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A fundamental goal of biological study is to identify regulatory interactions

among components. The recent surge in time-series data collection in biology

provides a unique opportunity to infer regulatory networks computationally.

However, when the components oscillate, model-free inference methods, while

easily implemented, struggle to distinguish periodic synchrony and causality.

Alternatively, model-based methods test whether time series are reproducible

with a specific model but require inefficient simulations and have limited ap-

plicability. Here, we develop an inference method based on a general model of

molecular, neuronal, and ecological oscillatory systems that merges the advan-

tages of both model-based and model-free methods, namely accuracy, broad

applicability, and usability. Our method successfully infers the positive and

negative regulations of various oscillatory networks, including the repressila-
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tor and a network of cofactors of pS2 promoter, outperforming popular infer-

ence methods. We also provide a computational package, ION (Inferring Os-

cillatory Networks), that users can easily apply to noisy, oscillatory time series

to decipher the mechanisms by which diverse systems generate oscillations.

Introduction

A fundamental goal in biology is to uncover the causal interactions among system components.

To identify the casual interactions, conventional methods require experimental manipulation of

one or more components to investigate the effect on others in the system. However, this ap-

proach is time-consuming and costly, particularly when the number of components in a system

increases. On the other hand, thanks to recent technological advances (e.g., GFP, luciferase,

microarray, etc.), measuring time-series data has become relatively easy. Accordingly, inferring

direct regulations along with type (positive/negative) solely given time-series data is an impor-

tant tool to provide key insights into the mechanisms underlying the system in a timely and

inexpensive manner (1).

The unprecedented growth in the amount of biological data has revealed that biological pro-

cesses frequently exhibit oscillatory behavior in time-series data, e.g., about half of the protein-

coding genome is transcribed rhythmically (2, 3). To infer networks from oscillatory data, a

popular model-free method, Granger Causality (GC) based on predictability, i.e., X causes

Y if X has unique information that can improve the prediction of Y , has been used (4, 5).

However, as GC relies heavily on the assumption that the time-series data are stationary (6),

it is challenging to apply GC to highly nonstationary oscillatory time-series data (5, 7–9). To

overcome this limitation of GC, inference methods for dynamical systems, such as Convergent

Cross Mapping (CCM), have been developed, based on a differing view of predictability, i.e.,

X causes Y if historical values of X can be recovered from Y alone (10–20). Despite the
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success of CCM methods in many biological applications, they frequently infer interactions

between independent components when they oscillate with similar periods due to difficulty in

distinguishing synchrony and casual interaction (21), indicating that these methods are likely to

infer false-positive interactions in oscillatory networks. Nonetheless, these model-free methods

remain widely used due to their ease of implementation and broad applicability to a large class

of networks.

Alternatively, model-based methods were proposed that infer causality by determining whether

time-series data are reproducible with mechanistic models. Testing the reproducibility requires

computationally-expensive model simulations and fittings (22–35), but, as long as the underly-

ing model is accurate, model-based methods do not suffer from false positive predictions unlike

model-free methods. However, the inference results strongly depend on the choice of model,

which is frequently based on limited information. Thus, inference methods using more general

ODE forms were developed (36–45). For example, previously, we developed a method that

infers causation from X to Y by checking whether oscillatory time-series data for X and Y are

reproducible with a common ODE model for biological oscillators: dY
dt

= f(X)− g(Y ), where

f and g describe the synthesis and degradation rates of Y , respectively (41). Pigolotti et al. (36)

considered the most general possible mechanistic model between two components:

dY

dt
= f(X, Y ). (1)

However, unlike (41), this method uses only the minima and maxima rather than all of the time-

series data (36). Thus, the method requires the restrictive assumption that all given components

are in a single negative feedback loop (i.e., the method determines the order of given compo-

nents in a feedback loop). Moreover, extensions of the method (37, 38) require that a single

negative feedback loop structure drive the dynamics, limiting their applicability.

