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 44 

Abstract 45 

 46 

The gut microbiome ecosystem is a significant driver of host health and disease. High-47 

throughput Longitudinal studies have begun to unravel the complex dynamics of these 48 

ecosystems, and quantitative frameworks are now being developed to understand their 49 

organizing principles. Dimensionality reduction offers unique insights into gut bacterial 50 

dynamics by leveraging collective abundance fluctuations of multiple bacteria across multiple 51 

subjects driven by similar underlying ecological factors. However, methods providing lower-52 

dimensional representations of gut microbial dynamics both at the community and individual 53 

taxa level are currently missing. To that end, we develop EMBED: Essential Microbiome 54 

Dynamics. Similar to normal modes in structural biology, EMBED infers ecological normal 55 

modes (ECNs), which represent the unique set of orthogonal dynamical trajectories capturing 56 

the collective behavior of microbial communities across subjects. We show that a small number 57 

of ECNs accurately describe gut microbiome dynamics across multiple data sets. Importantly, 58 

we find that ECNs reflect specific ecological behaviors, providing natural templates along which 59 

the dynamics of individual bacteria may be partitioned. Moreover, the multi-subject treatment 60 

in EMBED systematically identifies subject-specific and universal dynamical processes. 61 

Collectively, our results highlight the utility of dimensionality reduction approaches to 62 

understanding the dynamics of the gut microbiome and provide a framework to study the 63 

dynamics of other high-dimensional systems as well.  64 
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 87 

Introduction 88 

 89 

Deciphering the temporal dynamics of the human gut microbiome is essential to understanding 90 

its role in human health and disease. Advances in sequencing technologies have enabled the 91 

characterization of these complex ecosystems at unprecedented scale and resolution
1,2

. In 92 

contrast to static snapshots across large populations, high-resolution longitudinal studies offer 93 

unique insights into the biological processes structuring communities within individual hosts. 94 

For example, recent longitudinal studies have elucidated the determinants of the gut 95 

microbiome in early childhood
3,4

, the effects of the gut microbiome on outcomes following 96 

bone-marrow transplant
5
, and the recolonization of gut microbial communities following 97 

antibiotic perturbation
6–10

. 98 

 99 

A significant challenge in understanding gut microbiome dynamics is its enormous 100 

organizational complexity, comprising thousands of individual bacterial species whose 101 

abundances vary substantially across space, time, and host ecosystems
11–15

.  Systems biology 102 

approaches are now beginning to reveal broad-scale insights into the temporal behavior of the 103 

gut microbiome, including its defining features of long-term stability and resilience to 104 

perturbations
16–20

. More recently, methods have also been developed to address the significant 105 

technical challenges of inferring true relative abundances of bacteria from large-scale 106 

sequencing data
21–23

. Collectively, these studies have suggested that abundances of individual 107 

bacterial species do not fluctuate independently, but rather as a collective community with 108 

coordinated responses to factors such as host diet
24,25

, medications
10,26

, and environmental 109 

exposures
12

.  110 

 111 

The correlated nature of bacterial abundance dynamics suggests that dimensionality reduction 112 

may offer unique insights by distilling the behavior of large communities into a handful of 113 

variables. Indeed, dimensionality reduction techniques are widely utilized in sequencing-based 114 

studies
27

. Popular approaches based on multidimensional scaling, such as principal coordinate 115 

analysis, have been seminal to understanding the organizing principles of the human 116 
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microbiome
28–30

. Other non-probabilistic approaches based on log-transformations do not 117 

account for zero abundances and technical sampling noise and could potentially lead to 118 

inaccurate reconstructions
31,32

. Crucially, while these approaches may be useful in identifying 119 

broad shifts in the overall microbiome community, they lack information on the dynamics of 120 

individual bacterial taxa.  121 

 122 

To that end, we have developed EMBED: Essential Microbiome Dynamics, a probabilistic 123 

reduced dimensional descriptor of gut microbiome dynamics that identifies the common 124 

dynamical templates of bacterial communities across multiple subjects exposed to the same 125 

perturbation. In EMBED, we model bacterial abundances using the exponential Gibbs-126 

Boltzmann distribution
33

 with unknown extensive and intensive variables that are learned 127 

directly from data (Fig. 1A). The Gibbs-Boltzmann distribution has its origins in statistical physics 128 

and can be thought of as a latent space embedding model with a softmax non-linearity. The 129 

result is a set of unique and orthogonal trajectories, which we refer to as Ecological Normal 130 

