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Abstract	

From	the	drug	discovery	perspective,	combination	therapy	is	recommended	in	cancer	due	

to	efficiency	and	safety	compared	to	the	common	cytotoxic	and	single-targeted	monotherapies.	

However,	identifying	effective	drug	combinations	is	time-	and	cost-consuming.	Here,	we	offer	a	

novel	strategy	of	predicting	potential	drug	combinations	and	patient	subclasses	by	constructing	

multipartite	networks	using	drug	response	data	on	patient	samples.	In	the	present	study,	we	

used	Beat	AML	and	GDSC,	two	comprehensive	datasets	based	on	patient-derived	and	cell	line-

based	samples,	to	show	the	potential	of	multipartite	network	modeling	in	cancer	combinatorial	

therapy.	We	used	the	median	values	of	cell	viability	to	compare	drug	potency	and	reconstruct	a	

weighted	bipartite	network,	which	models	the	interaction	of	drugs	and	biological	samples.	Then,	

clusters	of	network	communities	were	identified	in	two	projected	networks	based	on	the	

topological	structure	of	networks.	Chemical	structures,	drug-target	networks,	protein-protein	

interactions,	and	signaling	networks	were	used	to	corroborate	the	intra-cluster	homogeneity.		

We	further	leveraged	the	community	structures	within	the	drug-based	multipartite	networks	to	

discover	effective	multi-targeted	drug	combinations,	and	the	synergy	levels	which	were	

supported	with	more	evidence	using	the	DrugComb	and	the	ALMANAC	databases.	Furthermore,	

we	confirmed	the	potency	of	selective	combinations	of	drugs	against	monotherapy	in	vitro	

experiment	using	three	acute	myeloid	leukemia	(AML)	cell	lines.	Taken	together,	this	study	

presents	an	innovative	data-driven	strategy	based	on	multipartite	networks	to	suggest	potential	

drug	combinations	to	improve	treatment	of	AML.	
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Introduction	

Studies	on	cases	with	advanced	cancers	has	shown	that	less	than	10%	of	patients	have	

actionable	mutations,	and	improvement	of	outcomes	was	not	observed	in	a	randomized	trial	of	

precision	medicine	based	on	genomic	profiles	(1).	The	current	limitation	of	genomics-centric	

personalized	medicine	falls	short	on	the	enormous	heterogeneity	and	lack	of	actionable	and	

sustainable	treatment	options.	With	a	few	exceptions,	patient	genomic	signatures	with	clinical	

pathology	do	not	typically	predict	drug	responses.	More	precisely,	cancer	can	principally	be	

considered	as	a	signaling	disease,	not	a	genetic	disease.	There	is	a	wealth	of	data	that	has	

validated	this	hypothesis,	including	signaling	behaviors	involved	in	growth	factor	and	nutrient	

responses,	the	process	of	entering	and	exiting	the	cell	cycle,	ensuring	that	chromosomes	are	

segregated	in	an	orderly,	efficient	and	accurate	manner	during	mitosis	and	apoptosis	(2,	3).	On	

the	other	hand,	the	complexity	of	crosstalk	between	signaling	pathways	necessitates	to	modulate	

multiple	targets	in	cancer	cells,	otherwise	lack	of	complete	response,	resistance,	and	relapse	will	

emerge	during	the	course	of	treatment.		

Despite	the	fact	that	large	amounts	of	small	molecules	or	drugs	have	been	tested	on	many	

cell	lines	or	patient-derived	samples,	using	single	drugs	as	monotherapies	to	cure	cancer	might	

not	be	a	promising	strategy,	as	it	is	known	that	the	complex	interactions	of	various	biological	

components	can	lead	to	drug	resistance	during	the	treatment	of	cancer	(4-6).	As	a	matter	of	fact,	

monotherapy	and	the	slogan	of	“one	target	one	drug”	is	inefficient	to	cure	complex	diseases	such	

as	cancer	(7,	8).	Combination	therapy	or	polytherapy	with	synergistic	drugs	may	achieve	a	more	

effective	and	safer	outcome	by	targeting	several	targets	in	the	same	or	separate	pathways	of	the	

complex	system	(4).	To	better	identify	the	synergistic	drug	combination	based	on	precision	

medicine,	we	need	ex-vivo	drug	screening	to	decipher	the	functional	impact	of	cancer	genomics	

at	the	phenotypic	level	to	understand	their	interactions	in	the	context	of	biological	networks	(9,	

10).		Therefore,	understanding	network	biology	may	provide	a	unique	opportunity	to	leverage	

the	rich	source	of	drug	response	data	to	offer	network-based	models	for	combinatorial	therapy.	

These	network	models	have	shown	promises	for	the	development	of	clinical	decision	support	

tools	to	discriminate	functional	patient	subclasses	(11,	12).	Even	though	there	are	networks	

reconstructed	to	model	biological	mechanisms	of	diseases	and	predict	drug	combination	

synergies	based	on	molecular	data	(13-16),	network	models	have	not	been	systematically	

applied	to	patient	data,	i.e.,	drug	response	data	of	patient-derived	samples	to	predict	patient-

customized	drug	combinations	(14).	Instead,	the	ex	vivo	drug	response	data	are	

straightforwardly	translated	into	the	clinic	for	patient	treatment	since	these	individualized	
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experiments	represent	the	efficiency	of	some	approved	drugs	on	patient-derived	primary	

cultures	(17,	18).		