Here, we develop an inference method for biological oscillators described by Eqn. (1) that
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merges the advantages of model-based and model-free methods, namely usability, broad ap-

plicability, and accuracy, while mitigating the drawbacks of each. Specifically, we identify a

fundamental relationship between the general model (Eqn. (1)) and its oscillatory solution. By

using this relationship, we develop a simple functional transformation (i.e., regulation-detection

function) of a pair of oscillatory time-series data that easily tests whether the time-series data

are reproducible with the general model. This transformation enables accurate and precise

inference of the (self-)regulation type (e.g., positive, negative, or a mixture) between two com-

ponents X and Y described by Eqn. (1). This allows us to infer various network structures

such as a cycle, multiple cycles, and a cycle with outputs from in silico oscillatory time-series

data. Furthermore, our method also successfully infers regulation types from noisy experimen-

tal data measured at the molecular and organismal levels. In particular, from time-series data

of the repressilator and cofactors at the pS2 promoter, our method infers networks that match

current biological knowledge while popular model-free methods incorrectly infer nearly fully

connected networks. Importantly, we provide a user-friendly computational package (ION:

Inferring Oscillatory Networks) that implements our method to infer network structures of bio-

logical oscillators, which requires minimal user effort.

Results

Inferring regulation types from oscillatory time series

In the reduced FitzHugh-Nagumo model (Fig. 1A) (46), which describes the interactions be-

tween the membrane potential of a neuron (V ) and the accommodation and refractoriness of the

membrane (W ) (46, 47), W positively regulates V while V negatively regulates W . In addi-

tion, V displays a mixture of positive and negative self-regulation while W negatively regulates

itself.

How are such inter- and self-regulations reflected in the oscillatory change of V and W
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simulated with the model (Fig. 1B)? The change in V and W does not directly reflect their

regulatory interactions. For instance, although W positively regulates V , when W increases, V

does not always increase (e.g., in the region highlighted in yellow, Fig. 1B). This is because W

positively regulates V̇ rather than the value of V (Fig. 1A). However, the relationship between

the change in W and V̇ also does not reflect the positive regulation of W on V . For example,

in the yellow region (Fig. 1B), V̇ decreases despite increasing W , which happens because the

self-regulation of V on V̇ masks the effect of W on V̇ . Thus, to infer the effect of W on V̇

independently of V , we investigate the relationship between W and V̇ at the pair of time points

t and the reflection time, tV , where V (t) = V (tV ) (Fig. 1B). As V (t) = V (tV ), the difference in

V̇ (t) = f(V (t),W (t)) and V̇ (tV ) = f(V (tV ),W (tV )) is solely determined by the difference

betweenW (t) andW (tV ). Thus, becauseW positively regulates V (Fig. 1A), ifW (t) is greater

(less) than W (tV ), V̇ (t) should be greater (less) than V̇ (tV ). Similarly, to infer the type of self-

regulation of V , we must remove the variation of V̇ due to W that masks the effect of V on

V̇ . Thus, we investigate the relationship between V and V̇ at the pair of time points t and the

reflection time, tW , where W (t) = W (tW ) (Fig. 1B). To quantify such relationships between

W and V̇ and V and V̇ , we develop the regulation-detection functions:

RtV
W→V (t) := (W (t)−W (tV )) · (V̇ (t)− V̇ (tV ))

:= W tV
d (t) · V̇ tV

d (t),
(2)

and
RtW
V→V (t) := (V (t)− V (tW )) · (V̇ (t)− V̇ (tW ))

:= V tW
d (t) · V̇ tW

d (t).
(3)

As W positively regulates V , the functions W tV
d and V̇ tV

d should have the same sign and

thus, RtV
W→V (t) ≥ 0 throughout the cycle (Fig. 1C, left). That is, if W tV

d = W (t)−W (tV ) ≥ 0,

then V̇ tV
d = V̇ (t) − V̇ (tV ) = 3(W (t) − W (tV )) ≥ 0 (Fig. 1A). On the other hand, due to

the mixture of positive and negative self-regulation of V , the relationship between the signs of

V tW
d (t) and V̇ tW

d (t), and thus the sign of RtW
V→V (t), varies throughout the cycle (Fig. 1C, right).
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As the profiles of the sign of the regulation-detection functions (Eqns. (2) and (3)) reflect

the regulation type, we develop a regulation-detection score that quantifies the variation in the

sign of the regulation-detection functions. For instance, the regulation-detection score for the

regulation of W on V is defined as

〈RW→V 〉 :=
∫ τ
0
RtV
W→V (t)dt∫ τ

0
|RtV

W→V (t)|dt

=
Positive Area

Total Area
− Negative Area

Total Area
,

(4)

where τ is the period (e.g., τ = 1 in Fig. 1C, left). The regulation-detection score 〈RW→V 〉 = 1

because W positively regulates V , and thus RV
W→V (t) ≥ 0 (i.e., the negative area is zero) (Fig.

