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ABSTRACT

Humans are able to adapt their locomotion to a variety of novel circumstances, for instance, walking on diverse terrain and
walking with new footwear. During locomotor adaptation, humans have been shown to exhibit stereotypical changes in their
movement patterns. Here, we provide a theoretical account of such locomotor adaptation, positing that the nervous system
prioritizes stability in the short timescale and improves energy expenditure over a longer timescale. The resulting mathematical
model has two processes: a stabilizing controller which is gradually changed by a reinforcement learner that exploits local
gradients to lower energy expenditure, estimating gradients indirectly via intentional exploratory noise. We consider this model
walking and adapting under three novel circumstances: walking on a split-belt treadmill (walking with each foot on a different
belt, each belt at different speeds), walking with an exoskeleton, and walking with an asymmetric leg mass. This model predicts
the short and long timescale changes observed in walking symmetry on the split-belt treadmill and while walking with the
asymmetric mass. The model exhibits energy reductions with exoskeletal assistance, as well as entrainment to time-periodic
assistance. We show that such exploration-based learning is degraded in the presence of large sensorimotor noise, providing a
potential account for some impairments in learning.

Introduction
Human locomotion combines versatility, stability, robustness to uncertainty, and energy economy in a manner not yet matched
by analogous legged robots. Humans are able to adapt their gait to diverse terrain and locomotor circumstance, and the processes
by which such adaptation proceeds are not completely understood, even at a behavioral and algorithmic level, let alone at the
neural level1, 2. Better understanding the principles governing locomotor adaptation may help us design better rehabilitation
paradigms, build assistive or prosthetic robots that are more easily learnable or provide greater benefit3–6, and more generally,
accelerate motor learning4, 7.

Perhaps the most popular and well-studied experimental paradigm used to investigate human locomotor adaptation is
walking on a ‘split-belt treadmill’8–14: a split-belt treadmill has two side-by-side belts that can be run at different speeds (Figure
1a). Walking on a split-belt treadmill, with one foot on each belt and with the two belts going at different speeds (Figure 1b),
is a novel locomotor condition that humans have typically never experienced in their lives. Under this condition, humans
initially walk quite asymmetrically, becoming more symmetric as time goes on (according to a particular symmetry metric).
Numerous articles have recorded the myriad stereotypical gait adaptation phenomena during such walking. Specifically, when
humans walk on a split-belt treadmill, they exhibit certain stereotypical changes in their left-right gait symmetry (Figure 1c-e),
commonly characterized in the literature via the step length symmetry and the step time symmetry8–11, 15, 16. These symmetry
changes are also accompanied by energy reductions over a longer period of time12, 14, 17, suggesting that the final adaptation
may be driven in part by energy minimization1, 18–20.

The locomotor adaptation proceeds over multiple time scales, short timescales of a few seconds (sometimes called early
adaptation, seen as sharp jumps in symmetry in Figures 1c-e) to longer timescales of over tens of minutes (called late
adaptation, seen as slow transients in Figures 1c-e). There may be other longer timescales of learning, but these have not
been experimentally characterized). Here, we provide a first unified mathematical model to capture these human locomotor
transients across timescales: the initial transient over the first few seconds, the longer transient over many tens of minutes, and
finally the steady state adapted gait. This model takes the form of a local reinforcement learner that aims to walk stably while
gradually reducing the energy cost of walking (Figure 2). We then examine other locomotor adaptation phenomena using the
same framework, specifically, walking with a simplified exoskeleton and walking with an additional asymmetric leg mass.
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Results

A minimal unified model of locomotor adaptation.
Energy economy and stability are two important criteria governing normal locomotion, whether on a treadmill or in the real
world. Both for commonplace tasks19–22 and for novel tasks1, 23, 24, humans seem to move in a manner that minimizes energy
consumption, perhaps for evolutionary reasons25. Similarly, walking stably, that is, without falling down is an important
constraint as falls may result in injury. Normal walking is stabilized via feedback control, and we have previously characterized
how foot placement and propulsion via the push-off impulse are modulated to produce a stable and robust walking motion26–28.
These control actions respond to perturbations to the body (Figure 4), whether externally applied pushes, pulls, or trips27, 29, 30