Modes (ECNs), that capture the collective temporal behavior of bacterial communities across 131 

multiple subjects. Moreover, our framework provides a set of “loadings”, that represent the 132 

contribution of each identified ECN to the dynamical profiles of individual bacterial taxa in 133 

individual subject-specific ecosystems. Thus, similar to how the principal components in 134 

principal component analysis (PCA) represent a lower dimensional basis to reconstruct 135 

community abundance profiles, ECNs represent a set of basis functions to reconstruct the 136 

dynamics of variation of abundances of individual bacterial taxa. In addition to providing an 137 

ecologically motivated description of bacterial dynamics, our approach has several salient 138 

features that are particularly well-suited for sequencing studies of the gut microbiome. First, 139 

EMBED utilizes the exponential Gibbs-Boltzmann distribution, which captures the extensive 140 

variability of the species abundances in the gut
33

. Second, by restricting the number of specified 141 

ECNS to be low, EMBED naturally provides a reduced-dimensional description of the community 142 

thereby filtering out potentially unimportant signal in the data
13

.  Third, ECNs are inferred using 143 

a fully probabilistic method that further accounts for sequencing noise inherent in all 144 

microbiome studies
13

. Fourth, similar to the normal modes in biomolecular dynamics
34

, ECNs 145 
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represent the unique and orthonormal dynamical modes that represent statistically 146 

independent collective abundance fluctuations. Fifth, by treating individual subjects separately, 147 

EMBED systematically identifies universal and subject-specific dynamical behaviors and 148 

bacterial taxa that exhibit that behavior.  149 

 150 

We used EMBED to study several publicly available, high-resolution longitudinal data sets that 151 

encompass major ecological perturbations such as dietary changes and antibiotic 152 

administration
10–12,25

. EMBED accurately captured the dynamics in these communities with only 153 

a handful of ECNs, demonstrating the highly correlated nature of bacterial abundance dynamics 154 

and the efficacy of EMBED as a dimensionality reduction method. The identified ECNs reflected 155 

specific ecological behaviors, providing natural templates to reconstruct the dynamics of 156 

individual bacterial taxa. Indeed, we found major groups of bacteria that are partitioned 157 

according to their relative contributions along each of the identified ECNs which further 158 

indicates that the identified ECNs represent a collection of distinct ecological behaviors 159 

observed in the community. Additionally, subject-specific analyses identified universal and 160 

subject-specific dynamics and taxa exhibiting those dynamics. Collectively, our study provides 161 

an ecologically motivated dimensionality reduction framework to better understand dynamics 162 

in the gut microbiome.  163 

 164 

Results 165 

EMBED identifies reduced-dimensional descriptors for longitudinal microbiome dynamics  166 

We sketch the mathematical foundation of identifying ecological normal modes using EMBED 167 

(Fig. 1A). A detailed derivation is found in the Supplementary Information. Briefly, we consider 168 

that microbial abundances ������ are quantified across several taxa "�", subjects "�", and time 169 

points "�".  We model the data ������ as arising from a multinomial distribution:  170 

��	������
� � � ����!∏ ������!�

� ������������
��,�

                                               �1� 

where ���� � ∑ �������  is the total read count on a given day � in the microbiome sample in 171 

subject �. The probabilities ������ are modeled as a Gibbs-Boltzmann distribution
33

 172 
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������ � 1Ω��

exp �� � ���������
	

�
�

�.                                              �2� 

In Eq. 2, ����� are time-specific latents that are shared by all OTUs and subjects, and ���� are 173 

OTU- and subject-specific loadings that are shared across all time points. The number of 174 

latents/loadings is chosen such that  ! ", $ thereby achieving a lower dimensional 175 

description of the data. These parameters can be simultaneously estimated using log-likelihood 176 

maximization. 177 

 178 

The long-term stability of the gut microbiome is now well-established
14,15,18

. Therefore, we 179 

model the dynamics of the latents as return to normal fluctuations around a fixed steady state: 180 

%�� & 1� � '%��� & ( & ).                                                           �3� 

In Eq. 3, the matrix ' is assumed to be symmetric and the noise ) Gaussian distributed and 181 

uncorrelated. To identify ecological normal modes (ECNs) +���� whose dynamics are 182 

statistically independent of each other, we diagonalize the interaction matrix, ' � ,�-,. Here, 183 