1C, left). On the other hand, because V both positively and negatively regulates itself, RtW
V→V (t)

takes both positive and negative values, so 〈RV→V 〉 = 0.6− 0.4 = 0.2 (Fig. 1C, right).

Similarly, we can obtain information about the regulation of V on W and the self regula-

tion of W with the regulation-detection functions RtW
V→W := V tW

d · Ẇ tW
d (t) (Fig. 1D, left) and

RtV
W→W := W tV

d · Ẇ
tV
d (t) (Fig. 1D, right). Because V negatively regulates W , RtW

V→W (t) ≤ 0.

Also, because the self-regulation of W is purely negative, RtV
W→W (t) ≤ 0. Thus, 〈RV→W 〉 =

−1, and 〈RW→W 〉 = −1 (Fig. 1D). Taken together, in general, if X positively (negatively) reg-

ulates Y , then 〈RX→Y 〉 = 1 (〈RX→Y 〉 = −1) (see Theorem 1 in Supplementary Information).

Next, we calculated the regulation-detection scores from experimentally measured oscilla-

tory time-series data of two bacteria: Paramecium and Didinium, which we refer to as P and

D (Fig. 1E), respectively (48). As P is a prey of the predator D (48), D is expected to neg-

atively regulate P, and P is expected to positively regulate D. Reflecting this, 〈RP→D〉 = 1

and 〈RD→P 〉 = −1 (Fig. 1E). Furthermore, reflecting the positive (i.e., birth) and negative

(i.e., death) self-regulation of both P and D, 〈RD→D〉 = 0.51 − 0.49 = 0.02 and 〈RP→P 〉 =

0.63− 0.37 = 0.26 (Fig. 1E). The regulation-detection scores appear to accurately reflect types

of regulation even for noisy and discrete time-series data.
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Figure 1: Regulation-detection functions and scores reflect regulation types. (A) The
FitzHugh-Nagumo model describes the interactions between the membrane potential of a neu-
ron (V ) and the accommodation and refractoriness of the membrane (W ). W positively reg-
ulates V while V negatively regulates W . In addition, V displays a mixture of positive and
negative self-regulation while W negatively regulates itself. (B) Time series of one cycle simu-
lated with the FitzHugh-Nagumo model. Although W positively regulates V (i.e., V̇ positively
depends on W ), V̇ decreases despite increasing W (yellow region) because the self-regulation
of V on V̇ masks the effect of W on V̇ . On the other hand, for the the pair of time points t and
reflection time tV , where V (t) = V (tV ), if W (t) is greater (less) than W (tV ), then V̇ (t) should
be greater (less) than V̇ (tV ). Similarly, as V negatively regulates W , if V (t) is greater (less)
than V (tW ), then Ẇ (t) should be less (greater) than Ẇ (tW ) for the pair of time points t and tW ,
whereW (t) = W (tW ). (C) The regulation-detection functionRtV

W→V (Eqn. (2)) is positive, and
thus the regulation-detection score 〈RW→V 〉 (Eqn. (4)) equals one, reflecting the positive regu-
lation of W on V . The sign of RtW

V→V (t) (Eqn. (3)) changes, and thus −1 < 〈RV→V 〉 < 1 (Eqn.
(4)), reflecting the mixture of positive and negative self-regulation of V . (D) Both RtW

V→W and
RtV
W→W are negative, and thus 〈RV→W 〉 = 〈RW→W 〉 = −1, reflecting the negative regulation

of V on W and the self-regulation of W . (E) Regulation-detection scores are calculated

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.18.435997doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435997


from the time-series population data of two bacteria: Paramecium, P (blue), and Didinium, D
(red) (data taken from (10)). Reflecting the known predatory interaction, 〈RP→D〉 = 1 and
〈RD→P 〉 = −1. Furthermore, reflecting that the self-regulation of both P and D consists of both
positive (i.e., birth) and negative (i.e., death) regulation,〈RP→P 〉 = 0.26 and 〈RD→D〉 = 0.02.