or internally generated sensorimotor noise26, 28, in a manner that a steady gait is restored over a few steps. We expect that
short timescale responses to perturbations to walking are governed by this stabilizing controller, as without such fast timescale
stabilization, the walker will fall. We expect this controller to remain unchanged as long as the treadmill belt speeds remain
unchanged, or more generally, as long as the mechanical situation governing walking does not change. However, as soon as the
belt speeds change, say to a split belt condition (unequal speeds), we posit that a higher level ‘reinforcement learning’ controller
slowly changes the properties of the short-timescale controller to improve the energy economy of the gait by following an
estimated gradient of the energy cost. Together, these two controllers may be visualized as an inner and an outer loop as
shown in Figure 2, with the inner loop being the stabilizing controller and the outer loop being the learning controller or the
reinforcement learner. We implement this two timescale controller in the context of a minimal biped model (Figure 4), starting
with a stabilizing controller derived from human data26–28. See Methods for details of the biped model, the stabilizing controller,
and the reinforcement learning controller.

Reinforcement learning simply means learning or performance improvement via intentional exploration of strategies
through interactions with the environment and exploiting strategies that yield better performance, eventually resulting in an
optimal control policy (or at least an improved control policy) for a given task, given some performance criterion. While there
are numerous flavors of reinforcement learning31–36, here, we use a simple flavor of reinforcement learning that is consistent
with our understanding of locomotor control2 (Figure 3). First, walking involves step to step variability. While some of this
step to step variability is generated due to unavoidable sensory and motor noise, some of this variability is likely the nervous
system’s way of exploring the local neighborhood of control strategies – to enable learning2, 37. By observing the energetic
consequences of slightly different controller parameters on each step, the reinforcement learner slowly updates an estimate
of the local gradient (derivatives or sensitivities) of the average energy cost with respect to the control actions. Our gradient
estimator operates only on observed energy and body state, and does not have oracular access to the gradient directly nor does
it do standard finite differencing (as such would not be physiological). This is ‘local’ or ‘greedy’ reinforcement learning, as the
internal body parameters governing behavior are changed gradually, without large jumps to a different part of the parameter
space. See the Methods section for more details regarding the gradient estimation and the reinforcement learning.

Split belt: Reinforcement learning of the stable biped captures the fast and slow symmetry transients
The aforementioned minimal biped model (Figure 4), when put through a split-belt adaptation protocol of Figure 1b — that
is, equal belt speeds for a few minutes (baseline), then unequal speeds (adaptation phase), and then equal speeds again
(deadaptation phase) — produces transients in walking asymmetry that are qualitatively identical to those found in experiment
(Figure 5). Just like in the experiments, the step length asymmetry jumps to negative quickly at the beginning of adaptation and
then slowly moves toward symmetry (zero) and then eventually positive asymmetry given enough time14, 17 or a fast enough
learning rate. During de-adaptation, the step length asymmetry jumps to a more positive values and then slowly drifts back
to zero. The step time asymmetry jumps to a positive value and remains positive during adaptation, and during deadaptation,
jumps to a negative value and slowly drifts back to zero (symmetry).

Split belt: Initial fast timescale transients in symmetry are predicted by the stabilizing controller
The immediate fast timescale jumps in step length and step time asymmetry at the beginning of the adaptation and deadaptation
phase (called early adaptation and early deadaptation, respectively) can be explained via the stabilizing controller. The foot
placement controller of the biped directly adjusts the step length in response to fore-aft speed deviations, specifically reducing
the step length if the body is vaulting over the foot too fast. Starting with the walking motion on the tied belt and suddenly
changing the belt speeds to a split condition results in too fast a forward speed while on the slow belt and too slow a forward
speed while on the fast belt (see Supplementary Information). These velocity deviations are transformed by the foot placement
feedback controller into a smaller fast step length and a larger slow step length, resulting in the negative step length asymmetry.

The fast timescale response during deadaptation is similarly explained via how the forward speed on each belt compares to
the nominal speed on that belt. An important difference is that at the end of the adaptation phase, the nominal forward speed on
each belt is different, faster on the fast belt and slower on the slow belt. This means that when the belt speeds are tied again
during the deadaptation phase, the foot placement controller reacts to the forward speed deviations from these asymmetric
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nominal forward speeds. The fast timescale transients in step time asymmetry are explained as a second order effect due to
changes in the angle swept by each stance leg and the forward speeds on each belt.