, is the orthogonal matrix of eigenvectors and - is the diagonal matrix of its eigenvalues. We 184 

have 185 

+��� & 1� � Λ�+���� & /�
 & 0�                                                     �4� 

Where the ECNs 2��� � ,%��� are a redefined set of latents, ( � ,(, and ) � ,). We 186 

redefine the corresponding loadings 3 � ,�4. Since ,,� � ,�, � 5, this simultaneous 187 

transformation does not change the model predictions
33

. Moreover, the redefined noise ) is 188 

Gaussian distributed and uncorrelated as well. Notably, if we start with orthonormal sets of 189 

latents �����, the ECNs are also orthonormal. As we show in the supplementary information, 190 

the ECNs are uniquely defined for a given longitudinal data set.  The actual dynamics of the 191 

latents are likely to be more complex than the linear model invoked here. Yet, similar to normal 192 

mode analysis in biomolecular dynamics
34

, ECNs represent a re-orientation of the latent 193 

variable space that uncovers the unique and orthogonal templates of microbial abundance 194 

fluctuations.  195 

 196 
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EMBED accurately reconstructs microbiome abundance time series using a few ecological 197 

normal modes 198 

We first highlight the intuition of EMBED with simple illustrative in silico examples (see 199 

Supplementary Information for details). The first community comprised OTUs whose 200 

abundances oscillated at a single frequency but with one of two phases. The second community 201 

comprised a single set of OTUs oscillating with high frequency and another set that fluctuated 202 

as a sum of two oscillations. The third community comprised a set of OTUs whose abundances 203 

decreased exponentially, and those whose abundances oscillated with one of two different 204 

frequencies. In silico data was generated by first normalizing the abundances and then sampling 205 

read counts from a multinomial distribution (SI Fig. 1). As expected, EMBED identified a small 206 

number of ECNs that were sufficient to capture the abundance variation in all three 207 

communities (SI Fig. 2). Importantly, the identified ECNs directly corresponded to salient 208 

dynamical features of the abundance profiles (SI Fig. 3). Specifically, ECN +���� was relatively 209 

stable over time and the corresponding loading vector 3� correlated strongly with the mean 210 

OTU abundance, capturing steady-state behavior of OTUs over longer time periods (SI Fig. 4). 211 

The rest of the ECNs separately captured other major features of the underlying dynamics: out 212 

of phase oscillations (A), three different oscillation frequencies (B), and exponential decay and 213 

oscillations at different frequencies (C). Finally, the inferred ECNs were uniquely determined for 214 

each community (SI Fig. 5). While simplified, these examples show how EMBED can be used to 215 

identify any existing modes of dynamics underlying complex microbial communities.   216 

 217 

 218 
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Figure 1. (A) Schematic of the EMBED approach. In the schematic, dynamics of abundance of a 219 
community comprising 3 bacteria (left) is approximated using � � 2 ECNs ������	 and corresponding 220 
loadings �
�

	 (middle). From the abundance data, EMBED identifies ECNs that are shared across 221 
subjects. (right) The dynamics of abundances of individual bacteria are approximated using the inferred 222 
ECNs. (B) Average Kullback-Leibler divergence, averaged over the total duration, between observed 223 
microbial abundances and reduced dimensional reconstructions using CLR-SSVD and EMBED using K = 3, 224 
5, and 7 components.  225 

 226 

 227 

Next, using several longitudinal microbiome time series, we investigate the accuracy of EMBED-228 

based time series reconstruction. We compared EMBED with a recently developed method by 229 

Martino et al.
31

 (centered log ratio transform followed by sparse singular valued decomposition  230 

or CLR-SSVD, see Supplementary Information). This dimensionality reduction method also 231 

forms a basis of a recent multi-subject analysis
32

. Briefly, non-zero microbiome abundances are 232 

log-transformed using the so-called robust centered log-ratio transform (CLR)
35

. Sparse singular 233 

value decomposition (SSVD)
36

 is then performed, using a user-specified number of components, 234 

on these non-zero abundances. Finally, an inverse CLR transform is performed on the SSVD-235 

based reconstruction. We investigated the ability of CLR-SSVD and EMBED to reconstruct the 236 

same time series using 23 abundance time-series from four different studies
11,12,25,10

