‘validation’ transcriptomic dataset, which was created by merging two datasets generated by 75 
HumanHT-12 version 3.0 and 4.0 BeadChips, was used to test the classifiers trained on the 76 
discovery dataset.  77 

In addition, proteomic profiles from the plasma or serum of 329 children in the same groups 78 
were studied: from children with KD (n = 52), DB (n = 121) and DV (n = 106) infections, and HC (n = 79 
50). Liquid chromatography with tandem mass spectrometry (LC-MS/MS) and the SomaScan [20] 80 
platform were used to generate the proteomic ‘discovery’ and ‘validation’ datasets, respectively. 81 
The ‘discovery’ proteomic dataset, generated from plasma samples using LC-MS/MS, was used for 82 
all steps of the analysis. The ‘validation’ proteomic dataset, generated from serum samples using 83 
the SomaScan platform [20], was used to test the classifiers trained on the discovery dataset.  84 

On both ‘omic levels, the datasets that were used as ‘discovery’ datasets were selected due to 85 
their higher number of bacterial and viral samples. There was no overlap between the patients 86 
included in the proteomic datasets and those included in the transcriptomic datasets. 87 

KD patients were defined according to AHA guidelines [21]. DB patients had a bacterial 88 
pathogen identified in a sample from a sterile site. DV patients had a virus identified that was 89 
consistent with the presenting syndrome; had no bacteria identified in blood or relevant culture 90 
sites; and had a CRP of <60mg/L. Further details on the clinical definitions used to define the DV 91 
and DB groups can be found in the Supplementary Text.  92 
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The median ages (months) of KD patients in the transcriptomic discovery and validation 93 
datasets were 26 (IQR: 29) and 37 (IQR: 34), respectively. The proportions of male KD patients were 94 
55% and 60% for the transcriptomic discovery and validation datasets, respectively. For the 95 
proteomic KD group, the median ages (months) were 30 (IQR: 36) and 16 (IQR: 39) for the discovery 96 
and validation datasets, respectively. The proportion of males was 69% for both the discovery and 97 
validation datasets (Table S1). Table S2 contains clinical information for the KD patients included in 98 
the four datasets analysed. The causative pathogens for the patients with bacterial and viral 99 
infections from all datasets are shown in Table S3. The median duration of fever when the blood 100 
sample was taken for transcriptomic analysis from KD patients was 5 (range of 2-7 days) and 6 days 101 
(range of 2-10 days) for the discovery and validation datasets, respectively. For the proteomic KD 102 
samples, the median duration of fever when the sample was taken was 7 (range of 3-20 days) and 103 
6.5 days (range of 4-22 days) for the discovery and validation dataset, respectively.  104 

Table 1. The datasets used in the analysis. KD, DB, DV and HC are abbreviations for Kawasaki 105 
Disease, definite bacterial, definite viral, and healthy control, respectively. LC-MS/MS is an 106 

abbreviation for liquid chromatography with tandem mass spectrometry. * = not used in analysis. 107 

Dataset name 
GEO 

accession(s) 
Platform(s) used 

for generation KD DB DV HC Citation(s) 

Transcriptomic 
discovery GSE73461 

Microarray: 
HumanHT-12 

version 4.0 
 

77 31 92 62 [18] 

Transcriptomic 
validation 

GSE73462 
GSE73463 

Microarrays: 
1x HumanHT-12 

version 3.0  
1x HumanHT-12 

version 4.0 

101 23 28 16* [19,22] 

Proteomic 
discovery NA LC-MS/MS 26 73 75 25 unpublished 

Proteomic 
validation NA SomaScan [20] 26 48 31 25 unpublished 

 108 
2.2. Comparison of Kawasaki Disease to Bacterial and Viral infection  109 
 We explored whether the host response during KD is more similar to the host response during 110 
bacterial or viral infections using transcriptomic (gene-level) and proteomic data. We first assessed 111 
the variance in the discovery datasets using Principal Component Analysis (PCA; Fig. S1-S2). In the 112 
transcriptomic dataset, PC1 (29.24%) appears to be capturing lymphocyte number and disease 113 
group, with the KD patients located between the bacterial and viral groups. In the proteomic 114 
dataset, PC1 (29.18%) appears to be capturing variation caused by age differences, while PC2 115 
(13.39%) and PC3 (10.56%) strongly capture the disease group effects, with the KD patients grouped 116 
together between the clearly separated bacterial and viral groups.  117 
2.2.1. Differential abundance analysis  118 

Limma [23] was used to identify genes and proteins differentially abundant between each 119 
disease group (KD, DB, DV) and healthy controls (HC), whilst accounting for age, sex and, for the 120 
transcriptomic dataset, immune cell proportions. Features were considered significantly 121 
differentially abundant (SDA) at a FDR of 5%. Differential abundance analysis was applied to 13035 122 
genes and 344 proteins. For the transcriptomics, 3,218, 3,124, and 4,663 genes were SDA between 123 
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KD vs HC, DB vs HC, and DV vs HC, respectively. For the proteomics, 113, 125, and 78 proteins 124 
were SDA between KD vs HC, DB vs HC, and DV vs HC, respectively. Genes and proteins SDA 125 
between KD vs HC are listed in the Supplementary File 1.  126 
2.2.2. Pathway analysis 127 

The lists of SDA features identified in 2.2.1 were subjected to pathway analysis using 128 
g:Profiler2 [24] to determine which pathways were upregulated and downregulated in the three 129 
disease groups in the discovery datasets for the transcriptomic (Fig.1a) and proteomic (Fig. 1b) 130 
datasets. The full lists of pathways are provided in Supplementary File 2.  131 

In the transcriptomic pathway analysis, some pathways were found to be enriched across 2 or 132 
3 of the disease conditions, whereas others were found in a single condition (Fig. 1a). For example, 133 
neutrophil degranulation, which was the top pathway in both KD and bacterial infections, and 134 
vesicle-mediated transport were both upregulated in KD and bacterial infections, whereas antigen 135 
presentation via MHC class I was upregulated in KD and viral infections. Of the top 17 pathways 136 
enriched in KD, 6 pathways were also present with concordant directions in the top bacterial 137 
pathways and 3 were present with concordant directions in the top viral pathways. Seven were 138 
unique to KD.  139 