Split belt: Steady state asymmetries are predicted by energy optimality
The slow transients due to the energy-reducing reinforcement learning control during the adaptation phase eventually approach
positive step length asymmetry and retain the initial positive step time asymmetry (Figure 5). These asymmetries are also
predicted by a separate optimization calculation that computes the two-step periodic walking motion that has the least total
energy cost (see Methods). That is, this energy optimal two-step periodic motion has positive step length and step time
asymmetry (Figure 6). Given that the reinforcement learning controller acts to reduce energy consumption, we find that the
steady state of the reinforcement learning control agrees qualitatively with the pure periodic energy optimization. Because the
gait is buffeted by internally generated noise during the reinforcement learning, the reinforcement learner implicitly performs
a stochastic optimization. This explains the very small quantitative difference between the steady state of the reinforcement
learning and a purely deterministic periodic energy optimum. Figure 6 also shows how the different components of the
total metabolic cost contribute to the optimum: specifically, it is seen that the location of the optimum is determined by the
dependence of the stance work on the gait asymmetry, specifically through the reduction of positive stance work by the leg on
the fast belt14, 17. The qualitative results (namely the signs of the optimal step length and step time symmetries) are robust to
wide ranges of model parameters as well as leg swing or metabolic cost models, so as to be essentially independent of them.
The generalized telescoping legged biped version of these steady state results, without restricting to the inverted pendulum
limit, were presented in Seethapathi’s thesis18 and at Dynamic Walking (2018).

Split belt: Step time asymmetry converges to the steady state earlier than step length asymmetry.
During adaptation, step length asymmetry slowly goes from negative to positive, whereas the step time asymmetry remains
positive after the initial fast timescale jump. Also, Figure 6 shows how the energy cost landscape has greater curvature along
step time asymmetry rather than the step length asymmetry, again implying faster convergence for the energy optimizing
gradient descent in the step time direction than in the step length direction. One recent study38 with a shorter adaptation
timescale observed that in that short timescale, split belt walking converged to the energy optimal step time but not the energy
optimal step length. This may simply be because, as our model suggests, step time asymmetry may converge faster than step
length asymmetry due to the aforementioned reasons.

Exoskeletal assistance: adaptation to state-dependent or time-periodic assistance.
There is an extensive literature on motor adaptation while wearing an assistive exoskeleton3–6, 39, 40. Here, we considered
whether the learning process is able to adapt stably to such exoskeletal assistance. We assume a simplified exoskeleton41 that
torques the body forward about the ankle, which is equivalently to an ankle or hip exoskeleton for the minimal point-mass
biped (Figure 7a).

We consider two types of exoskeletal assistance: (1) in which the exoskeleton produces forces based on the biped’s body
state and (2) in which the exoskeleton produces forces that are periodic in time. In the case of state-dependent assistance, which
is the most common type of exoskeletal assistance3–6, the exoskeleton applies a forward torque impulse when the leg reaches
a particular angle. Figure 7b show that under this condition the learner adapts to a steady state that takes advantage of the
provided assistance, resulting in a lower energy cost. In future work, we hope to examine how this adaptation is affected if the
exoskeletal assistance is not precisely controlled (has step to step variability in either in magnitude or phase) or if the person
and the exoskeleton are part of a human-in-the-loop optimization framework attempting to reduce the metabolic cost4.

Exoskeletons providing time-periodic assistance are less common39, 40. In the presence of such time-periodic perturbations
and in the absence of learning (learning rate = 0), the system entrains to the period of the external assistance if the perturbation
period is close enough the original gait period and if the perturbation is large enough, as in39–41. This entrainment is destroyed
when learning is turned on with the learner not accounting for the perturbation. Entrainment to the perturbation is achieved
when the internal model accounts for not just the body state but also the perturbation, for instance, including the perturbation
timing as an input to the estimated state dynamics (see Methods section). This is because without it, an internal model that only
considers body state would be inconsistent with the dynamics and can never accurately reflect the sensory data. Alternative to
expanding the state of the internal model, using a slow enough learning rate or slow enough gradient updates (integrating over a
sufficiently long past to estimate cost) also promotes entrainment. For instance, such low learning rates could be achieved if the
learner uses a variable learning rate that turns down the learning rate when the internal model is not accurate.