Network Inference method from oscillatory time series

If X positively (negatively) regulates Y , then the reflection score 〈RX→Y 〉 = 1 (resp., −1). In

other words, −1 < 〈RX→Y 〉 < 1 indicates either a mixture of positive and negative regulation

of X to Y or the absence of regulation. Thus, in the system where the interactions are not

mixed (i.e., monotonic), such as gene regulation by a transcription factor and predator-prey

relationships, −1 < 〈RX→Y 〉 < 1 indicates the absence of regulation. This can be used to infer

network regulations from time-series data, as positive or negative regulation is present in the

network only when 〈RX→Y 〉 = 1 or −1, respectively. Similarly, self-regulation, which is either

positive or negative, is possible only when 〈RY→Y 〉 = 1 or −1. However, since the degradation

of molecules or the death rate of species typically increases as its own concentration increases,

self-regulation can be assumed to be negative (i.e., 〈RY→Y 〉 = −1). In this case, positive or

negative regulation from X to Y is possible only when
−→
R = (〈RX→Y 〉, 〈RY→Y 〉) = (1,−1)

or (−1,−1), and thus,
−→
R 6= (±1,−1) indicates the absence of regulation (Rule 1, Fig. 2A).

Furthermore, we use
−→
R = (1,−1) or (−1,−1) to infer positive or negative regulation (Rules 2

and 3, Fig. 2A). Note that, if positive or mixed self-regulation is possible, as in Fig. 1E, Rules 2

and 3 can be relaxed to 〈RX→Y 〉 = 1 and 〈RX→Y 〉 = −1, respectively.

We illustrate how the three rules (Fig. 2A) can infer a network using as an example the

Kim-Forger model (Fig. 2B), a simple model describing the transcriptional negative feedback

loop of the mammalian circadian clock (49, 50). In the model, the mRNA (M ) is translated

into the cytosolic protein (PC). Then, PC is transported to the nucleus and there P inhibits the

transcription ofM (49,50). To infer the network structure (Fig. 2B, bottom), we first compute
−→
R
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for each possible interaction and self-regulation pair (six in total) from the time series (Fig. 2B,

top). Then, using Rule 1, three regulations are inferred as absent (Fig. 2B). Furthermore, Rules

2 and 3 successfully identify the two positive regulations (M → PC and PC → P ) and the one

negative regulation (P a M ), which have
−→
R = (1,−1) and

−→
R = (−1,−1), respectively. This

successfully infers the negative feedback loop structure (Fig. 2B). Using the same procedure,

our method also successfully infers the Frzilator negative feedback loop, which models the

signaling circuit of Myxococcus xanthus (51) (Fig. 2C and Table S1) and a 4-state Goodwin

oscillator (52) (Fig. 2D and Table S2).

In fact, for the single negative feedback loop models, the order of peaks and nadirs of the

time series matches with the order of regulation in the feedback loop (Fig. 2B-D). For instance,

the peak of M is followed by the peaks of PC and then P (Fig. 2B). This property has been

used in previous algorithms to infer single negative feedback loop structures (36–38). Next, we

test whether our method can be applied to a more challenging case when data are merged from

two independent models, specifically the Kim-Forger (Fig. 2E; solid lines) and Goodwin (Fig.

2E; dashed lines) models. After merging the time-series data, the order of peaks and nadirs

cannot be used to infer the network anymore. That is, if only the order of peaks is used for this

example, a single negative feedback loop with seven components is inferred. However, as our

method uses the whole data set rather than just the peaks and nadirs, it successfully infers the

two independent underlying networks (Fig. 2E, right and Table S3). Moreover, our inference

method also successfully infers a cyclic network with output variables, which also does not

adhere to the single feedback loop structure (Fig. 2F and Table S4).