. In Fig. 1B, 237 

we compare the mean Kullback-Leibler divergences (averaged over the total number of days for 238 

each time series) using K = 3, 5, and 7 components for EMBED- and for CLR-SSVD-based 239 

reconstructions. Notably, for each time series and each K, EMBED offered a more accurate 240 

representation of the data compared to CLR-SSVD (SI Table 1). EMBED-based reconstruction is 241 

also accurate for the time series of individual bacterial taxa. The average taxa-specific Pearson 242 

correlation coefficient between the reconstruction the data, averaged across taxa and datasets 243 

was 6 � 0.89 : 0.07 (for K = 7) compared to an average correlation of 6 � 0.71 : 0.1 for CLR-244 

SSVD. Collectively, these results show that EMBED identifies key ecological normal modes that 245 

can accurately represent collective abundance fluctuations in microbiome time series. Notably, 246 

a much smaller number of EMBED modes are sufficient to accurately capture the abundance 247 

dynamics compared to CLR-SSVD.  248 

 249 
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We next sought to identify underlying ecological modes of dynamics in the gut microbiome by250 

using EMBED to reconstruct low-dimensional representations of bacterial communities251 

5subjected to various ecological perturbations. 252 

 253 

 254 

 255 

 256 

Effect of dietary oscillations on the gut microbiome 257 

 258 

Figure 2. The effect of diet on microbiome dynamics. (A) Temporal profiles of the five inferred ECNs259 

Blue and red panels show periods of time of administered LFPP and HFHS diets respectively. (B) (Top)260 

The average abundances of five OTUs with the most negative and the most positive  values. (Bottom)261 

y 

s 

. 

) 

) 
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The average abundances of five OTUs with the most negative and the most positive 
� values. For each 262 
subject, the abundances of the identified OTUs were first mean-normalized across each OTU, then 263 
averaged across the OTUs (faint lines). The bold lines show abundances averaged across all subjects. (C) 264 
(Top) A hierarchical clustering of OTUs using the two oscillatory loadings 
� and 
� identifies three 265 
major groups of OTUs (colored). (Bottom) Mean relative abundance of OTUs in the three groups using 266 
the same colors as the top panel. The abundances were first mean-normalized on a per OTU basis, then 267 
averaged across subjects for each OTU, and then averaged across all OTUs in any given group. The error 268 
bars represent standard errors of mean estimated using the considered OTUs. (D) Abundance variation 269 
in top 10 OTUs that exhibit universal dynamics (green) and top 10 OTUs that show subject-specific 270 
dynamics (orange) as identified by the average subject-to-subject variability in OTU-specific 
 loadings 271 
(inset).  272 

 273 

Host diet has been shown to be a major factor influencing gut bacterial dynamics in both 274 

humans and mice
24,25

 but in a subject specific manner
37

. We therefore applied EMBED to the 275 

data collected by Carmody et. al.
25

 to better understand bacterial abundance changes in 276 

response to highly controlled dietary perturbations. Briefly, the diets of individually housed 277 

mice were alternated every ~3 days between a low-fat, plant-polysaccharide diet (LFPP) and a 278 

high-fat, high-sugar diet (HFHS). Daily fecal samples were collected for over a month (SI Fig. 6). 279 

 280 

Using  � 5 ECNs, EMBED obtained a lower dimensional time series approximation that 281 

reconstruction of the original data with great accuracy (average taxa Pearson correlation 282 

coefficient 6 � 0.75 : 0.18, average community Pearson correlation coefficient, 6 � 0.98 :283 

0.003 ) (SI Fig. 2). We investigated each of the underlying ECNs. The first ECN +���� represented 284 

a relatively constant abundance throughout the entire time series (Fig. 2A). Moreover, the 285 

corresponding loading vector 3� showed a significant correlation to the average individual OTU 286 

abundance across time. (Average Spearman correlation coefficient across subjects, 6 �287 

�0.86 : 0.06, SI Fig. 4), suggesting that despite large-scale, cyclic dietary changes, gut bacterial 288 

abundances in the community tended to fluctuate around a constant average abundance.  289 