Effect of adding asymmetric leg mass.
Prentice and Noble42 showed how humans respond to an asymmetric mass added to just one of the two legs. Both step lengths
and step times become immediately asymmetric and then gradually adapt toward symmetry42, 43. And then, when the additional
mass is removed, there in an after-effect in the opposite direction, which also decays slowly back to symmetry. Figure 8 shows
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an implementation how added mass affects the step length symmetry on our learning biped. Because the nominal biped model
described above does not have explicit leg swing dynamics, the immediate response due to mass addition is due to enforcing a
reduction in step length of the leg with the added mass, with the step length inversely proportional to the leg inertia. Such step
length reduction is consistent with a leg swing controller that aims to produce a particular step length, but comes up short of its
target on account of the altered mass (see appendix). After this immediate change in step length symmetry, the learner slowly
changes the controller parameters in a manner that is consistent with experiment: that is, step lengths approach slowly converge
toward symmetry.

Unresolved sensorimotor noise can degrade or destroy learning.
The learning described thus far relies on exploratory motor noise that perturbs the control policy on each step and builds a
estimate of the gradient to improve the objective. This procedure relies on being able to estimate the state, the control, and
the energy expenditure with reasonable accuracy. Increasing sensory noise in the measurements that go into the gradient
estimate can degrade the accuracy of the gradient estimate, and large-enough sensory noise (comparable to the exploratory
noise) can make the gradient estimate meaningless and destroy learning at any given learning rate. Unresolved motor noise
has the same effect on learning. Say, we imagine that the motor noise consists of two components, one component that is
‘known’ to the nervous system (and can thus serve the purpose of exploratory noise) and another component (possibly partly
due to the so-called signal dependent noise) that is unknown or not resolved by concurrent sensory information. When the
latter component becomes too large, learning is degraded and eventually destroyed at any given learning rate. This effect of
sensorimotor noise on learning may partly explain why learning may sometimes be impaired in populations with sensorimotor
deficits44–48.

Discussion
We have shown that the major phenomenology during adaptation and learning during a novel locomotor situation, namely
walking on a split-belt treadmill, can be explained via a unified model that prioritizes stability in the short term and energy in
the longer term.

While there are, by now, many tens of reinforcement learning-derived controllers for bipedal or quadrupedal simulations
(whether robot-inspired or biologically plausible) and real physical robots (e.g.,32–36), no comparison has been previously
made to formally compare the transients observed in a well-defined reinforcement learning process to that observed in human
locomotor adaptation. More significantly, the flavors of reinforcement learning used in such machine learning literature are
not directly relevant to the adaptation observed in continuous walking, as most of them usually involve or require episodic
exploration: that is, walk for a while in the new environment, collect information, update parameters, and (needing to restart
episodes of walking), rather than optimizing while continuously walking. Selinger and coworkers2 outlined an elegant learning
procedure for gradual continuous optimization of energy cost during walking via exploratory motor noise. This procedure
was not designed to capture both short and long timescale transients, but only the long term transients, and did not rely on
estimating and updating gradients. Further, in contrast to this procedure, we account for locomotor dynamics, specifically that
the current energy cost not only depends on the action choices (step frequency in their case) but also the current transient state
of the system. There have been a few other efforts to obtain gait adaptation in robots reminiscent of that in split belt walking,
but via control mechanisms specifically engineered to obtain the observed adaptation, rather than naturally arise from other
proto principles (e.g.,49, 50).