In the proteomics data, all pathways overlapping between KD and either bacterial or viral 140 
infections had concordant directions of regulation (Fig. 1b). Of the top 19 pathways enriched in KD, 141 
13 were also enriched in bacterial samples, 10 in viral samples, and 4 were unique to KD. Eight of 142 
the top 19 KD pathways were enriched in both bacterial and viral samples. All of these are involved 143 
in the immune response. The higher frequency of overlapping concordant pathways makes it 144 
harder to identify differences between the pathways enriched in the proteomic dataset than the 145 
transcriptomic dataset. Overall there was a much lower number of proteins SDA between KD vs 146 
HC (n = 113) than genes SDA between KD vs HC (n = 3,218). Furthermore, the total number of 147 
proteins remaining following quality control and filtering for missingness (n = 344) was much lower 148 
than the total number of genes remaining following quality control (n = 13,035), which could justify 149 
why the differences in pathways enriched between the disease groups are more apparent in the 150 
gene expression data. 151 

Three pathways were enriched on both ‘omic levels. These were: immune effector process 152 
pathway (upregulated in KD and bacterial patients); immune response (upregulated in KD 153 
patients); and vesicle-mediated transport (upregulated in KD and bacterial patients). 154 
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 155 

Figure 1a. Pathways upregulated and downregulated in bacterial, KD and viral patients compared 156 
to healthy controls in the transcriptomic dataset. 157 

● ●
● ●
● ●● ● ●●

● ●●

● ●
● ●●

● ●
●●
●
●
● ●● ● ●●

●

●●

●

●

●

●

●
●
●●
●
●
●
●
●
●
●●
●
●

●
●
●
●
●
●
●
●

●

●

●

●protein catabolic process
B cell differentiation

B cell activation
regulation of intracellular signal transduction

leukocyte degranulation
translational elongation

regulation of multi−organism process
response to type I interferon

type I interferon signaling pathway
response to biotic stimulus

mitochondrial translation
translational termination

immune system development
cytokine production

response to other organism
positive regulation of cellular process

response to cytokine
cytokine−mediated signaling pathway

positive regulation of biological process
nucleobase−containing small molecule metabolic process

small molecule metabolic process
mitochondrial translational elongation

cellular respiration
generation of precursor metabolites and energy

regulation of cellular metabolic process
positive regulation of signal transduction
positive regulation of cell communication

positive regulation of signaling
intracellular signal transduction

lymphocyte differentiation
regulation of response to stimulus

mitotic cell cycle
anaphase−promoting complex−dependent catabolic process

antigen processing and presentation of peptide antigen via MHC class I
vesicle−mediated transport

immune system process
secretion

immune response
cell activation

immune effector process
neutrophil degranulation

Definite Viral vs
 Healthy C

ontrols

Kawasaki D
ise

ase vs
 Healthy C

ontrols

Definite Bacte
rial vs

 Healthy C
ontrols

Direction
●

●

●

Up
Down
Both

−log10 P−value
●

●
●

10
20
30

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2021.03.18.435948doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435948
http://creativecommons.org/licenses/by/4.0/


 6 of 25 

 

 158 

Figure 1b. Pathways upregulated and downregulated in bacterial, KD and viral patients compared 159 
to healthy controls in the proteomic dataset. 160 

2.2.3. Clustering 161 
K-Means clustering was used to determine whether the KD patients were more likely to cluster 162 

with bacterial or viral patients in the discovery datasets. Prior to clustering analysis, gene expression 163 
values were corrected for age, sex and immune cell proportions by taking the residual gene 164 
expression values after removing the contributions of these variables. Immune cell proportions were 165 
estimated using CIBERSORTx [25], an online tool for estimating immune cell proportions from gene 166 
expression data. The same process was performed to remove the contribution of age and sex from 167 
the protein abundance values. NbClust [26] was used to determine the optimal number of clusters 168 
(k). The value of k most frequently selected across the 12 indices measured by NbClust was selected 169 
as the optimal number of clusters for downstream analyses. In the transcriptomic analysis, 3 clusters 170 
were identified as optimal, whereas on the protein level, 2 clusters were identified as optimal.  171 

 172 
We assessed the proportion of KD, bacterial and viral patients in each of the clusters for the 173 

transcriptomic (A) and proteomic (B) datasets (Fig. 2). In the transcriptomic analysis, an over-174 
representation of viral patients was observed in cluster 1 and, to a lesser extent, cluster 2. An over-175 
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representation of bacterial patients was observed in cluster 3 (Fig. 2), resulting in two viral-like 176 
clusters and one bacterial-like cluster. Of the 77 transcriptomic KD samples, 47 (61%) belonged to 177 
cluster 3, 22 (29%) belonged to cluster 2, and 8 (10%) belonged to cluster 1. In the proteomic 178 
analysis, an over-representation of bacterial patients was found in cluster 1, whereas an over-179 
representation of viral patients was observed in cluster 2, leading to one viral-like and one bacterial-180 
like cluster. Of the 26 proteomic KD samples, 24 (92%) belonged to cluster 1 and 2 (8%) belonged to 181 
cluster 2.  182 

 183 
Figure 2. The proportion of patients from each disease group in each cluster for transcriptomics (A) and 184 
proteomics (B). DB, DV and KD represent definite bacterial, definite viral, and Kawasaki Disease. 185 

The association between KD patient cluster membership and various clinical variables was 186 
tested. CRP levels (p-value: 0.048), lymph node swelling (p-value: 0.044), and peeling (p-value: 187 
0.050) were significantly associated with cluster membership of KD transcriptomic samples. Higher 188 
levels of CRP were found in transcriptomic KD samples in cluster 3 which had the highest 189 
proportion of bacterial samples. Out of the 55 patients displaying peeling, 38 were found in cluster 190 
3, as were 17 of the 21 patients with lymph node swelling. No clinical variables were associated 191 
with cluster membership in the proteomic dataset. On both ‘omic levels, CRP levels were highest in 192 
the clusters in which the majority of bacterial samples were found (Fig. S5-S6), as expected since a 193 
CRP cut-off of <60mg/L was required for patients in the DV groups. This pattern was also observed 194 
for the WBC counts in the transcriptomic dataset (Fig. S5).  195 