In	2018,	the	Beat	AML		program	reported	a	cohort	of	672	tumor	specimens	collected	from	

531	patients,	analyzing	the	ex	vivo	sensitivity	for	122	drugs,	as	well	as	the	mutational	status	and	

the	gene	expression	signatures	of	the	samples (19).	Despite	the	dearth	of	large	patient-related	

drug	response	datasets,	some	large	cell	line-based	datasets,	such	as	GDSC	and	ALMANAC,	can	

offer	a	strong	source	of	supporting	evidence	for	predictions.	The	GDSC	(Genomics	of	Drug	

Sensitivity	in	Cancer)	database	contains	the	response	of	1001	cancer	cell	lines	to	265	anti-cancer	

drugs,	providing	a	rich	source	of	information	to	connect	genotypes	with	cellular	phenotypes	and	

to	identify	cancer-specific	therapeutic	options	(20).	The	largest	publicly	accessible	dataset	for	

cancer	combination	drugs,	i.e.,	ALMANAC,	was	recently	published	by	the	U.S.	National	Cancer	

Institute.	This	data	collection	contains	more	than	5,000	combinations	of	104	investigational	and	

licensed	drugs,	with	synergies	calculated	against	60	cancer	cell	lines,	resulting	in	more	than	

290,000	synergy	scores	(21).	Moreover,	DrugComb	(https://drugcomb.org/),	a	web-based	portal	

for	the	storage	and	study	of	drug	combination	screening	datasets,	offers	a	comprehensive	

visualization	of	drug	combination	susceptibility	and	synergy,	which	can	significantly	aid	

understanding	of	drug	interactions	at	unique	dosage	levels.	Drugcomb	now	has	751,498	drug	

combinations	and	717,684	single	drug	screens	from	37	trials,	which	relate	to	2040	cell	lines	and	

216	cancer	forms	(22). 

In	this	study,	we	developed	a	network	pharmacology	approach	to	predict	potential	drug	

combinations	for	AML	based	on	BeatAML	dataset	.	We	proposed	a	drug	combination	strategy	

using	multipartite	network	modeling	of	ex	vivo	drug	screening	data.	By	ex	vivo	drug	response	

data,	we	directly	accessed	the	individual	phenotypes	of	the	patients’	cancer	cells,	and	by	network	

modeling,	we	demonstrated	the	similarity	of	drugs	and	AML	patients.	Then,	we	used	the	

community	structures	within	the	drug-based	multipartite	networks	to	discover	effective	multi-

targeted	drug	combination	regimens.	Our	predicted	combinations	of	drugs	were	only	suggested	

on	the	basis	of	the	phenotypic	interactions	of	the	cancer	cells	or	patient	samples	to	the	drugs	

without	prior	understanding	of	the	genetic	origin	or	molecular	understanding	of	the	disease.	
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Methods	

The	entire	workflow	of	the	present	study	is	illustrated	in	Fig.	1.		The	weighted	bipartite	network	

is	constructed	using	BeatAML	data	set.	This	data	set	is	a	collaborative	research	program	of	11	

academic	medical	centers	providing	data	on	AML	samples	offering	genomics,	clinical,	and	drug	

responses.	It	includes	a	cohort	study	of	672	tumor	specimens	collected	from	531	patients	

analyzing	122	drug	responses.	In	order	to	construct	a	weighted	bipartite	network,	the	best	

response	read	out	of	drug	potency	was	defined	using	information-based	measures.	Then	two	

unipartite	networks	obtained	using	network	projection	on	samples	and	drugs.	In	the	next	step,	

communities	of	two	projected	networks	were	extracted	and	intra-cluster	homogeneity	analysis	

was	performed	using	the	similarity	of	drugs	and	patients/	cell	members	based	on	available	gene	

expression	profiles	for	patients	and	protein-protein	interaction	network	and	biological	pathways.	

The	drug	candidates	for	drug	combination	were	selected	at	two	different	communities	and	a	

high-throughput	drug	screening	was	used	to	assess	their	synergetic	effects.		

Defining	the	response	read-out	for	drug	screening	experiments	

	Pharmacogenomic	studies	require	extensive	standardization,	to	avoid	inconsistency	of	

drug	responses	data	for	further	research	and	unbiased	predictions	(23,	24).	Therefore,	first,	we	

controlled	the	quality	of	cell	viability	data	to	select	the	potent	compounds.	To	aim	this,	we	

examined	the	raw	datasets	in	terms	of	the	availability	of	replicated	data	and	outlier	detection,	

followed	by	assessment	of	distribution,	pairwise	correlation,	and	homoscedasticity	analyses	to	

select	the	best	response	read-out	or	“measure”	of	drug	potency.	This	analysis	was	performed	

using	information-based	nonparametric	measures	available	in	the	Minerva	package	(25)	by	

computing	Maximal	Information	Coefficient	(MIC),	Maximum	Edge	Value	(MEV),	and	Maximum	

Asymmetry	Score	(MAS).	Furthermore,	the	relative	and	absolute	IC50	(i.e.,	IC50	measures,	which	

were	computed	based	on	the	top	and	bottom	plateaus	of	the	curve	or	based	on	the	blank	and	the	

positive	control	values,	respectively),	RI	value	(Relative	Inhibition	),	AUC	(Area	Under	Curve	of	

drug-response	fitted	line),	and	the	median	of	cell	viability	in	the	drug	response	experiments	were	
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assessed	to	select	the	best	measurement.	The	chosen	measurement	was	later	used	as	a	weight	

value	for	the	edges	in	the	weighted	bipartite	network	reconstruction.	

Figure	1:	Flowchart	of	the	study.	

Data	collection	started	from	existing	drug	response	databases,	then	followed	by	incidence	matrix	extraction,	

weighted	bipartite	network	reconstruction,	network	projection,	and	community	detection.	In	the	next	step,	

the	intra-cluster	homogeneity	analysis	was	conducted	using	the	similarity	of	drug	and	patient/cell	members	

of	all	clusters	according	to	available	gene	expression	profiles,	drug-target	interactions,	protein-protein	

interactions,	and	biological	pathways.	Finally,	a	high-throughput	drug	screening	experiment	was	used	to	

assess	the	synergistic	behavior	of	the	proposed	drug	combinations.	