Once the basic biped model and the learning algorithm was fixed, our theory had three free parameters, namely the learning
rate, the internally generated exploratory noise, and internal model update rate (or memory used therein). It is well understood
from optimization theory that too large learning rates will lead to instability of the descent procedure and too small learning
rates may make no progress in the presence of noise. However, a range of intermediate learning rates will be adequate for
effective locomotor learning. The specific learning rate chosen by the human will likely depend on the expected environmental
changes2, so that the learning rate may be higher when the nervous system believes that the environment may change more often
or more rapidly. Similarly, the exploratory noise chosen by the nervous system for learning will depend on other sensorimotor
or external noise that the nervous system cannot control or measure, so that the exploratory noise is large enough to obtain
useful gradient information despite other noise. Indeed, it is known that motor variability may be helpful and be intentionally
regulated to facilitate motor learning2, 37, 51. Thus, future experiments may test whether increasing frequency of environmental
changes or other noise increases the learning rate and increases the exploratory noise (although it may be challenging to design
an experiment to isolate just the exploratory noise).

The stabilizing feedback controller here had a feedforward component (nominal values for push off and step length) and a
feedback component that operated on deviations from nominal or desired values of body state (e.g., forward velocity, forward
position). Our primary results here rely on the reinforcement controller only operating on the feedforward component and the
nominal values of the body state, and did not need to change the feedback gains to predict the phenomena. If these feedback
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gains are to be modified during learning, they need to be changed in a manner that safeguards the walker from going unstable.
Allowing the feedback gains to change will allow the learning controller to converge to the stochastic optimum and may also
allow for a longer lasting memory of the learned behavior.

We assume that during learning, the architecture of the stabilizing walking controller does not change, but only the
parameters that define it. Thus, our learning is constrained by this assumed structure. Thus, we used the human derived
controller as not just an initial condition for the control policy, but also an inductive bias for subsequent learning. Given
that learning under such fixed structure is sufficient to explain many qualitative phenomena, we might hypothesize that these
adaptation may not involve architectural changes to the neural control, but only small parametric changes (e.g., Hebbian
learning).

In current and future work, we intend to describe how the model presented here generalizes to some other experiments
involving locomotor adaptation: for instance, changing the energy landscape and gradient via speed or step frequency feedback
(e.g.,52–54), split-belt with slopes16, different deadaptation belt speeds55, etc.), role of stored memory and experience in
accelerating adaptation2, 52, and protocols to accelerate learning. We will also examine more complex high-DOF systems,
learning under incomplete state information or delayed feedback, variable learning rates depending on internal model error,
how the presence of many internal states in our learner promote ‘savings’ and anterograde interference56–58, contrast error
based learning versus minimizing an energy like objective, etc.

Methods
Minimal biped: dynamics, control, and objective
Dynamics. We consider a minimal model of a human (Figure 4a), consisting of a point-mass upper body and simple extensible
legs that can apply forces on the upper body59, 60. For this biped, the energy optimal walk on solid ground is the so-called
inverted pendulum walking gait, in which the body vaults over the foot in a circular arc on each step (Figure 4b), with the
transition from one step to the next achieved via push-off by the trailing leg, followed by a heel-strike at the leading leg (Figure
4c). The reinforcement learner uses this inverted pendulum gait, albeit on a split belt treadmill and this gait is entirely specified
by the push-off impulses and the step length.

The total metabolic energy cost of walking for this biped is defined as a weighted sum of the positive and negative work
done by the stance legs on the upper body and the work done to swing the legs forward60, 61. This energy cost over a stride can
then be normalized by the total time period of a stride to obtain the metabolic rate. The minimization of this metabolic rate
is the objective of the reinforcement learner. This is a natural objective, as there is extensive evidence that human walk and
run in a manner that approximately minimized energy consumption1, 20, 21, 24, 59, 60, even for short bouts and even under novel
circumstances. See59, 60 for technical details; see18 and the Supplementary Information on how to extend this model to walk
on a split belt treadmill, specifically, defining leg work carefully. For simplicity and transparency, we choose to illustrate the
technical issues in this well-studied irreducibly minimal low-dimensional model, whose global energy optimum in the absence
of noise is easily obtained with great accuracy59, 60, rather than a more complex multibody multimuscle model of a human. The
simplicity of the model allows us to test global convergence of learning in a manner that may not be possible with a much more
complex biped.

The two key gait asymmetry metrics for this biped are step length asymmetry and step time asymmetry, defined as follows:

Step length asymmetry =
Dfast−Dslow

Dfast +Dslow
and Step time asymmetry =

Tfast−Tslow

Tfast +Tslow
(1)

where the fast and the slow step lengths (Dfast and Dslow) are defined at heel strike as in Figure 4c and the step times Tfast and
Tslow are the respective stance times.