Differential abundance analysis was performed to compare feature abundance in the KD 196 
samples that fell into different clusters. There were 503 genes SDA between transcriptomic KD 197 
samples in cluster 1 vs clusters 2 and 3, 454 genes SDA between KD samples in cluster 2 vs clusters 198 
1 and 3, and 651 genes SDA between KD samples in cluster 3 vs clusters 1 and 2. These lists of SDA 199 
genes were subjected to pathway analysis using g:Profiler2 [24] to identify pathways upregulated 200 
and downregulated within the clusters (Fig. 3). Complete lists of pathways are in Supplementary 201 
File 3.  202 

For the transcriptomics, cluster 1 had the highest proportion of viral patients compared to the 203 
other clusters (Fig. 2a). The majority of the Adenovirus (19/23) and Influenza (16/23) patients were 204 
in cluster 1. Cluster 1 KD patients were characterised by upregulation of anti-viral response 205 
pathways, such as interferon and cytokine signalling (Fig. 3). In cluster 2, although the majority of 206 
patients were viral, their proportion was not quite as high as it was in cluster 1 (Fig. 2). The majority 207 
of the RSV (15/27) patients were in cluster 2. In the KD patients in cluster 2, various pathways 208 
associated with the anti-viral response were downregulated (Fig. 3). Cluster 3 had the highest 209 
proportion of bacterial patients and KD patients (Fig. 2). Similarly to cluster 2, the top pathways 210 
downregulated for KD patients in cluster 3 were associated with the anti-viral response, while the 211 
inflammatory response pathway was strongly upregulated suggesting that the KD patients in this 212 
cluster were different to those in cluster 1 and that their response was not as viral-like as those in 213 
cluster 1 (Fig. 3).  214 

Three pathways - response to biotic stimulus (i.e. a stimulus caused or produced by a living 215 
organism), response to other organism and type I interferon signalling - were upregulated in viral 216 
transcriptomic samples (Fig. 1a) and also in the KD samples in the viral-like cluster 1 (Fig. 3). 217 
Furthermore, four pathways, including two associated with interferon signaling, were upregulated 218 
in viral transcriptomic samples (Fig. 1a) and downregulated in the KD samples in clusters 2 and 3 219 
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(Fig. 3). There were five pathways downregulated in bacterial transcriptomic samples (Fig. 1a) and 220 
upregulated in KD transcriptomic samples in cluster 1 (Fig. 3), including two related to cytokine 221 
signaling.  222 

For the proteomic dataset, two proteins were SDA between cluster 1 and 2: serum amyloid A1 223 
(SAA1) and retinol binding protein 4 (RBP4). Both of these proteins have been identified previously 224 
as Kawasaki markers, with RBP4 abundance being lower in active KD [27] and SAA1 being 225 
elevated in KD [28]. The two KD patients in cluster 2 displayed the opposite pattern, with higher 226 
RBP4 and lower SAA1 abundance than the other KD patients.  227 

 228 

Figure 3. Pathways upregulated and downregulated in the KD patients in clusters 1, 2 and 3 for the 229 
transcriptomic dataset. Clusters were identified using K-Means applied to KD, DB and DV patients. 230 

There were 151, 52 and 137 pathways upregulated in clusters 1, 2 and 3, respectively, and 5, 66 and 137 231 
pathways downregulated in clusters 1, 2 and 3, respectively. 232 

2.2.4. Classification using Disease Risk Scores 233 
 To further assess if the KD patients elicited more bacterial-like or more viral-like responses, we 234 
built two classifiers that returned the probabilities that a patient is bacterial or viral through two 235 
separate disease risk scores (DRS). A DRS translates the abundance of features in a discriminatory 236 
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signature, selected by Lasso [29], into a single value that can be assigned to each individual [16]. 237 
Through using two independent classifiers, the possibility of a patient being neither bacterial nor 238 
viral was allowed. The classifiers were trained using the ‘omic data that was corrected for age, sex 239 
and, for the transcriptomic dataset, immune cell proportions.  240 

The Lasso model selected 38 genes for the bacterial classifier, of which 26 had increased 241 
abundance and 12 had decreased abundance in bacterial patients compared to viral patients and 242 
healthy controls (Table S4). The viral classifier included 32 genes, of which 13 had increased 243 
abundance and 19 had decreased abundance in viral patients compared to bacterial patients and 244 
healthy controls (Table S5). The classifiers trained in the transcriptomic discovery dataset were 245 
tested on bacterial and viral patients from the transcriptomic validation dataset. The bacterial 246 
classifier achieved an area under the ROC curve (AUC) of 0.935 (95% CI: 0.869-1) and the viral 247 
classifier achieved an AUC of 0.935 (95% CI: 0.856-1). 248 

The Lasso model selected 26 proteins for the bacterial classifier, of which 12 had increased 249 
abundance and 14 had decreased abundance in bacterial patients compared to viral patients and 250 
healthy controls (Table S6). The viral classifier included 20 proteins, of which 11 had increased 251 
abundance and 9 had decreased abundance in viral patients compared to bacterial patients and 252 
healthy controls (Table S7). When testing the classifiers trained in the proteomic discovery dataset 253 
on bacterial and viral patients from the validation dataset, the bacterial classifier achieved an AUC 254 
of 0.925 (95% CI: 0.867-0.984) and the viral classifier achieved an AUC of 0.891 (95% CI: 0.821-0.962). 255 
For both ‘omic levels, the 90% sensitivity of the classifiers in classifying these samples was used to 256 
determine the DRS threshold above which a sample would be classified as bacterial or viral.  257 

The classifiers were applied to KD patients from the discovery and validation datasets for both 258 
‘omic levels, resulting in bacterial DRS (DB-DRS) and viral DRS ( DV-DRS) for each KD patient (Fig. 259 
4-5). Classification labels (DB or DV) were assigned to the KD patients using the DB-DRS and DV-260 
DRS thresholds calculated from applying the classifiers to the bacterial and viral patients in the 261 
validation datasets (Fig. S9). Of the 178 transcriptomic KD samples, 18 (10%) samples had DB-DRS 262 
high enough to be classified as bacterial and 16 (9%) samples had DV-DRS high enough to be 263 
classified as viral. 145 (81%) samples did not achieve DB-DRS nor DV-DRS sufficiently high to lead 264 
to bacterial or viral classification, and 1 sample was classified as both bacterial and viral (Fig. 4). Of 265 
the 52 proteomic KD samples, 40 (78%) achieved DB-DRS high enough to be classified as bacterial 266 
and 18 (35%) achieved DV-DRS high enough to be classified as viral. 10 (19%) proteomic KD 267 
samples achieved DB-DRS and DV-DRS high enough for them to be classified as both bacterial and 268 
viral, and 4 (7.7%) were classified as neither (Fig. 5). 269 