	
Reconstruction	and	analysis	of	the	bipartite	network	model	

In	our	bipartite	network	model,	one	group	of	nodes	contained	the	small	molecule	drugs	and	

the	other	group	the	cancer	cell	lines	or	patient	samples	depends	on	the	dataset.	The	edges	were	

defined	by	incidence	matrices	derived	from	the	min-max	normalized	values:		

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑣𝑎𝑙𝑢𝑒 = !"#$%&'()('$'(+,-./0)
'"2('$'(+,-./0)&	'()('$'(+,-./0)

.		

This	normalization	transforms	these	values,	that	are	indicative	of	the	potency	of	small	

molecules	on	cancer	cell	lines	or	patient	samples,	into	a	decimal	between	0	and	1.	Next,	we	

projected	the	bipartite	network	into	the	two	similarity	networks,	i.e.,	drug	similarity	network	and	

sample	similarity	network.	In	the	network	projection,	two	unipartite	graphs	are	derived	from	a	

bipartite	graph,	which	result	in	deducing	the	node’s	relationships	of	the	same	type.	In	this	work,	

we	projected	similarity	networks,	which	take	into	account	the	edge	weights	in	the	bipartite	
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network.	Then,	we	studied	the	general	properties	of	the	networks	such	as	network	

heterogeneity,	centralization,	and	clustering	coefficients.	The	critical	step	was	community	

detection	within	the	projected	networks	in	order	to	discern	functionally	similar	drugs	and	

similar	cells	or	patients	in	terms	of	drug	response.	The	modularity	index	was	used	to	determine	

the	best	community	detection	algorithms,	including	infomap	(26),	fast	greedy	(27),	and	spinglass	

(28).	In	the	next	step,	we	explored	the	network	modules	to	propose	a	strategy	for	drug	

combination	design.		

	

Computational	corroboration	

Multiple	computational	methods	were	applied	to	validate	the	predictions	of	the	drug	

combinations	and	patient	or	cell	stratification.	The	validation	of	the	community	structures	is	

similar	to	the	general	cluster	quality	assessment	method,	and	we	assessed	the	clustering	

performance	by	matching	clustering	structures	to	prior	knowledge.	This	validation	will	be	a	basis	

to	support	the	possible	drug	combination	designs.	In	other	words,	the	combination	of	distinct	

drugs	in	terms	of	chemical	structure,	target	profile,	and	implicated	biological	pathways	is	most	

likely	more	efficient	than	similar	drugs	(7).	Therefore,	we	used	the	drug-target	network,	protein-

protein	interactions,	and	signaling	networks	to	justify	the	similarity	of	cluster	elements.	Thus,	

Chembl	(29),	drug	target	commons	(DTC)	(30),	KEGG	(31),	and	Omnipath	database	(32)	were	

used	to	extract	prior	annotations	about	the	drugs	and	their	targets.	To	compare	the	chemical	

structures	of	the	drugs,	Simplified	Molecular	Input	Line	Entry	System	(SMILES)	of	the	drug	

molecules	were	retrieved	and	transformed	into	extended	connectivity	fingerprint	(ECFP),	in	

order	to	assess	the	Dice	similarity	of	the	molecules.	The	Dice	similarity	is	one	of	the	

standard	metrics	for	molecular	similarity	calculations	in	which	𝑆4,6 = 2𝑐
(𝑎 + 𝑏)6 ,	where	𝑎	is	the	

number	of	ON	bits	in	molecule	A,	𝑏	is	the	number	of	ON	bits	in	molecule	B,	and	𝑐	is	the	number	of	

ON	bits	in	both	A	and	B	molecules	(33).	Also,	the	corresponding	gene	expression	profiles	were	

used	to	assess	similarity	within	patient	or	cell	line	modules	in	the	sample	similarity	networks.	

For	reads	per	kilobase	per	million	(RPKM)	with	negative	values	and	counts	per	million	(CPM),	we	

used	Harmonic	similarity	and	Jaccard	distance,	respectively	as	follows:	

𝑆7,8 = 2 × ∑ (𝑃9 × 𝑄9) (𝑃9 + 𝑄9)⁄:
9;< ,		

𝐷7,8 = 1 − ∑ (𝑃9 × 𝑄9) ?∑ 𝑃9=:
9;< + ∑ 𝑄9=:

9;< +∑ 𝑃9 × 𝑄9:
9;< @⁄:

9;< ,	where	𝑃 = {𝑃<, 𝑃=, ⋯ , 𝑃:}	

and	𝑄 = {𝑄<, 𝑄=, ⋯ , 𝑄:}	denote	the	vector	of	gene	expression	values	for	patients	or	cell	lines	and	
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n	is	the	number	of	genes.	In	all	cases,	the	similarity	or	distance	scores	were	compared	with	the	

random	grouping	of	small	molecules	or	biological	samples	to	perform	statistical	testing.	

	The	synergy	scores	provided	by	the	DrugComb	database	(34)	were	used	to	corroborate	

synergistic	combinations	of	our	network-based	predictions,	including	HSA,	Bliss,	Loewe,	ZIP,	CSS	

and	S.				Let’s	assume	that	drug	1	at	dose	x1	and	drug	2	at	dose	x2	is	used	to	produce	effects	of	y1	

and	y2	,	and	yc	is	the	effect	of	their	combination.		Drug’s	effect	is	usually	measured	as	percentage	

of	cell	death	and	a	drug	combination	is	classified	as	synergetic,	antagonistic	or	non-interactive	

(35).	The	expected	effect	denoted	by	ye	represents	a	non-interactive	level	and	it	is	quantified	

based	on	a	reference	model.	Several	mathematical	models	have	been	introduced	to	calculate	the	

expected	effect	by	assuming	specific	principals.	The	HSA	model	(36)	considers	the	expected	

combination	effect	as	the	maximum	of	single	drug	effects,	i.e.	ye	=	max(y1,y2).			The	loewe	model	

(37)	assumes	that	an	individual	drug	produces	ye		at	a	higher	dose	than	in	the	combination.	In	the	

Bliss	model	(38),	ye		is	the	effect	of	the	two	drugs	when	they	act	independently.	The	ZIP	model	

(35)	consider	the	assumptions	of	the	Loewe	and	Bliss	models	by	assuming	that	at	reference	

model	two	drugs	do	not	potentiate	each	other.	CSS	determines	the	sensitivity	of	a	drug	pair	and	S	

synergy	is	based	on	the	difference	between	the	drug	combination	and	the	single	drug	dose	

response	curves	(39).	