Stabilizing feedback control. As we are primarily interested in 2D phenomena here, we use the 2D version of the biped (but
as an aside, we note that the model is generalizable to 3D walking). The biped has two control variables, namely, step length
and push-off magnitude. These control variables are modulated to keep the biped stable, despite external or internal noisy
perturbations and despite a change in the mechanical environment. e.g., walking on a split-belt treadmill instead of a regular
treadmill. The values of these control variables on each step are decided by a discrete controller, as described below, derived
from our prior human experiments26–28. Let us denote the two control variables together by the variable u. These have nominal
values unominal that the biped uses in the absence of any perturbations. The body state at midstance is denoted by s and includes
the forward position, the forward velocity and the running sum (i.e., discrete integral) of the forward position. These body
states have nominal or ‘desired’ values snominal in the absence of any external perturbations, so the deviation from these nominal
values are considered a perturbation to be corrected. The two control variables ui at step i are changed by the following linear
control rule as a function of the preceding midstance state si: ui = unominal +K · (si− snominal), where K is a matrix of feedback
gains. The velocity dependence of the control gains ensures that the walker doesn’t fall, the position dependence promotes
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station-keeping, and integral dependence ensures that the resulting system is robust to changes in the environment, namely,
changing the belt speeds or going from a tied to a split treadmill. The three terms make the controller a discrete PID controller
(proportional-integral-derivative). The default values for the control gain matrix K are obtained by fitting the dynamics of the
model biped to the step to step map of normal human walking on a treadmill26–28, 62.

Reinforcement learning to change controller parameters
We allow the parameters of the stabilizing controller to change slowly via a local reinforcement learning procedure, serving as
an outer loop to the stabilizing controller as the inner loop (Figure 2). The parameters characterizing the stabilizing controller
are unominal, K, and snominal. Here, we just allow unominal and the nominal forward velocity to change (part of snominal); without
loss of generality due to translation invariance of the dynamics, we assume zero values for the nominal forward position and
discrete sum of the forward position. We keep the feedback gains K fixed, not because we believe that they should remain
constant, but because allowing them to change is not necessary to explain the central observed phenomena and is thus not
parsimonious.

The reinforcement learning simulation is started off with the nominal default controller parameters corresponding to the
tied belt condition. At each step, the reinforcement learner picks a new value of the controller parameters (p̄i+1, say), obtained
as the sum of two terms: the old controller parameters from the previous step (p̄i) and a small step along the negative of the
gradient estimate of the objective:

p̄i+1 = p̄i−α(gi)+νi, (2)

where gi is the current gradient estimate on the ith step, the scalar α is a learning rate.
Rather than executing the next step using this new p̄i+1, we assume that the nervous system uses a perturbed version:

pi+1 = p̄i+1 +νi (3)

where νi is the noise term, assumed to be uncorrelated Gaussian noise with some small standard deviation σ (νi ∈N (0,σI)).
Here, we view the noise term νi as being exploratory, potentially ‘intentionally’ generated by the nervous system, allowing the
nervous system to update the gradient. This noise term serves as ‘persistent excitation’ in the parlance of system identification63.
In addition to this exploratory motor noise, there may be additional unavoidable noise that the nervous system cannot sense,
which we ignore for now, but will add in later. Such additional unknown noise only serves to make the improvement in energy
slower and more noisy, but do not change any of the qualitative results herein. Because the proposed reinforcement learning
procedure directly operates on the parameters of the control policy, it is a type of policy gradient method (although we do not
use the policy gradient theorem64), instead estimating the gradient as below entirely from exploratory steps. Because of the
noise terms and because of the updating the gradient from limited data (see below), it is similar to a stochastic gradient descent
on the control policy.

Gradient estimate and update
The human nervous system may not be able to directly estimate the gradient of reward with respect to actions, say, via a process
analogous to automatic differentiation in machine learning. Instead, we expect the human nervous to build a model of the
gradient via local exploration, updating a gradient estimate using only function evaluations. We find that the details of how this
gradient update is achieved is not critical, only that the gradient estimate is a reasonable descent direction on average, that is,
moving the control policy along the negative of the estimated gradient direction decreases the energy cost.

