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distributions within the image.  Across the 32 H&E WSIs, stain normalization reduced the variation 

in mean R, G and B channel intensities (Figure 2d).  In addition, it adjusted the median of the median 

channel intensities to move closer to the mean channel intensities of the template image.  By 

normalizing all images before input into the model, we ensure the model can generalize to new slides 

stained differently to the training slides. 

 

 

Fig. 1 | H&E Molecular neural network workflow overview a, Matched p53 IHC stained and H&E 

stained WSI derived from two adjacent tissue sections. b, Training was performed on paired normal 

and cancer slides (five pairs).  Test slides were held-back and are unseen. c, Preprocessing to 

account for technical variations in slide preparation through stain normalization and image 

registration d, Molecular labels were transferred from p53 to H&E images.  Post label transferring, 

each image was tiled to generate thousands of small samples (224x224 pixels) to train a CNN e, 

Application of HEMnet to predict cancer from new clinical H&E images. 
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Fig 2 | H&E stain normalization  a, Template slide – cancer slide with mean R, G and B channel 

intensities most similar to the median of the mean channel intensities of all images. Histograms 

shown for 2x magnification image (a, b, c) b, H&E image before normalization c, H&E image after 

normalization more closely resembles template image. Image brightness is increased and pixel 

intensity distributions are retained. d, Normalization of all slides (n=32). Reduced variation of mean 

channel intensities after normalization was observed. Template slide mean channel intensities are 

closer to the median after normalization (indicated by arrows) and interquartile range was shrunken. 
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Transferring p53 molecular labeling to corresponding H&E images 

The WSIs from corresponding p53 and H&E-stained slides often were misaligned (Figure 3a).  For 

the p53 positive cells to accurately map to cancer cells on the H&E images, we realigned p53 images 

to their corresponding H&E images though HEMnet automated image registration (Figure 3c).  Our 

intensity-based registration approach was fast and accurate as we optimized mutual information 

(Figure 3b, c).  Next, we labelled the H&E image based on the p53 staining pattern where p53 

positive regions are labelled as cancer, vice versa.  To counteract limitations of p53 staining in 

marking cancer cells, only p53 positive tiles from cancer slides and only p53 negative tiles from non-

cancer slides were used for training.  All the other tiles were labelled as uncertain and excluded from 

any additional processing.  At x10 magnification, a single WSI can generate thousands of tiles for 

training (Figure 3c).  We generated 224x224 pixel tiles from the molecular labelled H&E images to 

train a VGG16 deep learning model (Figure 3d). 

 

Molecular annotation quality control produces a high-confidence dataset 

The TP53 tumour suppressor gene is the most commonly mutated gene in human cancers (50%) 

and disproportionately has mutations and other genetic alterations for up to 70%-80% of colon 

cancers32,33.  As a result of its general prevalence, it provides a highly generalizable way to molecular 

annotate a broad range of cancers.  Similar to other IHC markers, p53 staining has its limitations as 

within one image or between images, the marker is not always indicative of cancer, vice versa.  For 

example, overexpression and positive staining for p53 may occur in normal cells responding to DNA 

damage.  In addition p53 may be absent in cancer cells with TP53 gene deletions14.  To overcome 

these limitations, when training our model, we only considered p53 positive cells as cancer if they 

come from a cancer slide and only p53 negative cells from slides where the cells have a normal 

morphology (Figure 3d).  In this way, we were confident that cells were correctly labelled, with 8,782 

non-cancer tiles and 21,939 cancer tiles.  We removed 23,275 tiles that had some levels of 

uncertainty (Figure 3d). 
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Fig 3 | Molecular labelling of H&E images to train Neural Network a, Overlay of H&E and 

matched p53 image showing improved alignment after registration, highlighted by red arrows b, 

Accurate alignment of p53 images to corresponding H&E images.  Successive affine and b-spline 

registration increases mutual information, a measure of image similarity. Significance testing with T-

test.  c, Segmentation of p53 images to label matched H&E images where only non-cancer tiles are 

generated from non-cancer slides, vice versa d, 10 training H&E images generated tens of thousands 

of tiles, increasing sample size e, Example of cancer tile generated at x10 magnification and used 

for training neural network. 
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High performance automated assessment of cancer cell abundance and spatial distribution 

We applied the trained HEMnet to unseen WSIs to predict cancer regions. Of the 17 unseen H&E 

slides in the test dataset, all had corresponding p53 stained slides and 13 had additional pathologist 

annotation of the cancer region.  We found that HEMnet could accurately predict p53 stain pattern 

(ROC AUC = 0.73) and pathologist annotated cancer regions (ROC AUC = 0.84), (Figure 4a,b).  

These results suggest that p53 positive cancer regions for a given tissue sample can be predicted 

from its general morphology using a classifier developed with molecular labelled H&E images. 