While our method successfully infers various networks, Rules 2 and 3 can make false-

positive inferences as
−→
R = (±1,−1) is a necessary condition for positive or negative reg-

ulation, and thus
−→
R = (±1,−1) can occur even in the absence of regulation. We illustrate

this using a simulated repressilator data set (Fig. 2G, left). The repressilator is a single feed-
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back loop of genetic inhibition that consists of three mRNA (Fig. 2G, left; solid lines) and three

proteins (Fig. 2G, left; dashed lines) (53, 54). The mRNA (Mi) are translated into the respec-

tive proteins (Pi), which then repress the transcription of the next gene (e.g., P1 represses M2).

While our method recovers the correct interactions (Fig. 2G, right; solid arrows), it also incor-

rectly predicts negative regulation among the proteins (Fig. 2G, right; dashed arrows). These

false-positive predictions are due to the similar shape and phase of the time-series data. For

instance, the shape and phase of P1 (solid blue line) is extremely close to the shape and phase

of its mRNA, M1 (dashed blue line), e.g., their phase difference is only 2.4% of the total period.

Due to their similarity, our method cannot distinguish M1 and P1 and thus predicts that P3 neg-

atively regulates not only M1 but also P1. For the same reason, our method falsely predicts that

P1 negatively regulates P2, and P2 negatively regulates P3 (Fig. 2G and Table S5). Taken to-

gether, we caution that, in the presence of nearly identical time series in a network, our method

may infer false-positive regulations, which seems unavoidable for any inference methods using

time-series data.
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Figure 2: The inference method successfully infers various in silico network structures.
(A) The three rules for network inference.

−→
R 6= (±1,−1) indicates the absence of regulation

and
−→
R = (1,−1) or (−1,−1) indicates positive or negative regulation. (B) The three rules

successfully infer the network structure of the Kim-Forger model from simulated time-series
data. According to Rule 1, the three regulations M → P , PC → M , and P → PC are inferred
as absent. According to Rules 2 and 3, the two positive regulations (M → PC and PC → P )
and the one negative regulation (P a M ), which have

−→
R = (1,−1) and

−→
R = (−1,−1),

are inferred. (C-D) Our inference method also successfully infers the negative feedback loop
of the Frzilator (C) and a 4-state Goodwin oscillator (D). (E-F) Our inference method also
successfully infers correct regulations for more challenging cases beyond the single feedback
loop structure, i.e., when time-series data are simulated with two independent models, the Kim-
Forger model and Goodwin model (E) and an extended Kim-Forger model with output variables
(F). (G) Our method also successfully infers regulations (solid arrows) of the repressilator from
its three mRNA (solid lines) and three protein time-series data (dashed lines). However, our
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method also falsely predicts negative regulations among the proteins (dashed arrows) due to
the similar time series between an mRNA and its protein (e.g., M1 and P1). See Tables S1-S5
for the complete list of regulation-detection scores for (C)-(G) and Section 3 in Supplementary
Information for the equations and parameters used to simulate the data.

Robustness of the inference method to interpolation error and noise

The calculation of
−→
R , which is the key to the inference method, requires continuous time-

series data. Typically, however, experimentally measured time-series data are sampled dis-

cretely. For instance, mRNA levels of circadian genes frequently are measured via PCR ev-

ery three hours (55). For discrete data, our method uses interpolation to generate continuous

data (see Methods). Accordingly, we test how sensitive our method is to interpolation error,

specifically when linear interpolation is used, by using the five in silico data sets in Figs.

2B-F. That is, by decreasing the points measured per period from 102 to 101 (i.e., increasing

the interpolation error), we quantify the accuracy of our network inference method with the

score F1 =
TP

TP + (FP + FN)/2
(TP-the number of true positives, FP-false positives, and FN-

false negatives). As F1 is the harmonic mean of precision and recall, F1 = 1 and F1 = 0

indicate perfect recovery of the network and absence of correct inference, respectively. To

account for interpolation error, we accept interactions based on three thresholds for 〈R〉 val-

ues: 0.99, 0.95, and 0.90. For example, a threshold of 0.99 means that we relax the condition
−→
R = (±1,−1) up to ±0.99, i.e, we accept any interaction that satisfies both |〈RX→Y 〉| > 0.99

and 〈RY→Y 〉 < −0.99. We repeat this process 100 times, each time beginning the sample

collection at a randomly selected time in the period (see Methods for details). Then, we investi-

gate how the mean of the distribution of F1 scores changes as the sampling rate decreases (Fig.