In the presented results, we use the following exploration-based gradient estimator, by simultaneously updating a model of
the body’s dynamics and the energy cost at each step. Informally, having a model of the body’s dynamics allows the learner to
estimate the longer-term consequences of the biped’s actions. On step i, via some sensory estimation, the relevant body state
(and possibly world states, if relevant) is estimated to be si and the metabolic rate over that step is estimated to be Ji. We posit
that the nervous system maintains an internal dynamical model describing how these sensory estimates evolves, assumed linear
for simplicity:

si+1 = Asi +Bpi +C, and Ji+1 = Fsi +Gpi +H, (4)

as a function of the control policy parameters pi. These can be written in a single equation:[
si+1
Ji+1

]
=

[
A B
F G

][
si
pi

]
+

[
C
H

]
. (5)

Upon estimating the current (si,Ji) on each step, the nervous system updates this linear internal model based in part on the error
between the prediction from the internal model and the new measurements.

A← A+∆A, B← B+∆B, C←C+∆C, D← D+∆D, . . .
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This internal model update could be accomplished effectively many different ways63. For instance, they could be updated
in a manner that latest data point is explained as well as possible by the updated model, and such an update is the so-called
normalized least mean square filter. Another common way to update the linear model is the so-called recursive least squares,
which essentially updates the model incrementally in a manner that the new model explains all the data ever seen or with a
forgetting factor that weights new data more than old data. Here, we update the linear model in perhaps the simplest manner
consistent with having finite memory: we update the linear model so as to best explains data over the previous few steps
(N = 30, say). Some kind of finite memory, or forgetting of the original model or old data, is important so that the estimator
may eventually converge to the new dynamic situation in a reasonable period.

This estimated internal model of state and energy cost dynamics contains information about the gradient of the metabolic
rate with respect to the learning parameters p. Note that the matrix G is the gradient of the current metabolic rate with respect
to the learning parameters. We hypothesize that the human prioritizes the long term or steady state metabolic rate J∞. Given
the internal model of the dynamics, the nervous system can estimate the consequences of parameter changes to the steady
state (effectively simulating to steady state, say) and thus infer the relevant gradient. One can show that this gradient is:
∇J∞ = G+F(I−A)−1B, where the first term gives the gradient of the short term energy cost over one step, while the second
term corrects for the fact that the steady state s∗ will be different from the current state si. Clearly, the nervous system could
just as easily prioritize energy costs over an intermediate horizon by using the gradient of the mean energy cost over the next
few steps to improve the control policy.

As noted, one can imagine a number of different ways for the nervous system to (effectively) estimate the relevant gradients,
or indeed, to improve the control policy. The general qualitative phenomena explained in this manuscript is robust to many of
these details. Therefore, we may not be able distinguish between the potentially many different ways for the nervous system
may estimate and maintain gradient information. For instance, one variant of the gradient descent described in equation is
the so-called gradient descent with ‘momentum’: p̄i+1 = p̄i−α(qi), where the descent direction qi is not the current gradient
gi, but a running sum of current and past gradients as follows: qi+1 = βqi +(1−β )gi, with 0 < β ≤ 1. This procedure can
inoculate the learning to noisy changes in the gradient, as well as speed up convergence to the optimum for appropriately
chosen β 65.

Finally, our reinforcement learning method here also has a flavor of Q-learning, in that it tries to maintain a model of how
both the current state and current action translate to future or long-term energy costs (equation 4). However, it is not precisely
Q-learning due to the modeling choices made herein.