 

Comparing the p53 labeled tiles to pathologist labelled tiles from the same location, we found an 

overall agreement in tile labels (ROC AUC = 0.67) (Supplementary Figure S6).  However, this 

agreement was not absolutely perfect.  To evaluate any discrepancies, for each slide we measured 

the ability of p53 stain to annotate cancer.  This analysis involved calculating the ROC AUC between 

p53 stain and ground truth labels of tiles per a pathologist.  We found that HEMnet p53 performance 

(ROC AUC) was higher in slides where p53 more accurately labelled cancer (p53 vs pathologist tile 

labels ROC AUC) with a significant correlation as noted by a Pearson coefficient of 1.02, and R2=0.94 

(Figure 4c).  This result indicated that the model learnt to recognize specific morphology features of 

cancer cells and was not strictly limited to identifying cells with high levels of p53.  This likely because 

cancer cells are morphologically distinct from normal cells whereas the differences in morphology 

between p53 positive and negative cells are more subtle.  We noted that there were examples 

demonstrating that HEMnet can identify the cancer marked by the pathologist, even where the cancer 

is not identified by the p53 stain (Figure 4d, e).  Overall, the results suggest that HEMnet is able to 

accurately identify tissue morphology features of cancer. 
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Fig 4 | HEMnet performance on unseen H&E slides a, Prediction of p53 stain pattern on 17 unseen 

H&E slides b, Prediction of cancer regions on 13 unseen H&E slides compared to pathologist 

annotations c, Prediction performance of p53 stain pattern is positively correlated with the ability of 

p53 to mark cancer regions on the tissue, as annotated by pathologist. d, HEMnet accurately predicts 

cancer regions annotated by pathologist (bottom) and p53 stain (top) when p53 stain agrees with 

pathologist annotation e, HEMnet predicts cancer regions even when p53 stain pattern (left) 

disagrees with pathologist ground truth annotations (right). 
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External validation and application to TCGA suggests the broad applicability 

As an independent validation using an external dataset, we applied HEMnet to colon 

adenocarcinoma samples from TCGA colon cancer samples to investigate the generalizability and 

clinical application of the method (Table S1).  We used an unmodified HEMnet model trained by the 

in-house dataset described in this study to predict on H&E WSIs of colon adenocarcinoma.  By 

combining the tile level prediction with the cellular content of each tile, we calculated the proportion 

of cancer tissue to total tissue for each slide (Table S1, Figure 5a).  This acts an approximation of 

tumour purity which we compared to sequencing method estimates from matched genomic data.  

There are several differences between our colon cancer data and the TCGA data.  Most importantly, 

the sequencing was not performed on the same tissue used for diagnostic imaging.  Despite these 

challenges, we found a significant correlation between our method and tumour purity as estimated 

by ABSOLUTE, with a regression coefficient of 0.8, as shown in Figure 5.  Furthermore, we found 

that HEMnet performs well regardless of the TP53 mutation background (Figure 5a). This analysis 

suggests that HEMnet can generalize to new colorectal clinical data and is able to reliably predict on 

TCGA images. 
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Fig 5 | External Validation on The Cancer Genome Atlas (TCGA) a, Comparison of HEMnet 

estimation of tumour purity – approximated by the proportion of cancer tissue area to total tissue 

area – to sequencing estimates of tumour purity using the ABSOLUTE method (n=24). The colours 

of the dots represent three categories of TP53 mutations from the TCGA data. b, c, d, HEMnet 

cancer predictions on formalin fixed TCGA slides for low (c), medium (b) and high (d) tumour purity 

colon adenocarcinoma. 

 

DISCUSSION 

Histopathological examination of H&E images has been the gold standard for pathologic diagnosis 

of almost all suspected cancer patients3,34. Modern applications of machine learning tools to analyse  

H&E  images  have  been  flourishing recently6,35, with some of the computer-assisted image diagnosis 

tools already approved by the Food and Drug Administration (FDA)36. Hundreds of deep learning 

produced have made methods available for using just H&E images to detect and diagnose cancer6. 
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Although some of these methods have achieved high performance, they all rely on pathological 

annotation for labelling/segmenting images into multiple tissue regional classes6,37.  They also require 

a large number of annotated images for model training and evaluation38,39 and the lack of large 

annotated datasets is a major challenge for deep learning image analysis6.  We developed HEMnet 

as a novel cancer diagnosis framework that uses digital labelling and neural network to address 

these challenges. 

 

HEMnet combines two common types of histopathological WSI data, namely H&E staining and 

immunohistochemistry staining images.  The novelty in HEMnet pipeline lies in the molecular label 

transferring, which allows for the use of pixel-level molecular information cancer cells (e.g. P53 

positive/negative pixel), with thousands time higher resolution than manual pathological 

segmentation.  In HEMnet, we solved several key technical challenges to allow for accurate, fast and 

generalizable label transferring, with the ultimate aim that HEMnet can be implementable to different 

datasets, including those with a high level of technical variation.  Briefly, technical variation is 

introduced by the tissue sectioning, mounting, staining and imaging processes.  Very few studies 

investigated the intrinsic technical variations, like contrast, brightness, or signal to noise6.  Different 

to most methods, HEMnet implements an optimized pipeline for preprocessing, allowing removal of 

technical variation between images.  HEMnet include functionalities to thoroughly perform 

background correction, normalization, alignment, registration, and label transferring.  Prior to 