3A). For single negative feedback loops (i.e., Frzilator, Goodwin, Kim-Forger), our method

accurately recovers the network even when the number of data points measured per period is

relatively low, e.g., ten per cycle. For the more complicated models (i.e., the merged Goodwin

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.18.435997doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435997


and Kim-Forger and the Kim-Forger with outputs models), slightly more data points are re-

quired for inference at high accuracy. Furthermore, our method shows similar robustness across

the three thresholds, especially when the points sampled are toward the lower end.

Next, because experimental data includes noise, we test the sensitivity of our network in-

ference procedure to noise (Fig. 3B) (see Methods for details). As we increase the level of the

multiplicative noise added to the data set from 0 (no noise) to 10% multiplicative noise (sampled

from N(0, 0.12)), the F1 scores decrease. In particular, the decrease occurs more dramatically

when the threshold is 0.99, indicating that the high threshold leads to higher sensitivity to noise

in the data. Moreover, this decrease in F1 scores with the threshold of 0.99 is a result of an

increase in false negatives (i.e., the exclusion of true interactions due to noise). Thus, we use

a threshold of 0.9 when applying our inference method to experimental data (see below) as it

leads to the most accurate results in the presence of noise (Fig. 3B). However, users have the

option to adjust the threshold depending on the sampling rate and noise level of the data when

using our computational package, ION (see Supplementary Information and Figs. S1 and S2 for

a step-by-step manual).

Successful inferences from experimentally measured time series

As our inference method is quite robust to discrete data sampling and noise, we expect that

our inference method can accurately infer network structures from experimentally measured

time series as well. Indeed, when applied to experimentally measured abundances of the three

repressilator proteins (54), our method successfully infers a three-gene repressilator network

structure (Fig. 4A and Table S6). Note that our method recovers the repressilator network

despite the absence of mRNA data because the shape and phase of the mRNA and protein

profiles are expected to be similar, as in Fig. 2G, due to the short translation time in E. coli

compared to the period (56). Moreover, we compare the results of our method with those of
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Figure 3: Our network inference method is robust to interpolation error and to noise. (A-
B) The accuracy of our inference method when the number of points measured (A) and the level
of noise (B) vary. Here, the points measured per period decreases from 102 to 101 (A) and the
multiplicative noise increases from 0 to 10%, which is sampled from N(0, 0.12) (B). The mean
of the F1 score for 100 different time series, which are generated with randomly chosen phases
(A) and noise levels (B), is plotted (see Methods for details). F1 = 1 and 0 indicate perfect
recovery of the network and the absence of correct inference, respectively. Different thresholds
for 〈R〉, 0.99 (left), 0.95 (middle), and 0.90 (right), are used.
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two popular model-free inference methods, Partial Cross Mapping (PCM) (20) and Granger

Causality (GC) (4) (Fig. 4A). As these methods can only infer the presence of regulation, not its

type (i.e., positive and negative), unlike our method, the arrows represent inferred regulations,

which could be either positive or negative. The PCM method recovers two correct regulations,

P2 → P1 and P3 → P2, but fails to recover the regulation P1 → P3 and makes two false-positive

predictions, P1 → P2 and P3 → P1. While the GC method infers all existing regulations, it

makes two additional false-positive predictions, P1 → P2 and P2 → P3. Even for this simple

three-node network, the popular model-free inference methods make false-positive predictions

because the network components oscillate at the same period.

We compare the performance of our method with these model free-inference methods for a

more challenging case when we combine two copies of the data set in Fig. 4A, one at the original

phase and one with shifted phase (Fig. 4B and Table S7). From the combined time-series data,

our method successfully infers two repressilator networks, whereas the PCM method infers

two of the six correct regulations while also inferring four incorrect regulations (Fig. 4B). The

GC method infers more correct regulations (five of the six); however, again, it suffers from

several spurious regulations (15 false-positive interactions, Fig. 4B). Note that, even though we

are using the same repressilator data set, there are inconsistencies in the PCM and GC results

compared with those from Fig. 4A. These inconsistencies are a consequence of the shortened

length of data used in Fig. 4B compared with that in Fig. 4A. This indicates that, in addition

to the risk of false-positive inference, the PCM and GC methods are sensitive to the amount of

data, unlike ours.