Cell	culture	and	reagents	

AML	cell	lines	MOLM-16,	NOMO-1,	and	OCI-AML3	were	a	kind	gift	from	Prof.	Caroline	

Heckman	(University	of	Helsinki,	Finland).	MOLM-16	and	NOMO-1	were	cultured	in	RPMI-1640	

medium	(Gibco/Thermo	Fisher	Scientific,	Waltham,	MA,	USA)	and	OCI-AML3	in	α-MEM	(with	

nucleosides;	Gibco/Thermo	Fisher	Scientific)	supplemented	with	GlutaMAX	(Gibco	CTS/Thermo	

Fisher	Scientific),	fetal	bovine	serum	(20%	for	MOLM-16	and	OCI-AML3;	10%	for	NOMO-1)	and	

antibiotics.		

Drug	combination	testing	

The	compounds	dissolved	in	DMSO	were	plated	using	Beckman	Coulter	Echo	550	Liquid	

Handler	(Beckman	Coulter,	Indianapolis,	IN,	USA)	in	combinations,	seven	concentrations	for	each	

compound	in	half-log	dilution	series	with	2.5/7.5/25	nl	volumes,	covering	a	1,000-fold	

concentration	range	on	black	clear-bottom	TC	treated	384-well	plates	(Corning	#3764,	Corning,	

NY,	USA).	All	doses	were	randomized	across	the	plate	to	minimize	any	plate	affects.	As	positive	

(total	killing)	and	negative	(non-effective)	controls	100	μM	benzethonium	chloride	and	0.2%	

dimethyl	sulfoxide	(DMSO)	were	used,	respectively.	
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Cells	were	plated	on	pre-administered	compound	plates	in	25	µl	(2500,	2000,	or	1250	cells	

per	well	for	MOLM-16,	NOMO-1,	OCI-AML3	cell	lines,	respectively)	using	BioTek	MultiFlo	FX	RAD	

(5	µl	cassette)	(Biotek,	Winooski,	VT,	USA)	and	incubated	for	72	hours	at	37oC,	5%	CO2.	Cell	

viability	was	then	determined	by	dispensing	25	µl	of	Cell	Titer	Glow	2.0	reagent	(Promega,	

Madison,	WI,	USA).	Plates	were	incubated	for	5	min	and	centrifuged	for	5	min	(173	x	g)	before	

reading	luminescence	with	PHERAstar	FS	multimode	plate	reader	(BMG	Labtech,	Ortenberg,	

Germany).	

Results	

Defining	the	edge	weight	of	bipartite	networks	

In	the	Beat	AML	dataset,	a	set	of	122	inhibitor	drugs	were	used	against	531	patient-derived	

AML	samples.	The	spectra	of	low	to	high	potency	of	drugs	were	observed	across	the	patient-

derived	samples.	However,	this	panel	of	small	molecule	inhibitors	was	selected	according	to	their	

activity	against	the	proteins	involved	in	tyrosine-dependent	and	non-tyrosine	kinase	pathways	

particularly	for	AML	(19).		In	the	first	step,	we	determined	a	weight	value	of	drug-sample	

interaction	to	be	used	in	the	bipartite	network	reconstruction.	This	value	should	describe	the	

most	potent	compounds	for	inhibiting	tumor	cells	based	on	the	drug	sensitivity	analysis.	In	

addition	to	the	relative	and	absolute	IC50	,	RI	value	(39),	and	AUC,	we	calculated	the	median	of	cell	

viability	in	the	drug	response	experiments.		The	distribution	of	these	measures	have	been	

evaluated	in	terms	of	normality,	skewness,	and	modality	(Fig.	2)	to	choose	the	best	measure	as	a	

weight	in	the	bipartite	network.	The	relationship	of	Median	to	AUC	was	a	high	positive	value	

(with	the	highest	r	Pearson	correlation	coefficient	~	0.94	).	The	distribution	of	Medians	was	

unimodal	in	contrast	to	IC50	distributions,	homoscedastic	contrary	to	RI	distribution,	and	more	

symmetric	(non-skewed)	compared	to	AUC	distribution.		In	addition	to	investigating	the	linear	

relationship,	i.e.,	Pearson	correlation	analysis,	we	computed	MIC	(Maximal	Information	

Coefficient),	which	measures	the	relationship	strength,	and	MEV	(Maximum	Edge	Value)	to	check	

the	closeness	of	the	relationship	to	being	a	function.	Interestingly,	the	relationship	between	

Median	and	AUC	displayed	higher	MAS	and	MEV	(~0.75)	compared	with	the	relationship	of	RI	

and	AUC,	meaning	that	Median	has	a	stronger	association	with	AUC.	Therefore,	we	have	chosen	

the	inverse	of	the	actual	median	as	the	weight	of	drug-patient	interaction.		
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Figure	2:	Comparison	of	different	measures	for	drug	response	experiments	in	the	Beat	AML	study.		