To further examine the ‘omic profiles of the KD patients with DB-DRS and DV-DRS too low for 270 
them to be classified as either bacterial or viral, we performed pathway analysis on the genes or 271 
proteins SDA between these KD patients and healthy controls. Amongst the pathways upregulated 272 
on the transcriptomic level, were ‘defense response to fungus’ (p-value: 6.6e-08) and and ‘response 273 
to fungus’ (p-value: 6.7e-07).  274 

The associations of DB-DRS, DV-DRS, bacterial classification as predicted from the DB-DRS, 275 
and viral classification as predicted from the DV-DRS, with various clinical variables were tested 276 
for KD samples from both ‘omic levels. In the transcriptomic KD samples, clinical measurements of 277 
CRP were positively associated with DB-DRS (p-value: 0.002) and bacterial classification (p-value: 278 
0.0001), and negatively associated with DV-DRS (p-value: 0.002) and viral classification (p-value: 279 
0.023). In the proteomic KD samples, CRP levels were significantly positively associated with DB-280 
DRS (p-value: 0.013) and bacterial classification (p-value: 0.007). Peeling was significantly 281 
associated with higher DB-DRS on both ‘omic levels (transcriptomic p-value: 0.041, proteomic p-282 
value: 0.007). Strawberry tongue was significantly associated with a low score on the transcriptomic 283 
DV-DRS (p-value: 0.045).  284 
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For the KD patients from the discovery datasets, the associations between DB-DRS or DV-DRS 285 
and the cluster membership of patients was tested. Transcriptomic KD sample cluster membership 286 
was significantly associated with DB-DRS (p-value: 0.005) and DV-DRS (p-value: 0.0006), with a 287 
stepwise increase in DB-DRS and decrease in DV-DRS from clusters 1 to 3, where cluster 1 was the 288 
most viral-like cluster, and cluster 3 was the most bacterial-like cluster. Proteomic KD sample 289 
cluster membership was significantly associated with DB-DRS (p-value: 0.002) and DV-DRS (p-290 
value: 0.023), with higher DB-DRS and lower DV-DRS in KD patients in cluster 1, where cluster 1 291 
was the more bacterial-like cluster and cluster 2 was the more viral-like cluster.  292 

 293 
Figure 4. Bacterial DRS (DB-DRS) plotted against viral DRS (DV-DRS) for KD (discovery and validation), 294 

definite bacterial (DB; validation) and definite viral (DV; validation) patients from the transcriptomic datasets. 295 
Boxplots are shown for each disease group. 296 
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 297 
Figure 5. Bacterial DRS (DB-DRS) plotted against viral DRS (DV-DRS) for KD (discovery and validation), 298 
definite bacterial (DB; validation) and definite viral (DV; validation) patients from the proteomic datasets. 299 

Boxplots are shown for each disease group. 300 
2.3. Clustering of Kawasaki Disease patients alone 301 

We performed unsupervised clustering for the KD patients from the discovery datasets to 302 
explore the natural patient stratification formed in the absence of bacterial and viral comparator 303 
patients. For both ‘omic levels, 3 clusters were optimal, as determined by NbClust [26]. The clusters 304 
were identified using the ‘omic data that was corrected for age, sex and, for the transcriptomic 305 
dataset, immune cell proportions. Of the 77 transcriptomic KD samples, 32 (41%) were in cluster 1 306 
(cluster KD1-T), 23 (30%) were in cluster 2 (cluster KD2-T), and 22 (29%) were in cluster 3 (cluster 307 
KD3-T). Of the 26 proteomic KD samples, 4 (15%) were in cluster 1 (cluster KD1-P), 7 (27%) were in 308 
cluster 2 (cluster KD2-P), and 15 (58%) were in cluster 3 (cluster KD3-P).  309 

There was high overlap between the samples in cluster KD1-T and those in the transcriptomic 310 
bacterial-like cluster 3 described in 2.2.3 (Fig. S10). All except one of the samples found previously 311 
in the transcriptomic viral-like cluster 1 were found in cluster KD2-T. The majority (n = 14; 64%) of 312 
the samples in KD3-T were also found in transcriptomic cluster 2. On the proteome level, in 2.2.3, 313 
all KD samples except two clustered together in cluster 1, however the two remaining samples that 314 
were previously in cluster 2, were not assigned to the same cluster.  315 

The association between cluster membership and various clinical variables was tested. CRP 316 
levels were significantly associated with cluster membership for both ‘omic layers (transcriptomics 317 
p-value: 0.041, proteomics p-value: 0.010). Furthermore, coronary artery aneurysm (CAA) 318 
formation was significantly associated with cluster membership in the proteomic dataset (p-value: 319 
0.020) with 13 of the 21 patients known to not have CAAs being in cluster KD3-P. On the 320 
transcriptomic level, the highest WBC counts and CRP levels were in cluster KD1-T, and on the 321 
proteomic level, WBC counts and CRP levels were highest in clusters KD2-P and KD1-P, 322 
respectively (Fig. S7-S8). 323 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Bacterial DRS

Vi
ra

l D
R

S

Disease Group
●

●

●

DB

KD

DV

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2021.03.18.435948doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435948
http://creativecommons.org/licenses/by/4.0/


 12 of 25 

 

The associations between DB-DRS or DV-DRS and cluster membership of KD patients when 324 
clustered alone was tested. The transcriptomic KD samples’ cluster membership was significantly 325 
associated with DB-DRS (p-value: 0.006) with the highest DB-DRS in cluster KD1-T. Although the 326 
association between transcriptomic KD samples’ cluster membership and DV-DRS was not 327 
significant, the highest DV-DRS values were observed in cluster KD2-T. There were no signficant 328 
associations between the proteomic KD samples’ cluster membership and DB-DRS or DV-DRS.  329 