 290 

In contrast, ECNs +���� and +���� collectively captured the cyclic nature of dietary oscillations, 291 

confirming that the murine diet rapidly and reproducibly alters abundance dynamics even at 292 

the individual OTU level. To identify OTUs whose oscillatory dynamics were similar across 293 

subjects, we clustered the loadings 3� and 3� of individual OTUs on ECNs +���� and +����. We 294 

found that bacteria in the community largely clustered into three groups (Fig. 2C), those whose 295 
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abundances increased with the LFPP diet (blue, group 1), and those whose abundances 296 

increased with the HFHS diet to different extents (black and magenta, groups 2 & 3). In keeping 297 

with recent studies
38–40

, we found that the genera Saccharicrinis, members of the Bacteroidetes 298 

phylum, were significantly enriched in group 3, consistent with the notion that bacteria 299 

belonging to this genera are able to degrade plant polysaccharides and utilize the metabolic 300 

byproducts present in the LFPP diet (� � 0.0015, hypergeometric test).  301 

 302 

Unexpectedly, we found two ECNs +���� and +���� that represented profound non-oscillatory 303 

behavior in abundance fluctuations. +���� represented an overall drift in abundance over the 304 

time series and +���� represented a U-shaped recovery. The loadings corresponding to these 305 

two modes the were significantly correlated across subjects (Spearman correlation coefficient 306 

6 � 0.37 : 0.16,  averaged across mice). The top 5 OTUs with most negative and positive 307 

loadings 3� (omitting OTUs that were also in the top 5 negative/positive for loadings 3�� 308 

experienced a significant, irreversible increase and decrease throughout the time course of the 309 

experiment respectively (Fig. 2B, top). Thus, while the dynamics of most gut bacteria in this 310 

community exhibit rapid and reversible changes in response to dietary oscillations, there exist 311 

certain bacteria that exhibit irreversible changes over time. This concept of hysteresis has been 312 

explored previously in the gut microbiome
25,41

, but the underlying mechanisms likely warrant 313 

continued investigation. In contrast, the top 5 OTUs with most negative and positive loadings 314 

3� (omitting OTUs that were also in the top 5 negative/positive for loadings 3�� experienced 315 

an inverted U-shaped and a U-shaped abundance profile (Fig. 2B, bottom). Interestingly, the 316 

OTUs that exhibited the drifting and the U-shaped abundance profiles differed from subject-to-317 

subject (SI Table 2, SI Fig. 6). This strongly suggests that these universal non-oscillatory 318 

dynamics are primarily driven by the state of the ecosystem rather than specific functions of 319 

the bacterial taxa that exhibit these behaviors. This is reminiscent of the universal dynamical 320 

behaviors recently reported by Ji et al.
14

 that were shared across different host organisms but 321 

were exhibited by different bacterial taxa.  322 

 323 
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EMBED systematically identifies OTUs that exhibit universal dynamics and those that exhibit 324 

subject-specific behavior. Each OTU within each subject-specific ecosystem is characterized by a 325 

five-dimensional vector of loadings corresponding to the five ECNs. OTUs whose loading vectors 326 

are similar across all subjects have similar dynamics across subjects and vice-versa for OTUs 327 

with different loading vectors. To identify these universal and subject specific OTUs, we 328 

computed the average distance across all pairs of subjects of the OTU specific loadings vectors. 329 

This average distance correlated strongly with the average distance of the subject specific OTU 330 

abundance trajectories as well (inset of Fig. 2D). In Fig. 2D, we plot the average abundance of 331 

10 OTUs with the most similar 3 loadings (bottom) and the 10 most dissimilar 3 loadings (top). 332 

The black lines show the OTU-averaged abundances for individual subjects and the colored bold 333 

lines (green and orange) show the average across subjects. As seen in Fig. 2D, the top 10 OTUs 334 

whose dynamics were similar across all subjects strongly preferred the HFHS diet. Notably, 335 

these OTUs are overrepresented by the genus Oscillibacter (4 out of 10 compared to 5 out of 336 

73, Hypergeometric test � � 9 > 10��). Interestingly, this overrepresentation was found at the 337 

genus and the family level and was not observed at higher taxonomic classifications (SI Table 3). 338 