The	lower	triangle	of	this	pairwise	comparison	matrix	shows	the	pairwise	scatter	plots	for	ic50_abs	

(Absolute	IC50),	ic50_rel	(Relative	IC50),	RI	(Relative	Inhibition),	Median	(the	median	of	cell	viability),	and	

AUC	(Area	Under	Curve	of	cell	viability	fitted	line).	The	diagonal	panel	describes	the	histogram	of	each	

measure	individually.	The	upper	triangle	represents	the	Pearson	correlation	coefficients	of	the	

corresponding	pairwise	comparisons.		

	

Analysis	of	bipartite	networks	
	

In	the	next	step,	the	maximum	square	submatrix	of	patient	samples	and	small	molecules	

was	used	as	the	incidence	matrix	of	the	bipartite	network.	To	be	specific,	we	selected	the	list-

wise	deletion	strategy	to	remove	missing	values	and	we	used	the	complete	cases	of	both	

variables.	The	downstream	analysis	was	done	on	an	undirected	weighted	bigraph	consisting	of	

176	(88+88)	nodes	and	7744	edges	(Fig.	3A).	The	distribution	of	the	min-max	normalized	edge	

weights	indicated	positive	skewness	,	indicating	that	the	cells	were	not	highly	sensitive	to	most	

drugs.		All	the	performed	analyses	were	also	carried	out	for	the	GDSC	dataset	as	a	proof	of	

concept.	The	undirected	weighted	bigraph	of	the	GDSC	dataset	consisted	of	532	(266+266)	nodes	

and	70,756	edges	(Fig.	3C).	The	distribution	of	the	min-max	normalized	edge	weights	showed	

positive	skewness	in	this	dataset	as	well	(Fig	3D),	indicating	again	low	potency	for	most	of	the	

drugs.	Therefore,	exploring	the	best	combination	is	not	straightforward,	and	categorizing	drug-
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sample	interactions	seems	to	be	required.	Following	the	projection	of	these	bigraphs	as	outlined	

in	Fig.	3,	two	projected	graphs	called	the	patient	similarity	network	(PSN)	and	drug	similarity	

network	(DSN)	were	reconstructed,	such	that	each	edge	was	obtained	by	the	multiplication	of	

weighted	incidence	matrix.	Thus,	the	edge	weights	of	the	projected	graphs	indicate	the	profile	

similarities	of	patient	samples	in	PSN	and	small	molecule	inhibitors	in	DSN.	Note	that	the	edge	

weight	values	in	DSNs	and	PSNs	are	distinct	due	to	different	matrix	multiplications.		

	

	
Figure	3:	Bigraphs	of	cancer	datasets.	The	general	overview	of	the	bipartite	graphs	for	the	Beat	AML	(A)	and	

GDSC	(B)	datasets	are	represented	with	the	blue	nodes	as	small	molecule	inhibitors,	and	red	and	green	

nodes	as	patient-derived	and	cell	line	samples,	respectively.	The	distributions	of	edge	weight	values	are	also	

depicted	using	violin	plots	with	scatter	plots.	

	

The	PSN	and	DSN	of	the	Beat	AML	dataset	contained	88	nodes	and	3828	edges	(Fig.	4),	

while	in	the	GDSC	projected	similarity	networks,	there	were	266	nodes	and	35,378	edges	(data	

not	shown).			In	Fig.	4,	the	larger	node	size,	the	more	sensitive	patient-derived	samples	and	more	

potent	drugs.	In	this	subset	of	Beat	AML	dataset	without	missing	data,	patient	16-00627	was	

found	to	be	the	most	sensitive	and	SNS-032	was	the	most	potent	inhibitor	(See	Supplementary	

Fig.	1).	The	community	detection	was	subsequently	done	for	both	similarity	networks	via	

optimizing	a	modularity	score,	resulting	in	two	communities	for	DSN	with	50	and	38	small	

molecules,	and	two	communities	for	PSN	with	39	and	49	patient	samples.	In	other	words,	we	

identified	two	clusters	of	patients	with	distinctive	drug	response	profiles,	suggesting	two	

subcategories	of	the	disease.	Also,	we	detected	two	clusters	of	small	molecules,	which	pointed	
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disparate	inhibiting	patterns	on	the	patient	samples.	In	the	following	steps,	we	presented	

evidence	of	the	consistency	of	cluster	members	in	both	networks	using	prior	knowledge.	
	

	Figure	4:	Drug	and	patient	similarity	networks	of	the	Beat	AML	dataset.	The	force-directed	layout	was	
selected	to	depict	both	networks.	The	thickness	of	edges	corresponds	to	the	edge	weight	of	the	original	

bipartite	networks	after	network	projection	considering	the	weight	values.	The	edge	thickness	represents	

the	weight	value	of	similarity	between	each	pair	of	patient	samples	or	small	molecules.	The	node	size	is	

proportional	to	the	strength	of	each	node,	which	is	the	sum	of	the	edge	weights	of	the	adjacent	edges	for	each	

node.	

	
Intra-cluster	homogeneity	analysis	of	similarity	networks	

Drug	similarity	network	
	

Focusing	on	small	molecules,	we	presumed	that	inhibitory	molecules	with	correlated	effects	

on	cell	survival	were	likely	to	have	similar	structures,	purposes,	and	functions	(40-43).	

Therefore,	we	evaluated	the	similarity	of	SMILES	structures	and	the	analogy	of	protein	targets	

and	biological	pathways	of	detected	clusters	in	the	DSNs	against	random	groupings	of	molecules.		