For time series measuring the amount of cofactors present at the estrogen-sensitive pS2 pro-

moter after treatment with estradiol (data from (57, 58)), PCM and GC infer an almost fully

connected network and a fully connected network, respectively. On the other hand, our method

only infers two regulations, both supported by the current biological understanding of the sys-
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tem. That is, human ERα (hER) binds to the pS2 promoter after treatment with estradiol to

recruit RNA Polymerase II to the promoter, supporting the inferred positive regulation of POLII

by hER. Furthermore, TRIP1 acts as a surrogate measure for the 20S proteasome (APIS), which

promotes proteasome-mediated degradation of hER (57), supporting the inferred negative reg-

ulation of hER by TRIP1. However, the inferred network (Fig. 4C) does not contain a negative

feedback loop, which is required to generate sustained oscillations (59). Thus, there may be in-

termediate steps between POLII and TRIP1, TRIP1 and HDAC, and also HDAC and hER that

form the negative feedback loop. Altogether, this illustrates that our method can identify direct

regulations while highlighting connections that require further experimental investigation.

Discussion

We developed a model-based method that infers the network structure underlying biological

oscillators. The method identifies positive or negative regulation by testing whether given os-

cillatory time-series data are reproducible with a general mechanistic ODE model (Eqn. (1)).

In this way, our method successfully and efficiently inferred several network architectures such

as single cycles (e.g., repressilator), two independent cycles, and a cycle structure with outputs.

Furthermore, we provide a user-friendly computational package, ION, that applies to discrete

and noisy data to infer networks of biological components that oscillate from the molecular

to the population level. Our method can uncover unknown functional relationships and mecha-

nisms that drive oscillatory behavior in biological systems when it is incorporated with evolving

experimental time-series measurement methods.

Our method merges the advantages of model-based and model-free methods while mitigat-

ing the drawbacks of each. In particular, our model-based inference method does not suffer

from the serious risk of false-positive prediction for biological oscillators or sensitivity to the

amount of data unlike the previous model-free inference methods such as GC and PCM (Fig.
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Figure 4: The inference method successfully infers networks from three experimental data
sets. (A) Using experimentally measured oscillatory time series from (54), our method suc-
cessfully infers a three-gene repressilator network structure. On the other hand, two popular
model-free inference methods, PCM and GC, infer several false-positive regulations (e.g., P1

regulates P2). (B) Our method also successfully infers the structure when the experimental re-
pressilator data set from (A) is duplicated and the phase is shifted by about half of the period.
However, again, both the PCM and GC methods exhibit several false-positive predictions and
the inferred networks lose the independent cycle structure. (C) When our method is applied to
a data set measuring the amount of cofactors at the estrogen-sensitive pS2 promoter after treat-
ment with E2 (57), it infers two direct regulations: hER positively regulates POLII, and TRIP1
negatively regulates hER. On the other hand, PCM and GC infer nearly fully connected net-
works, including interactions that are not supported by the current experimental understanding.
See Tables S6-S8 for the complete list of regulation-detection scores.
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4). However, as our inference method is model-based, it runs the risk that the imposed ODE

model and functional relationships create false representations of the true interactions (21). Our

method minimizes this risk by using the most general form of an ODE (Eqn. (1)) to model the

change in a component that is acted upon by another component and itself. In this way, we re-

solve the limitations of previous model-based methods that restricted the class of models, such

as separable synthesis and degradation functions (39, 41, 45), specific types of functions (e.g.,

power or Hill functions) (31, 39), and a single negative feedback loop structure (36–38). Thus,

we were able to uncover several varying network structures. While we considered the most

general form of an ODE (Eqn. (1)) that describes the interactions between two components, an

interesting future direction would be to extend our work to models that describe the interactions

among multiple oscillatory components, e.g,
dY

dt
= f(X1, ..., Xn, Y ).

Methods

ION (Inferring Oscillatory Networks) computational package

We provide user-friendly MATLAB code (a Github repository link will be provided upon ac-

ceptance of the manuscript). The ION package can be used to infer the network structure of

oscillators, which are described by Eqn. (1), across all levels of biology. Here, we briefly de-

scribe the key steps of the ION package (see Supplementary Information for a comprehensive

manual).