normalisation, luminosity standardization was performed to correct for image brightness.  We 

compared three normalisation methods, Vahadane19, Reinhard21 and Macenko22, and confirmed the 

better performance of the Vahadane method (set as default).  The image registration implements a 

probabilistic approach with mutual information maximization.  We compared multiple options and 

found that intensity-based registration, and the sequential combination of Affine followed by B-spline 

registration40, using a gradient-descent based optimizer to minimize mutual information loss perform 

well for registering H&E image data.  We also assessed the computation and running time, as 
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registration is an intensive process.  Down-scaling was found as a practical solution.  Finally, to label 

the registered image, we developed a tile-level thresholding strategy to distinguish cancer, non-

cancer and uncertain labels for every tile of 224px * 224 px.  The tile-level labelling with thresholding, 

categorizing and filtering steps allows us to create a high-quality training (and evaluation) data set 

for neural network, minimizing the technical noise from registration errors and uncertain labelling. 

 

Overall, the label-transferring solution implemented in HEMnet represent a significant technical 

advance and is needed to the increasingly important digital histopathological analysis field.  The label 

transferring brings about three key beneficial effects on model training. First, the pixel-level labels 

allow us to divide one image into hundreds to thousands of smaller, high-resolution, molecular 

labelled tiles, thereby increasing sample sizes for model training and testing. This enables 

development of accurate models with few slides, unlike existing methods which require a thousands 

of whole slide images 6,41. In general, tiling of WSI yields the large amount of data for training neural 

network, thus would be robust to incomplete molecular markers. It was demonstrated by the fact that 

HEMnet successfully identified some non p53 stained cells as cancer cells (Figure 4). With pixel-

level labelling, the classification of cancer cells is at hundreds to thousands of times higher resolution 

than macroscopic drawings by pathologists. Moreover, molecular labelling is automated, making the 

output less dependent on the laborious, manual and variable annotations by trained pathologists.  

 

HEMnet, with its novel label transferring approaches, can be beneficial for a large range of 

applications.  When processing an independent validation set not used in the original learning 

process, HEMnet predicted the same overlapping region delineated though a pathology annotation 

(ROC AUC = 0.84).  We validated HEMnet by systematically comparing HEMnet with other methods 

and with the ground truth pathological annotation and found highly correlated results with other 

independent methods (correlation coefficient in predicting cancer purity = 0.8) using TCGA dataset42. 
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The generalization to other types of markers and cancer, for example HER2 for breast cancer, is 

possible with further validation. The feasibility of correlating H&E images with IHC image by deep 

neural networks has been investigated for the case of SOX10 staining43 and fluorescent cancer 

marker images like pan-cytokeratin (panCK), or α-smooth muscle actin ( α-SMA)44.  HEMnet was 

developed using p53 IHC staining as an appropriate colorectal cancer marker that is expressed in 

70%-80% of colon cancers12.  We expect that the HEMnet label transferring and thresholding 

approaches to define positive cancer labels can be generalized to other cancer types and 

immunohistochemistry markers.  We expect that HEMnet can be readily adaptable to training new 

data as the design of the framework take into account technical variation and scalability as discussed 

above and as confirmed by the test on the TCGA dataset robust performance.  The novel label 

transferring pipeline can be expanded to many other applications to integrate imaging data from 

adjacent tissue sections. We made HEMnet an easily adaptable tool for most users through the 

interactive Google Colaboratory workspace, which allows users to upload their data and use our 

pretrained model for neural network prediction. 

 

CONCLUSIONS 

HEMnet is currently the unique molecular modelling approach that utilizes both H&E and IHC images 

for quantitatively classifying cancer cells within tissue sections. We expect that HEMnet has the 

potential to be used as a computer-assisted tool that help pathologists by suggesting important 

regions, such as cancer parts, in the tissue 35,45. HEMnet does not require human pathological 

annotation, automatically labelling images at pixel resolution. The application of software like HEMnet 

can benefit cancer diagnosis by unprecedented resolution, efficiency, reproducibility, accuracy, 

speed, reduced cost and increased access to pathological services. In an aging society where more 

biopsies are available while there is a lack of professional anatomic pathologists 46, such 

computational innovation is increasingly important. We believe HEMnet can further accelerate 
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computational pathology application and integration into the pathology workflow routine, assisting in 

disease diagnosis and ultimately removing missed diagnosis and improving patient outcomes. We 

provide HEMnet as an open-source software and also as an accessible cloud-based prediction tool 

that allow users to analyse their images without a requirement for further programming.   

 

Availability of Data and Materials 

The datasets used and/or analysed during the current study are available from the  

https://dna-discovery.stanford.edu/research/web-resources/HEMnet. The source code, tutorials and 

interactive analysis tools are available at https://github.com/BiomedicalMachineLearning/HEMnet.  

We also provide cloud-based implementation of the HEMnet (Figure S7), available as Google Colab 

notebook and an ImJoy application (links to these apps are on HEMnet github page).  HEMnet is 

also available as an open-source PyPI python package (https://pypi.org/project/hemnet). 
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