Differential abundance analysis was performed on the patients that fell into different clusters. 330 
For the transcriptomics, there were 494 genes SDA between cluster KD1-T vs clusters KD2-T and 331 
KD3-T, 461 genes SDA between cluster KD2-T vs clusters KD1-T and KD3-T, and 320 genes SDA 332 
between cluster KD3-T vs clusters KD1-T and KD2-T. For the proteomics, 42 proteins were SDA 333 
between cluster KD1-P vs clusters KD2-P and KD3-P, 25 proteins were SDA between cluster KD2-P 334 
vs clusters KD1-P and KD3-P, and 38 proteins were SDA between cluster KD3-P vs clusters KD1-P 335 
and KD2-P. These lists of SDA features were subjected to pathway analysis using g:Profiler2 [24] to 336 
identify pathways upregulated and downregulated within the clusters (Fig. 6). Complete lists of 337 
pathways are found in Supplementary Files 4-5. 338 

In the transcriptomic analysis (Fig. 6a), cluster KD2-T had features in common with an anti-339 
viral response, whilst the others did not. Many pathways associated with the anti-viral response 340 
were downregulated in clusters KD1-T and KD3-T whilst patients in cluster KD2-T were 341 
characterised by the upregulation of viral pathways, including those associated with cytokine 342 
signaling.  343 

The response to biotic stimulus and type I interferon signaling pathways were previously 344 
identified as being upregulated in viral transcriptomic samples (Fig. 1a) and in KD samples in the 345 
viral-like cluster 1 when K-Means was applied to KD, DB and DV (Fig. 3). These pathways were 346 
downregulated in clusters KD1-T and KD3-T (Fig. 6a), indicating that the transcriptomic response 347 
in these samples was less viral-like than samples in cluster KD2-T. 348 

 Four pathways previously identified as being downregulated in bacterial transcriptomic 349 
samples (Fig. 1a), including two pathways associated with cytokine signaling, were upregulated in 350 
cluster KD2-T. In addition, six pathways upregulated in cluster KD2-T had already been identified 351 
as being upregulated in the viral-like cluster 1 identified previously (Fig. 3). Five pathways of the 9 352 
top upregulated pathways in cluster KD3-T (Fig. 6a) were also upregulated in cluster 2 when K-353 
Means was applied to KD, DB and DV (Fig. 3). These were blood coagulation, hydrogen peroxide 354 
catabolic process, antibiotic catabolic processes, hydrogen peroxide metabolic process and 355 
regulation of biological quality.  356 

In the proteomic analysis (Fig. 6b), one of the KD clusters had features in common with the 357 
anti-viral response, whilst another KD cluster was more bacterial-like. Amongst the top pathways 358 
enriched in cluster KD1-P and KD2-P were pathways involved in inflammation. The top pathways 359 
enriched in cluster KD3-P were associated with lipids. Of the 37 pathways enriched in the 360 
proteomic KD samples (Fig. 6b), 21 were previously identified as enriched in proteomic samples 361 
(Fig. 1b). Of these, 6 were enriched in proteomic viral samples (Fig. 1b) and samples in cluster KD2-362 
P (Fig. 6b) with concordant directions. Furthermore, 7 pathways enriched in cluster KD1-P (Fig. 6b) 363 
were also enriched in bacterial proteomic samples (Fig. 1b) with concordant directions. These 364 
results suggest that cluster KD1-P is a more bacterial-like cluster, whereas cluster KD2-P is a more 365 
viral-like cluster. Some pathways were enriched on both ‘omic levels, including those associated 366 
with blood coagulation, the response to stress and immune effector processes.  367 
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 368 
Figure 6a. Pathways upregulated and downregulated in transcriptomic KD patients between clusters. 369 

Clusters were identified by K-Means ran on KD patients alone. There were 24, 118 and 24 pathways 370 
upregulated in clusters KD1-T, KD2-T and KD3-T, respectively, and 94, 68 and 75 pathways downregulated in 371 

clusters KD1-T, KD2-T and KD3-T, respectively. 372 
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 373 
Figure 6b. Pathways upregulated and downregulated in proteomic KD patients between clusters. Clusters 374 
were identified by K-Means ran on KD patients alone. There were 77, 94 and 61 pathways upregulated in 375 

clusters KD1-P, KD2-P and KD3-P, respectively, and 64, 104 and 53 pathways downregulated in clusters KD1-376 
P, KD2-P and KD3-P, respectively. 377 

3. Discussion 378 

 Although the cause of Kawasaki Disease has not been identified, there is growing clinical, 379 
epidemiological and immunological evidence that it may be caused by different infectious triggers, 380 
with data pointing to bacteria, viruses or fungi. We explored the transcriptomes and proteomes of 381 
children with KD and definite bacterial and viral infections, using multiple approaches to compare 382 
the host response to these diseases to the response during KD. We found that there was a diversity 383 
of responses in the proteomic and transcriptomic profiles of KD patients, suggesting that KD is not 384 
a homogenous condition, and that whilst some patients had a more viral- or bacterial-like profile, 385 
the majority were defined as neither bacterial nor viral when their transcriptomic response was 386 
mapped onto viral and bacterial disease risk scores (DRS).  387 

 Within the host response profiles, some elements of KD appeared more viral-like and some 388 
elements appeared more bacterial-like. This is shown through overlapping pathways that were 389 
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enriched in KD and either bacterial or viral infections. For example, the antigen presentation via 390 
MHC class I pathway was upregulated in KD and viral infections on the transcriptomic level. Major 391 
histocompatibility complex (MHC) molecules are expressed on the cell surface to present antigenic 392 
peptides to T cells, and their expression is increased by a broad range of immune activators 393 
including interferons [30,31]. The finding of upregulated MHC class I expression in KD and viral 394 
patients may reflect interferon-induced activation in these groups. Also, on the transcriptomic level, 395 
KD and bacterial infections share neutrophil degranulation as their most upregulated pathway. 396 
Neutrophils are the first responders to infection and inflammation, and the expansion and 397 
activation of the neutrophil population is a characteristic feature of acute KD. In the initial days of 398 
KD illness there is an intense inflammatory response with neutrophil leucocytosis [32]. Studies have 399 
found elevated levels of human neutrophil elastase and IL-8, a C-X-C chemokine that activates 400 
neutrophils [33,34]. 401 