Reflection times

For each time point ti of the given time series X(t) = (X(t1), X(t2), ..., X(tn)), first, the

reflection time tiX needs to be calculated (Fig. 1B). That is, we seek the time point tiX such that

X(ti) = X(tiX) and the signs of the slopes at X(ti) and X(tiX) are opposite (i.e., rising and

falling phase). For this, the discrete X(t) is interpolated to a continuous time series FX(t) with
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either the ‘linear’ or ‘fourier’ interpolation method, chosen by the user. Then, tiX is estimated

by identifying the closest time point to ti among time points t satisfying the following equation:

FX(t) = X(ti) and sign(F ′X(t)) 6= sign(F ′X(ti)).

Regulation-detection function and score

Using the estimated tiX , we compute the regulation-detection function, e.g.,RtiX
Y→X(ti), for each

time point ti as follows:

(Y (tiX)− Y (ti))(Ẋ(tiX)− Ẋ(ti)).

If the linear method is chosen, Y (tiX) is linearly interpolated based on the data (Y (t1), . . . , Y (tn)),

and Ẋ(t) = (Ẋ(t1), . . . , Ẋ(tn)) is estimated using a moving slope filter method. Specifically,

after fitting a low-order polynomial regression model to X(t) = (X(t1), X(t2), ..., X(tn)) in

a sliding window (60), the derivative of the polynomial fit is used to estimate Ẋ(t) and then

Ẋ(tiX) is linearly interpolated based on the estimated Ẋ(t). The model order and the length

of the sliding window parameters can be adjusted (see Supplementary Information). On the

other hand, if the fourier method is chosen, both Ẋ(ti) and Ẋ(tiX) are estimated as ḞX(ti) and

ḞX(tiX), respectively, and similarly, Y (ti) and Y (tiX) are estimated as FY (ti) and FY (tiX),

respectively, where FY (t) is the Fourier series fit to the data Y (t). Finally, in both cases, the

regulation-detection score Eqn. (4) is estimated using the MATLAB function trapz.

Time-series data

We simulate in silico data using the MATLAB function ode23tb (Fig. 2). See Supplemen-

tary Information for the model equations and parameters. The experimental data sets of the

repressilator (Fig. 4A) were obtained from (54). Next, to generate the duplicated experimental

repressilator data set (Fig. 4B), we mixed two copies of the repressilator data set from Fig. 4A.

We kept one copy at the original phase and, for the second copy, we shifted the phase by 115
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minutes (almost half of the period) (Fig. 4B). Then, we removed data on the left and the right

where there was only coverage of one of the two data sets. We obtained the estradiol data set

from (57, 58) and the Paramecium/Didinium data from (10).

Discrete and noisy data

To generate discretely sampled data (Fig. 3A), we select a random point in the first period to

begin data extraction, and then we uniformly sample two periods worth of data at a sampling

rate of 100 points per period. We repeat this process 100 times–every time randomly initializing

the starting point in the first period–to generate 100 distinct data sets for every model. Then,

we run our algorithm and compute F1 scores for each of the 100 data sets. Next, from each of

the 100 generated data sets, we take every other data point to reduce the number of data points

(e.g., 50, 33, 25, . . . , 10 per period).

For the multiplicative noise analysis (Fig. 3B), we begin with two periods worth of data

sampled at 100 points per period. Then, we add multiplicative noise sampled randomly from a

normal distribution with mean 0 and standard deviation given by the percentage. For example,

at 10% multiplicative noise, we add the noise X(ti) · ε to X(ti), where ε is sampled randomly

from N(0, 0.12).

PCM and GC

We ran the PCM method with an embedding dimension of 3, τ = 1, and a max delay of 3,

and used a threshold of 0.5684 as recommended in (20) by using the code provided in (20).

We ran the GC using the code provided in (61) and specified a max delay of 3 as we did with

the PCM method and a significance level of 95%. We rejected the null hypothesis that Y does

not Granger cause X , and thereby inferred direct regulations if the value of the F-statistic was

greater than the critical value from the F-distribution (4).
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