The	distribution	of	the	Dice	similarity	of	SMILES	structures	differed	significantly	between	the	

random	grouping	and	the	clusters	based	on	network	topology	(Fig.	5A).	The	statistical	test	of	the	

median	difference	also	resulted	in	the	lowest	p-values	for	the	both	pairwise	two-sample	

Wilcoxon	and	Kruskal-Wallis	rank	sum	test		(p-value	<	2e-16).	To	evaluate	their	target	

similarities,	we	explored	the	protein	targets	of	the	small	molecule	inhibitors	and	examined	the	
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number	of	the	target	intersections	of	small	molecule	pairs	within	the	clusters.	In	this	analysis,	

drug	target	commons	(DTC)	and	OmniPath	were	applied	to	explore	the	binding	targets	of	small	

molecules	and	second-order	node	neighbors	(secondary	target)	in	the	signaling	network,	

respectively.	Assuming	that	proteins	usually	correspond	to	multiple	signaling	pathways,	the	

KEGG	database	was	used	to	check	the	number	of	pathway	intersections	of	the	protein	targets	for	

each	pair	of	small	molecules.	The	median	similarity	measures	of	the	intersections	within	the	

network	clusters	were	significantly	higher	than	those	for	a	large	set	of	random	pairs	of	small	

molecules	(Fig.	5B-D)	(p-value	<	2.2e-16,	Kruskal-Wallis	rank	sum	test).	Analysis	of	the	GDSC	

dataset	gave	similar	results	(Fig.	6)	(p-value	<	2.2e-16,	Kruskal-Wallis	rank	sum	test),	suggesting	

that	our	method	is	also	reproducible	for	the	analysis	of	cell	line-based	datasets.		

Figure	5:	Beat	AML	intra-cluster	homogeneity	analysis.	(A)	The	distribution	of	SMILE	structure	

similarities	of	DSN	clusters	compared	to	random	grouping.	(B)	The	distribution	of	pairwise	intersection	size	

of	binding	protein	targets,	(C)	corresponding	KEGG	pathways,	and	(D)	secondary	targets	in	OmniPath	

database.	
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Figure	6:	GDSC	intra-cluster	homogeneity	analysis.	(A)	The	distribution	of	SMILE	structure	similarities	of	

DSN	clusters	compared	to	random	grouping.	(B)	The	distribution	of	pairwise	intersection	size	of	immediate	

protein	targets,	(C)	corresponding	KEGG	pathways,	and	(D)	second	targets	in	OmniPath	database.	

	

Patient	and	cell-line	similarity	network	
Next,	we	examined	the	member	consistency	of	the	patient	clusters	in	the	PSN	using	other	

available	data	from	the	patient	samples	in	the	Beat	AML	dataset.	The	gene	expression	data	

including	RPKM	and	CPM	of	the	samples	were	utilized	to	check	pairwise	similarity	of	the	cluster	

members.	The	similarity	measures	were	also	computed	for	a	large	set	of	random	pairs	of	patient	

samples	to	compare	with	our	patient	stratification	using	network	clustering.		When	we	compared	

the	harmonic	mean	similarities	of	the	RPKM	values,	the	pairwise	similarities	of	patients	within	

the	clusters	were	significantly	larger	than	those	of	the	randomly	selected	patients	(p-value	<	

2.2e-16,	Kruskal-Wallis	rank	sum	test)	(Fig.	7A).	For	the	CPM	dataset,	the	distributions	of	Jaccard	

distance	were	shown,	where	the	distances	within	the	clusters	were	found	to	be	statistically	lower	

than	those	in	the	random	group	(p-value	=	4.655e-05,	Kruskal-Wallis	rank	sum	test)	(Fig.	7B).	

For	the	GDSC	dataset,	we	used	the	expression	profiles	of	signature	genes	provided	by	the	SPEED	

platform	(44).	Then,	differentially	expressed	genes	have	been	used	to	provide	gene	signatures	of	

perturbed	cancer-related	pathways.	In	this	dataset,	there	are	11	activity	scores	to	represent	the	

activity	level	of	11	well-known	pathways	for	each	cell	line.	Therefore,	we	compared	the	distance	

distributions	of	cell	line	pairs	in	the	clusters	to	a	set	of	random	pairs	of	cells	lines.	Our	findings	

indicated	that	the	distances	within	the	clusters	were	much	lower	than	those	in	the	random	

grouping	(p-value	=	6.94e-08,	Kruskal-Wallis	rank	sum	test)	(Fig.	7C).	
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Figure	7:	Validation	of	network	communities	of	PSN.		(A)	The	distribution	of	similarity	of	RPKM	in	Beat	AML	

dataset.	(B)	The	distribution	of	distances	of	CPM	in	Beat	AML	dataset.	(C)	The	distribution	of	distances	of	

pathway-based	activity	scores	in	GDSC	dataset.	(D)	The	frequently	mutated	genes	in	the	clusters	of	Beat	AML	

patients.	The	non-benign	mutations	with	the	possibility	of	being	damaging	greater	than	0.5	were	selected	to	

find	the	intersection	of	mutated	genes.	The	gene	names	are	shown	with	the	relative	frequency	of	mutated	

genes	in	each	cluster	(e.g.,	NPM1	–	0.38	indicates	38%	of	the	patients	in	cluster	1	has	this	mutation).	The	

lines	between	mutated	genes	illustrate	the	rank	shift	in	two	clusters.	