Importantly, no other genus or family were overrepresented. This strongly suggests a specific 339 

genus level preference to high fat high sugar diet in the genus Oscillibacter that can override 340 

subject-specific ecosystem parameters.  Notably, Oscillibacter are known to prefer high fat
42

 as 341 

well as high sugar diets
43

. Future work is needed to further establish the mechanistic 342 

connection between Oscillibacter and HFHS diets. 343 

 344 

ECNs identify modes of recovery of bacteria under antibiotic action 345 

Broad-spectrum oral antibiotics have significant effects on the gut flora both during and after 346 

administration. Specifically, microbiome abundance dynamics following antibiotic 347 

administration can potentially exhibit a combination of several typical behaviors which may 348 

reflect different survival strategies
7,9,10,16,44

. These include quick recovery following removal of 349 

antibiotic, slow but partial recovery, and one-time changes followed by resilience to repeat 350 

antibiotic treatment. The temporal variation in abundances of any bacteria could be a 351 

combination of these typical behaviors. Moreover, given that the gut ecosystems differ across 352 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 27, 2021. ; https://doi.org/10.1101/2021.03.18.436036doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.436036


different hosts, the response of specific bacteria to the same antibiotic treatment could vary 353 

from host to host
16

. To better parse the major modes of gut bacterial dynamics associated with 354 

antibiotic administration, we analyzed the data collected by Ng et al.
10

. Briefly, several mice 355 

were given the antibiotic ciprofloxacin in two regimens (day 1-4 and day 14-18) and fecal 356 

microbiome samples were collected daily over a period of 30 days (SI Fig. 7).  357 

 358 

 359 

 360 
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 361 

Figure 3. Effect of antibiotic treatment on the gut microbiome. (A)  ECNs describe the362 

microbiome of mice on antibiotics. The shaded region indicates the first and second doses of363 

ciprofloxacin. (B) A hierarchical clustering of OTUs using loadings except for . 7 major groups of OTUs364 

with similar dynamical responses are identified from the clustering. (C) In every group and for each365 

subject, the abundances of the identified OTUs were first mean-normalized at the OTU level. The faint366 

lines represent subject-specific average over OTUs. The bold lines represent average across subjects367 

e 
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Error bars represent standard errors of mean estimated using the considered OTUs. (D) Average subject-368 
to-subject variability in OTU-specific 
 loadings for the 7 identified groups.  369 

 370 

We found that a very small number  � 4 ECNs was sufficient to capture the data with 371 

significant accuracy (average taxa Pearson correlation coefficient 6 � 0.80 : 0.2, average 372 

community Pearson correlation coefficient, 6 � 0.98 : 0.01) (SI Fig. 2).  As shown in panel (A) 373 

of Fig. 3 and consistent with the previous analysis, we found that ECN +���� was relatively 374 

stable throughout the study and the corresponding loading vector 3� was strongly correlated 375 

with the mean OTU abundance over time (Spearman correlation coefficient 6 � �0.57 : 0.07) 376 

(SI Fig. 4). This suggests that on average, even after several large-scale perturbations, there 377 

exists a characteristic range of abundances beyond which individual OTUs tend not to deviate, 378 

at least on the time scale considered. Interestingly, we found the remaining several ECNs to 379 

follow broad classes of behaviors in response to periods of stress. Indeed, ECNs, +���� 380 

appeared to represent an inelastic one-time change followed by a relatively stable response.  381 

ECN, +���� represented the opposite, it responded to the antibiotic treatment the second time 382 

but not the first time. In contrast, ECN +����  represented elastic changes in the microbiome, 383 

potentially representing abundances reproducibly decreasing (or increasing) with the action of 384 

the antibiotic but quickly bouncing back to pre-antibiotic levels when it was withdrawn. 385 

 386 

These salient dynamical features were captured when we clustered the OTUs using the loadings 387 

3� � 3� (panel B), which identified seven major groups of OTUs with distinct dynamical 388 

behaviors (Figure 3B,C). Interestingly, while some of the groups simply reflected behaviors of 389 

individual ECNs, others could be understood according to their relative contributions across 390 

multiple ECNs. For example, the behavior of OTUs in groups 1 and 3 aligned with ECN +����, 391 

albeit with opposing trends. Group 1 OTUs flourished during the first antibiotic treatment but 392 

the second treatment did not elicit a similar response. In contrast, OTUs in group 3 diminished 393 

in their abundance after the first antibiotic treatment but were resistant to subsequent 394 

antibiotic action.  395 

 396 
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OTUs in groups 2, 5, 6, and 7 displayed highly elastic dynamics in response to both periods of 397 

antibiotic administration. Group 2 OTUs overrepresented by the genus Akkermansia (all 2 out 398 

of 41 OTUs are in Group 2, Hypergeometric test � � 0.026) flourished during the antibiotic 399 

treatment but decreased their abundance in a reversible manner when antibiotics were 400 

withdrawn. OTUs in groups 5, 6, and 7 in contrast diminished their abundance in the presence 401 

of antibiotics in a reversible manner. Group 6 was overrepresented by the genus Blautia (3 out 402 

of 6 compared to 5 out of 41, Hypergeometric test � � 0.017), while group 7 was 403 

overrepresented by the genus Aestuariispira (all 2 out of 41 OTUs are in Group 7, 404 