The host response during KD is highly heterogenous, as demonstrated through the enrichment 402 
of certain pathways in the KD patients in different clusters when K-Means was applied to KD, 403 
bacterial and viral transcriptomic samples. For example, anti-viral response pathways were 404 
upregulated in KD patients in the majority viral cluster 1 and downregulated in KD patients in 405 
clusters with decreasing numbers of viral samples (cluster 2, 3), relative to each other. In the 406 
majority bacterial cluster 3, pathways associated with the inflammatory response were upregulated. 407 
The heterogeneity of the host response during KD was also apparent when K-Means was applied to 408 
KD patients alone. Three distinct clusters were identified on both ‘omic levels, and, in each cluster, 409 
a distinct set of pathways was enriched. The range of pathways enriched in the different clusters 410 
further demonstrate the heterogeneity in the host response during KD, with some clusters enriched 411 
for viral response pathways and some clusters enriched for bacterial response pathways. 412 
Unsurprisingly, amongst the patients clustering in the more bacterial-like clusters, their DB-DRS 413 
tended to be higher, and amongst the patients clustering in the more viral-like clusters, their DV-414 
DRS tended to be higher.  415 

The two different approaches to clustering (with and without bacterial and viral comparator 416 
samples) produced similar clusters of KD patients, providing reassurance that the clusters 417 
described here are biologically meaningful. Despite the similarities, however, the clusters identified 418 
in 2.2.3 and 2.3 were not completely identical, indicating that the inclusion of well characterized 419 
bacterial and viral patients adds further insights to the solely data-driven KD-based analysis. 420 

Although there are shared features between the response to KD and both bacterial and viral 421 
infections, the distinct pathways enriched in each disease group demonstrate the variation in the 422 
molecular host response; the distinctiveness of the responses is also supported by the ability of 423 
RNA and protein signatures to discriminate KD from bacterial and viral infections [18,19,35]. These 424 
differences between the response during KD and the responses to bacterial and viral infections 425 
suggest that KD may be triggered by a novel process not typical of either common bacterial or viral 426 
infections. Despite the host omics profiles’ heterogeneity observed in KD, commonalities are also 427 
shown. 428 

A two-way classifier approach highlighted that it is not a simple dichotomous question as to 429 
whether the response during KD more closely resembles the responses to bacterial or viral 430 
infections, when focusing on key discriminatory features. We found that 145 of the 178 431 
transcriptomic KD samples were not assigned DRS high enough for them to be classified as either 432 
bacterial or viral, and amongst pathways upregulated in these KD patients compared to healthy 433 
controls were two pathways associated with the fungal response. This finding is intriguing, given 434 
the evidence suggesting that KD could be caused by a fungal trigger that has been reported 435 
elsewhere [36,37].  436 
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The heterogeneity and the different clusters of responses to KD which have elements shared 437 
with bacterial, viral or fungal responses, could indicate multiple microbial triggers of KD, as has 438 
been suggested by Rypdal et al. [11]. An alternative explanation for the heterogeneity observed here 439 
in the response during KD could be that a single pathogen that causes KD leads to heterogeneous 440 
responses in different hosts, as has been observed in children infected with SARS-CoV-2, where 441 
many children remain asymptomatic, some experience severe inflammation [38,39], and some 442 
develop PIMS-TS/MIS-C [13,14,40]. Variations in the host condition, such as epigenetic differences 443 
and differences in prior pathogen exposure, could cause the spectrum of host responses to KD 444 
observed here. Differences in host genetics could also be responsible for the heterogeneity in host 445 
response during KD as the severity of KD, including the formation of CAAs, is already known to be 446 
impacted by the host’s genetic background [41].  447 

This study has certain limitations. The proteomic discovery dataset was a lower dimensional 448 
dataset (n= 867) than the transcriptomic discovery dataset (n=47,323) with high rates of missingness, 449 
as is common in quantitative proteomics. Only proteins with no missingness were used for the 450 
clustering and classification, so key proteins for distinguishing KD could be absent from the 451 
analysis. On the proteomic level, many pathways were enriched in multiple disease groups (Fig. 452 
1b), making it difficult to identify a disease-specific pathway signature. This could be caused by 453 
plasma samples, which were used in this dataset, capturing a noisy signal due to the release of 454 
substances from various tissues into the bloodstream. The proteomic response during KD shared 455 
more similarities with the proteomic response to bacterial infection, with more pathways 456 
overlapping between KD and bacterial infections (Fig. 1b) and all but two KD proteomic samples 457 
clustering with bacterial proteomic samples (Fig. 2). This follows observations of striking clinical 458 
similarities between KD and bacterial streptococcal and staphylococcal toxic shock syndromes 459 
[42,43], and could reflect the hypothesis that the proteome is closer to the observed phenotype than 460 
the transcriptome [44]. 461 

Although bacterial patients with known viral coinfections have been removed from the 462 
analysis, it is impossible to say with confidence that an individual does not have a coinfection, the 463 
presence of which could falsely increase heterogeneity in the host response in a given disease 464 
group. Coinfection is common in KD, with one study identifying confirmed infections in a third of 465 
KD patients [45]. Despite being unable to rule-out that some KD patients included had co-incident 466 
viral or bacterial infections, we found that most KD transcriptomic samples were neither classified 467 
as viral nor bacterial when the respective DRS scores were applied. Amongst the patients classified 468 
as bacterial or viral, it is possible that some patients could be suffering from an intercurrent 469 
infection in addition to KD.  470 

There are variations in the range of bacterial and viral pathogens and the severity of illness 471 
represented in the two ‘omic datasets. The bacterial and viral patients included in the 472 
transcriptomic datasets and the proteomic validation dataset were more severely unwell than those 473 
included in the proteomic discovery dataset (Table S3) due to the inclusion criteria of the studies to 474 
which they were recruited. The KD patients included in the transcriptomic dataset were collected 475 
from San Diego, USA, whereas the KD patients included in the proteomic dataset were collected 476 
from London, UK, although the same case definition was used. There remains no diagnostic test for 477 
KD, thus some KD patients presented here may have unrecognized alternative diagnoses. The 2 KD 478 
samples in the proteomic dataset that cluster separately (Fig. 2b) and are distinguished from the 479 
other KD samples by their levels of SAA1 and RBP4, two previously identified KD markers [27,28], 480 
are a possible example of this.  481 

  482 
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4. Materials and Methods  483 
4.1. Patient recruitment 484 
 All samples were obtained from patients with written parental informed consent. Case 485 
definitions can be found in the Supplementary Text. The definite bacterial (DB), definite viral (DV), 486 
healthy control (HC) and Kawasaki Disease (KD) samples used in the transcriptomic discovery and 487 
validation datasets were recruited in the United Kingdom and Spain as part of the IRIS 488 
(Immunopathology of Respiratory, Inflammatory and Infectious Disease; NIHR ID 8209) and 489 
GENDRES (Genetic, Vitamin D, and Respiratory Infections Research Network; 490 
http://www.gendres.org) studies [17,22] and in the United States through the US-Based Kawasaki 491 
Disease Research Center Program 492 
(https://medschool.ucsd.edu/som/pediatrics/research/centers/kawasaki-disease/pages/default.aspx).    493 