		

The	Beat	AML	study	also	provided	the	first	detailed	view	of	mutational	landscape	in	AML	

(19).	Here,	we	used	the	dataset	of	non-benign	gene	mutations	to	characterize	both	clusters	of	

patient	samples.	As	shown	in	Fig.	7D,	both	clusters	of	patients	demonstrate	a	distinct	profile	of	

gene	mutations	in	terms	of	involved	genes	and	the	ranks	of	genes	based	on	frequency.	Previously,	

Tyner	et	al.	have	highlighted	the	importance	of	TP53	and	ASXL	gene	mutations,	both	responsible	

for	a	broad	drug	resistance	pattern.	They	further	showed	that	mutations	of	certain	genes	may	

identify	disease	subgroups	sensitive	to	certain	inhibitors.	For	example,	they	found	that	patients	

with	FLT3-ITD	and	NPM1	mutations	were	sensitive	to	SYK	inhibitors.		Interestingly,	our	

molecular-independent	network-based	approach	to	characterize	patient	samples	also	captured	

the	significance	of	the	mutations	above.	Furthermore,	our	findings	indicate	that	TP53,	DNMT3A,	
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and	NRAS	were	the	most	frequently	mutated	genes	in	one	of	the	patient	clusters,	while	TET2	and	

NPM1	were	the	most	frequently	mutated	genes	in	the	other	cluster	along	with	the	FLT3-ITD	

mutation.	These	results	suggested	that	the	phenotype-level	of	information	in	drug	response	data	

can	clearly	corroborate	the	genotype-level	information	to	stratify	patients	more	effectively.	

	

Inter-cluster	design	strategy	for	drug	combinations	
	
We	assumed	that	the	best	drug	combination	strategy	is	the	selection	of	one	drug	from	each	

cluster	to	block	potential	drug	resistance	mechanisms	and	cancer	recurrence.	A	common	drug	

combination	design	could	be	the	use	of	the	most	effective	drugs	of	each	cluster	to	prohibit	cancer	

cells	more	effectively.	However,	other	pharmacologic	evidence	can	encourage	the	choice	of	the	

best	combination	of	drugs	more	specifically.	As	the	focus	in	drug	combination	studies	also	lies	in	

finding	the	most	synergistic	drug	combinations,	previously	reported	studies	were	used	to	explore	

the	synergy	values	(i.e.	the	degree	of	interactions)	of	drug	combinations.		We	checked	first	

whether	combinations	of	the	top	five	drugs	(based	on	the	median	values	of	cell	viability)	of	each	

cluster	in	the	Beat	AML	and	GDSC	datasets	(Table1),	are	found	in	the	DrugComb	database.	

However,	there	were	no	reports	regarding	the	25	possible	combinations	of	these	drugs,	so	we	

aimed	to	compare	the	average	of	synergy	values	for	these	ten	drugs	in	the	whole	database.	Fig.	8	

showed	the	distributions	of	synergy	values	in	DrugComb,	highlighting	the	mean	of	synergy	of	the	

bottom	and	top	five	drugs	in	each	network	clusters.	This	analysis	revealed	the	reasonably	high	

potential	of	combinations	of	the	top	five	drugs	according	to	the	average	median	values	in	both	

Beat	AML	and	GDSC	datasets	(p-value	=	2.96e-02	and	p-value	=	3.56e-02,	Wilcox	rank	sum	test,	

respectively).		
Table	1:	Top-five	small	molecules	in	each	cluster	of	drug	similarity	networks.	

	 Cluster	1	 Cluster	2	
Beat	AML	 SNS-032	(BMS-387032)	 Dovitinib	(CHIR-258)	

Flavopiridol	 Nintedanib	
Panobinostat	 Doramapimod	(BIRB	796)	
AT7519	 KI20227	
Bortezomib	(Velcade)	 Cabozantinib	

	
GDSC	 Amuvatinib	 Sepantronium	bromide	(YM-155)	

GSK690693	 Belinostat	
Vinblastine	 AT-7519	
AS605240	 CAY10603	
HG6-64-1	 AR-42	
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Figure	8:	Distribution	of	drug	combination	synergy	scores	in	the	DrugComb	database.		The	median	of	

synergy	zip	score	for	top	and	bottom	five	drugs	are	presented	by	dashed	lines	in	Beat	AML	dataset	(A)	and	in	

the	GDSC	dataset	(B).	

	

Synergy	analysis	of	inter-cluster	combination	of	drugs	
For	further	validation	of	our	strategy	of	predicting	synergistic	drug	combinations	using	

network	modeling,	we	focused	on	the	ALMANAC	dataset	(21),	which	has	1,892,650	combinations	

of	103	inhibitors	tested	on	60	cell	lines.	The	same	procedure	as	described	in	Fig.	1	was	

implemented	to	extract	the	drug	modules	in	the	drug	similarity	network	according	to	available	

single	drug	experiments	in	this	dataset.	The	median	inhibition	values	of	the	single	drug	

responses	on	cell	lines	were	used	as	weight	values	in	the	bipartite	drug-cell	line	network.	Using	

the	projection	of	the	weighted	drug	similarity	network,	the	clusters	of	drugs	with	similar	effect	

profiles	on	cell	lines	were	extracted.	

According	to	our	predefined	assumption,	the	combinations	of	drugs	from	different	clusters	

were	used	as	the	positive	group	and	the	combinations	of	drugs	within	the	clusters	as	the	negative	

group.	Then,	we	retrieved	the	synergy	and	sensitivity	scores	of	the	combinations	for	both	groups	

using	the	DrugComb	computed	values,	i.e.,	highest	single	agent	(HSA),	zero-interaction	potency	

(ZIP),	Bliss,	Loewe,	combinational	sensitivity	score	(CSS),	and	S	synergy.	As	shown	in	Fig.	9A,	the	

positive	group	of	drug	combinations	exhibited	a	significantly	higher	value	of	drug	synergy	than	

the	negative	group.	This	result	was	evident	for	all	types	of	synergy	measures,	indicating	the	

superiority	of	the	strategy	of	using	inter-cluster	drug	combinations.	These	data	also	indicated	the	

efficiency	of	our	proposed	network-based	modeling	to	discern	drugs	with	similar	profiles	of	

effect	on	biological	samples.	Also,	our	proposed	strategy	of	drug	combination	using	the	drugs	of	

contrary	clusters	is	more	likely	to	acquire	higher	drug	synergy	and	potency.	
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High-throughput	drug	screening	for	proposed	drug	combinations	in	AML	cell	lines		
In	order	to	further	demonstrate	the	ability	of	our	model	to	predict	specific	and	robust	drug	

combinations,	experimental	corroboration	was	carried	out	on	a	subset	of	45	drug	combinations	

for	3	AML	cell	lines,	MOLM-16,	OCI-AML3,	and	NOMO-1.	The	25	out	of	45	drug	combinations	

originated	from	the	top	five	drugs	of	the	two	clusters	as	the	positive	group,	where	higher	synergy	

was	predicted	by	our	model.	The	others	were	the	combinations	of	the	top	five	drugs	within	each	

cluster,	which	transform	into	20	combinations	as	the	negative	group.	The	findings	of	the	

experimental	validation	of	135	drug-drug-cell	line	triplets	are	depicted	in	Fig.	9B,	using	the	ZIP,	