Steady state energy optimization
To study the steady state optimum separately, we perform a deterministic two-step optimization problem, computing the
two-step periodic gait on the split-belt treadmill, determining the step length and push-off impulses on the two belts. The
optimization methods are identical to those in our prior work18, 20, 59, 60
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Figure 1. Walking in an unusual asymmetric environment. a) Walking on a split-belt treadmill is a standard paradigm
used to study how humans adapt and learn to walk in a novel environment. The two feet are on separate belts, which can be at
equal or unequal speeds. b) A typical split-belt adaptation protocol involves starting with equal belt speeds (tied belts), then
unequal belt speeds (split-belt) and then equal speeds again. c) Step lengths are approximately symmetric in the tied condition,
jumps quickly to negative step length asymmetry as soon as the belt speeds become unequal. Then the step length asymmetry
slowly rises toward symmetry and given sufficient time for adaptation, eventually reaches positive step length asymmetry.
When the belts are tied again, the step length asymmetry jumps quickly to an even more positive value and then slowly
approaches symmetry. d) Step time asymmetry jumps from symmetry to positive asymmetry at the beginning of the adaptation
phase, remains positive through the phase. When the treadmill is tied again, the step time asymmetry quickly jumps to negative
before eventually tending to symmetry. e) During split-belt adaptation, the positive leg work by the fast leg reduces, whereas
the negative leg work may increase in magnitude. Author’s note: In the next version of this preprint, we will overlay these
idealized qualitative trends in the figure with experimental data digitized from prior studies.
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novel environment can be conceptually divided into two aspects: (1) the inner loop (blue), representing a fast timescale
response due to the stabilizing controller, aimed at preventing falling and station keeping; (2) the outer loop (red), representing
slower learning-like processes that tune parameters of the inner loop controller to lower the energy cost of walking (or possibly
another performance metric).

Simplified learning: Learning proceeds by mining exploratory noise for gradient information

Figure 3. Reinforcement learning via exploratory noise for gradient estimation. Exploratory noise in the control policy
parameters (partly accounting for natural variability) allows the learner to estimate the gradient of the objective with respect to
the control parameters2. Then, the learner can follow the negative of this gradient to reduce the value of the objective.
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Figure 4. Minimal walking model. a) A minimal biped model with a point-mass body performing an inverted pendulum
walking gait. b) During single stance phase, when only one leg contacts the belt, the body vaults over the foot like an inverted
pendulum. c) Step to step transitions from one inverted pendular stance phase to the next are accomplished via a push-off and
heel-strike impulse. d) The biped is prevented from falling backward or drifting off the treadmill by a stabilizing feedback
controller that modify the push-off impulse and the step length in response to perturbations: for instance, using a smaller step
length and a larger push-off when the forward velocity is too low or if the forward position trails the preferred position.
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Simulating learning: stabilizing controller captures short-term transients and 

energy-optimizing reinforcement learner captures long-term trends 
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Figure 5. Policy gradient reinforcement learning predicts observed slow and fast transients, and steady state. We see
that the step length asymmetry and the step time asymmetry show the same trends as in the experiment. The step time
asymmetry jumps to positive and remains positive during adaptation, whereas it jumps to negative and slowly trends to zero
during de-adaptation. The step length asymmetry jumps to negative and slowly increases to positive (a) high learning rate) or
zero (b) low learning rate) during adaptation, and jumps to a more positive value and then trends to zero during de-adaptation.
Author’s note: In the next version of this preprint, we will show results from an intermediate learning rate that is chosen so as to
fit the observed locomotor transient timescales. We will also add labels or experimental data to this figure to show how these
trends are analogous to those in Figure 1.
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Split-belt walking: Eventual  asymmetries at steady state adptation explained by energy optimality
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Figure 6. Optimal steady state split-belt walking explained by energy optimality. a) Positive step length asymmetry is
energy optimal. b) Positive step time asymmetry is energy optimal. The various components of the total model metabolic cost
are shown, namely, the cost of mechanical work performed by the legs during stance and the total swing costs. Cost due to
individual leg work, showing that the fast leg work is lower and slow leg work is higher, was shown in Seethapathi’s thesis18

with a telescoping legged biped, without restricting to the inverted pendulum limit.
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Figure 7. Adapting to exoskeleton assistance. a) A simple exoskeleton that provides forward propulsive torque. b)
Learning biped adapts stably to the assistive torques being applied at a fixed phase during each step. The step time and step
length remain symmetric throughout and approach new steady states. c) Learning biped entrains to time-periodic perturbations
when it pays attention to the timing of the periodic perturbations.
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Figure 8. Adaptation to asymmetric leg mass. Adding an asymmetric mass to just one of the two legs results in
stereotypical adaptation and deadaptation in step length symmetry that is recapitulated in the biped model.
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