Hypergeometric test � � 0.0073). Finally, group 4 comprised OTUs that were exquisitely 405 

sensitive to initial antibiotic administration, whose abundance did not make any meaningful 406 

recovery. These OTUs were overrepresented in the genus Coprobacter (2 out of 5 compared to 407 

3 out of 41, Hypergeometric test � � 0.035).  408 

 409 

Notably, OTUs in groups 5 and 7 exhibited significant subject-to-subject variability as quantified 410 

by both the average subject-to-subject variability in OTU-specific 3 loadings (Fig. 3D) and the 411 

subject-to-subject variability in OTU-specific abundance trajectories (SI Fig. 7). While these 412 

OTUs exhibited qualitative dynamics of recovery across all subjects (SI Fig. 7), the time course 413 

and the extent of recovery varied from subject-to-subject.  414 

 415 

Discussion 416 

Bacteria in host-associated microbiomes live in complex ecological communities governed by 417 

competitive and cooperative interactions, and a constantly changing environment. Extensive 418 

spatial and temporal variability are a hallmark of these communities. Recent systems biology 419 

approaches have made progress in distilling some of this complexity by utilizing generalized 420 

quantitative frameworks. For example, simple and universal statistical features have recently 421 

been discovered in these communities
14,15

. Dimensionality reduction offers an alternative 422 

approach by leveraging the correlated nature of bacterial abundance fluctuations in the 423 

community, but its use towards understanding microbiome dynamics has thus far been limited. 424 

 425 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 27, 2021. ; https://doi.org/10.1101/2021.03.18.436036doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.436036


To address this issue, we developed EMBED, essential microbiome dynamics. EMBED is a novel 426 

dimensionality reduction approach specifically tailored to identify the underlying ecological 427 

normal modes in the dynamics of bacterial communities that are shared across subjects 428 

undergoing identical environmental perturbations. These ECNs can be viewed as dynamical 429 

templates along which the trajectories of individual bacteria within individual host ecosystems 430 

can be decomposed. Identified ECNs shed insight into the underlying structure of bacterial 431 

community dynamics. By applying EMBED to several times series data sets representing major 432 

ecological perturbations, we identified immediate and reversible changes to the gut community 433 

in response to these stimuli. However, EMBED also identified more subtle, longer-term, and 434 

perhaps irreversible changes to specific members of the community, the mechanisms and 435 

consequences of which would be interesting to pursue further. For example, EMBED identified 436 

genus levels associations with specific dynamical behaviors under diet oscillations that were not 437 

observed at higher taxonomic levels, potentially implicating specific functional properties of the 438 

genus. 439 

 440 

One key parameter in EMBED is the number of components. A high number of components will 441 

necessarily fit the data better, potentially fitting to the technical noise. How do we decide the 442 

appropriate number of components? Importantly, EMBED is a probabilistic model and 443 

potentially information theoretic criteria45,46 could be used to identify the correct number of 444 

components. These criteria seek a balance between increase in number of parameters and the 445 

accuracy of fit to data (likelihood).  We note that the total likelihood of the data is linearly 446 

proportional to the sequencing depth. However, the reported sequencing depth is typically 447 

over-inflated compared to the true nucleotide capture probability of the experiments47 leading 448 

to an inflated estimate of the total likelihood. One approach to solve this is to obtain technical 449 

repeats which can in turn allow us to estimate the true technical noise13,47.  450 

 451 

While EMBED was specifically developed to study microbiomes, it reflects a more generalizable 452 

framework that can easily be applied to other types of longitudinal sequencing data as well. We 453 
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therefore expect that EMBED will be a significant tool in the analysis of dynamics of high 454 

dimensional sequencing data beyond the microbiome. 455 

 456 
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