The DB, DV and HC samples used in the proteomic discovery and validation datasets were 494 
enrolled in the EUCLIDS (European Union Childhood Life-Threatening Infectious Disease Study; 495 
11/LO/1982) study [46] and the PERFORM (Personalised Risk assessment in Febrile illness to 496 
Optimise Real-life Management across the European Union) study (https://www.perform2020.org/; 497 
16/LO/1684). KD samples used in the proteomic datasets were recruited from the ongoing UK 498 
Kawasaki study “Genetic determinants of Kawasaki Disease for susceptibility and outcome” 499 
(13/LO/0026). This study recruits acutely unwell children with KD during hospital admission in 500 
participating hospitals around the UK. 501 
4.2. Data generation 502 
4.2.1. Transcriptomic datasets 503 

The transcriptomic discovery dataset was generated from whole blood samples obtained from 504 
KD patients, healthy controls, and patients with bacterial and viral infections using the HumanHT-505 
12 version 4.0 (Illumina) microarray[18]. In order to have a transcriptomic validation dataset 506 
containing the same disease groups as the transcriptomic discovery dataset, two datasets were 507 
merged. One dataset contained gene expression values (HumanHT-12 version 4.0 Illumina 508 
microarray) from whole blood samples obtained from acute and convalescent KD samples [19]. The 509 
other dataset consisted of gene expression values (HumanHT-12 version 3.0 Illumina microarray) 510 
from whole blood samples obtained from patients with bacterial and viral infections [22]. For all 511 
three independent microarray experiments, one batch of samples was processed, and samples were 512 
randomly positioned across the arrays. 513 
4.2.1. Proteomic datasets 514 

 The proteomic discovery dataset was generated from plasma samples using LC-MS/MS. Full 515 
details of the experimental protocol are in the Supplementary Text. The proteomic validation 516 
dataset was generated from serum samples using the SomaScan aptamer-based platform [20]. Prior 517 
to pre-processing, 867 proteins were measured in the discovery dataset (LC-MS/MS) and 1,300 in 518 
the validation dataset (SomaScan). Samples in the proteomic validation dataset were split across 519 
three plates with KD, DB, DV and HC samples present on each plate in relative proportions. 520 
4.3. Statistical methods  521 

All analysis was conducted using the statistical software R (R version 3.6.1, [49]). Code used for the 522 
analytical pipeline described here is found at https://github.com/heather-523 
jackson/KawasakiDisease_IJMS. Note, the code is signposted for the transcriptomic datasets but can 524 
be modified for other ‘omic levels. 525 
4.3.1. Pre-processing of gene expression data  526 

Background correction, robust spline normalisation (RSN), and log2-transformation were 527 
applied to the raw discovery gene expression dataset using the R package lumi [47]. Probes were 528 
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retained if at least 80% of samples in each comparator group had a detection p-value <0.01. Low 529 
variance probes and those significantly associated with the UCSD recruitment site were removed. 530 
Bacterial samples with known viral coinfections were removed from the analysis at this stage to 531 
ensure that the signal from the bacterial samples was not diluted. KD samples that had been 532 
administered IVIG treatment were also removed at this stage, but their inclusion was irrespective of 533 
coincident viral or bacterial detection, for which data was not available. A KD sample previously 534 
identified as an outlier [18] was removed. 535 

As mentioned, two microarray gene-expression datasets were merged to form the validation 536 
dataset. Background subtraction and RSN normalisation were applied to these two datasets 537 
independently, using the R package lumi [47], prior to using ComBat [48] to remove the batch effects 538 
in the merged dataset [18]. 539 

 540 
4.3.2. Pre-processing of protein abundance data  541 

The raw discovery dataset files generated by LC-MS/MS were processed using MaxQuant 542 
(1.6.10.43) [50]. with matching between runs activated. Relative quantification was performed using 543 
the MaxLFQ algorithm [51]. The resulting LFQ values were log2-transformed. Bacterial samples with 544 
known viral coinfections were removed from the analysis at this stage to ensure that the signal from 545 
the bacterial samples was not diluted. Protein groups were removed if they were identified as 546 
contaminants, or if they were missing in over 90% of samples in each disease group.  547 

The proteomic validation dataset was generated from the SomaScan platform [20]. Quality 548 
control steps used scale factors returned from SomaScan to correct for variations in aptamer 549 
hybridisation efficiency, inter- and intra-assay variability, variability in the starting quantities of 550 
proteins, and plate effects. Further batch effect corrections were carried out using COCONUT 551 
normalisation [52]. 552 
 553 
4.3.3. Comparison of Kawasaki Disease to bacterial and viral infections 554 
4.3.3.1. Differential abundance analysis   555 

Differential abundance analysis was carried out to compare the overall transcriptomic and 556 
proteomic responses to KD, definite bacterial (DB) and definite viral (DV) infections. The degree to 557 
which genes and proteins were differentially abundant between KD and healthy controls (HC), DB 558 
and HC, and DV and HC was quantified using Limma [23] on the transcriptomic and proteomic 559 
discovery datasets separately. Age and sex were included as covariates for both datasets. Immune 560 
cell proportions, calculated using the online CIBERSORTx portal [25], were used as additional 561 
covariates for the transcriptomic dataset. The immune cell proportions included were lymphocytes, 562 
neutrophils, monocytes, mast cells and eosinophils. Features were considered significantly 563 
differentially abundant (SDA) at a false discovery rate (FDR) [53] of 5%. 564 
 565 
4.3.3.2. Pathway analysis 566 

The pathways upregulated and downregulated in KD, DB, and DV samples were identified 567 
from the lists of SDA features identified for each disease group in as outlined in 4.3.3.1. Pathways 568 
were identified using g:Profiler2 [24] and redundancy in the pathways identified was removed 569 
using REVIGO [54].  570 
4.3.3.3. Clustering analysis  571 
 K-Means clustering [55] was applied separately to transcriptomic and proteomic discovery 572 
datasets. Healthy controls were excluded as we were only interested in the clustering of KD with 573 
pathological patients. For the proteomic dataset, only proteins with no missing data points were 574 
used (n = 106).   575 

To explore the effects of sex and age on clustering in the proteomic dataset, the contribution of 576 
these variables was removed by regressing out their effects on every protein and taking the residual 577 
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values as the ‘corrected’ abundance. This process was also followed in the transcriptomic dataset 578 
but the contributions of the immune cell proportions listed in 4.3.3.1 were also removed. Prior to 579 
clustering, and after correction, features were removed if their variance was lower than 0.25. To 580 
determine the optimal number of clusters (k) for each corrected and non-corrected dataset, the R 581 
package NbClust [26] was used, with 12 indicies tested. The indices tested were: KL [56], CH [57], 582 
Hartigan [58], McClain [59], Dunn [60], SDIndex [61], SDbw [62], C-Index [63], Silhouette [64], Ball 583 
[65], Ptbiserial [66,67] and Ratkowsky [68]. The number of clusters tested by NbClust ranged 584 
between 2-10 clusters. The most frequently selected k by the 12 indices was used for downstream 585 
analyses. The lowest k selected the most frequently was taken in cases where there were multiple 586 
values of k selected the most frequently.    587 

Once clusters were identified, features that were SDA (5% FDR) between KD samples in the 588 
different clusters were identified. Pathway analysis was done using these lists of SDA features to 589 
determine the pathways upregulated and downregulated in KD samples in the different clusters. 590 
The R package g:Profiler2 [24] was used for pathway analysis, with pathways with p-values < 0.01 591 
considered significant. Redundancy in the pathways identified was removed using REVIGO [54].  592 

The association between cluster membership and various clinical variables was tested. For 593 
categorical variables, Fisher’s Exact test was used. For continuous variables, One-Way ANOVA was 594 
used. P-values < 0.05 were considered significant. The categorical variables tested in both datasets 595 
were: strawberry tongue (yes/no/unknown); lymph node swelling (yes/no/unknown); and peeling 596 
(yes/no). Continuous variables tested in both datasets were: levels of C-reactive protein (CRP); 597 
month of year; and the duration of fever at sampling. Coronary artery aneurysms (CAA) was 598 
available only as a dichotomous variable for the patients submitted for proteomic analysis. For the 599 
patients submitted for transcriptomic analysis, maximal coronary artery Z-scores were available 600 
and were used instead. 601 
4.3.3.4. Classification 602 
 Two independent classifiers were built for each ‘omic dataset. One classifier was for classifying 603 
DB patients (DB classifier), and the other for classifying DV patients (DV classifier). The DB 604 
classifiers and DV classifiers were trained on features SDA between DB vs DV and HC patients 605 
combined, and DV vs DB and HC patients combined, respectively. Only features present in both 606 
datasets (discovery and validation) were used for training the classifiers. The discovery datasets 607 
that were corrected for age, sex, and, for transcriptomics, immune cell proportions were used to 608 
train the classifiers. The validation datasets were also corrected for age, sex and, for the 609 
transcriptomic validation dataset, immune cell proportions as determined by CIBERSORTx [25]. 610 
The proteomic discovery and validation datasets were generated using different platforms. 611 
Therefore, each dataset was scaled so that all abundance values were between 0-1, and then the two 612 
datasets were quantile normalised together. Proteins with no missing values that were also found in 613 
the proteomic validation dataset were used to train the proteomic classifier. 614 

The DB classifiers were trained to identify DB patients from DV and HC patients, whereas the 615 
DV classifiers were trained to identify DV patients from DB and HC patients. Lasso regularised 616 
regression [29] was used to identify the discriminatory features and their weights for each classifier. 617 
For each sample, a disease risk score (DRS) was calculated using the abundance of the features 618 
selected by Lasso, as described by Kaforou et al. in [16]. The DRS was calculated by totalling the 619 
abundance of features with positive Lasso weights and subtracting from this total the abundance of 620 
features with negative Lasso weights. Features were only included in the DRS if their Lasso weight 621 
direction and log-fold change direction were concordant. DRS were scaled between 0-1.  622 

The classifiers were tested on the DB and DV patients of their respective validation dataset. 623 
The cut-off threshold above which a sample was classified as DB or DV was calculated using the 624 
coords function in the R package pROC [69] using a sensitivity cut-off of 90%. The classifiers were 625 
then tested on the KD patients from the discovery and validation datasets and the thresholds 626 
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identified by pROC were used to determine if the KD patients were classified as DB or DV. If 627 
patients were classified as neither bacterial nor viral according to their DRS, differential abundance 628 
analysis followed by pathway analysis (as described in 4.3.3.2) was done to identify the pathways 629 
enriched in these patients compared to healthy controls.  630 
4.3.4. Exploration of Kawasaki Disease samples alone 631 

In order to identify the natural clusters formed by KD patients in the absence of bacterial or 632 
viral patients, K-Means clustering was done separately on the KD patients. The process followed 633 
was the same as outlined in 4.3.3.3. The association between cluster membership and clinical 634 
variables was tested. The clinical variables and the statistical tests used were the same as outlined in 635 
4.3.3.3. 636 

5. Conclusions 637 
Taken together, the results from differential abundance analysis, pathway analysis, clustering 638 

and classification suggest that the host transcriptomic and proteomic responses during KD are highly 639 
heterogenous. Different clusters of host responses during KD were identified, some of which 640 
resemble elements of host responses to bacterial, viral and fungal infections. These differences in the 641 
host responses could imply that KD is triggered either by several different pathogens, or by a single 642 
pathogen that has different manifestations according to the underlying genetic and environmental 643 
situation of the host. Whilst there are similarities between the host response during KD and the host 644 
response to bacterial infections and viral infections, there are also many differences in the responses, 645 
suggesting that KD may be triggered by a novel process not typical of either common bacterial or 646 
viral infections. This was demonstrated by the majority of the KD transcriptomic samples falling into 647 
a non-bacterial, non-viral group following classification, raising the possibility that the minority of 648 
KD transcriptomic samples with bacterial or viral profiles were possibly suffering from intercurrent 649 
infection in addition to a separate KD trigger. Our data further suggest that research into the 650 
etiologies of KD should be focused on cohorts of KD patients who share similar clinical characteristics 651 
in order to identify shared molecular responses. 652 
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SDA 

Healthy control 
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Log-fold change 
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