Bliss,	HSA,	and	Loewe	models	to	assess	the	degree	of	synergy.	The	drug	combinations	predicted	

by	our	model	in	the	positive	group	were	validated	as	more	synergistic	when	considering	positive	

scores	as	evidence	for	a	degree	of	synergy	(Fig.	10	and	Supplementary	Fig.	2).	These	findings	

were	statistically	more	significant	when	using	Bliss	or	HSA	measures.	Taken	together,	these	

results	demonstrate	the	robustness	of	network-based	predictions	across	various	experimental	

setups	and	synergy	scoring	models,	and	the	ability	of	our	network-based	model	to	detect	new	

combinations	of	treatments.	
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Figure	9:	Synergy	of	drug	combinations.	(A)	The	combinational	sensitivity	(CSS)	and	synergy	scores	(S,	
synergy_bliss,	synergy_hsa,	synergy_loewe,	and	synergy_zip)	of	drug	combinations	in	the	ALMANAC	dataset.	
The	top	five	drugs	of	cluster	1	(Cabazitaxel,	5-FU,	Cytarabine	hydrochloride,	Methotrexate,	Bleomycin)	and	
cluster	2	(CHEMBL17639,	Gefitinib,	Ixabepilone,	Dexrazoxane,	Eloxatin)	for	inter-cluster	and	intra-cluster	
combinations	are	shown	in	blue	and	red	as	the	positive	and	negative	groups,	respectively.	Each	plot	contains	

a	scatter	plot,	notch	box	plot,	and	mean	values	for	each	group.	The	p-value	represents	the	one-sided	
Student’s	t-test	significance	for	each	score	separately.	(B)	Measured	synergy	of	drug	combination	scores	in	
the	experimental	validation	of	selected	drugs	based	on	the	network	modeling	of	the	Beat	AML	data	in	three	
AML	cell	lines.	Four	measures	of	synergy,	i.e.	ZIP,	HSA,	Bliss,	and	Loewe,	are	seen	as	notch	box	plots	for	the	
experimental	confirmation	of	25	chosen	predictions	in	three	cell	lines.	Inter-cluster	drug	combinations	are	
shown	in	blue	as	the	positive	group	and	the	intra-cluster	combinations	are	shown	in	red	as	the	negative	

group.	
	

A	

B	
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Figure	10:	The	top	synergistic	drug	combinations	identified	in	positive	group.	These	matrices	represent	the	
highest	synergistic	combination	based	on	four	measures	of	synergy.		HSA	and	LOEWE	methods	indicated	the	
highest	synergy	in	the	cabozanitinb	and	AT7519	combination.	BLISS	and	ZIP	method	showed	the	highest	

synergy	in	the	cabozanitinb	and	panobinostat	combination.	For	each	combination,	the	interaction	
landscapes	are	shown	in	both	2D	and	3D.	The	complete	interaction	landscapes	for	all	the	135	drug	

combinations	can	be	found	in	Supplementary	Fig.	2.	
	
Discussion	

The	availability	of	single	drug	response	datasets	for	cancer	cell	lines	has	prompted	us	to	

develop	methods	for	predicting	and	selecting	the	most	effective	combination	therapy.	Several	AI-

based	combination	prediction	approaches	have	recently	been	introduced,	which	combine	high-

throughput	molecular	profiling	data	with	drug	response	data	to	improve	prediction	and	

validation.	To	reflect	the	relationships	between	drug	combinations,	Narayan	et	al.	used	dose-

response	data	from	pharmacogenomic	encyclopedias	and	represented	them	as	drug	atlas	(45).	

Combining	with	the	pathway/genes	ontology	data,	their	approach	enables	the	prediction	of	

combinatorial	therapy,	i.e.,	vulnerability	when	attacked	by	two	drugs	that	can	be	related	to	

tumor-driving	mutations.	They	repeated	the	predicted	synergies	in	several	tumors,	including	

glioblastoma,	breast	cancer,	melanoma	and	leukemia	mouse	models,	highlighting	the	cancer-
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independent	prediction	power	of	drug	combination	treatment.	Ianevski	et	al.	also	showed	that	

the	bulk	viability	single-agent	screening	assays	had	unexpectedly	large	predictability	for	the	AML	

cell	subpopulation	co-inhibition	effects	when	combined	with	the	scRNA-seq	transcriptomic	data	

(18).	They	developed	a	machine	learning	model	by	combining	single-cell	RNA	sequencing	with	ex	

vivo	single-agent	testing	for	AML	with	a	different	genetic	background.	They	displayed	an	accurate	

prediction	of	synergistic	patient-specific	combinations	while	avoiding	inhibition	of	nonmalignant	

cells.	However,	our	biomarker-independent	approach	relies	only	on	the	phenotypic	level	of	

information	that	is	drug-response	data.	Although,	our	predictions	were	consistent	with	the	

molecular	profiling	and	biochemical	annotations	when	it	came	to	assessing	the	intra-cluster	

homogeneity	of	drugs,	patients	and	cell	lines	

Moreover,	a	training	machine	learning	model	for	predicting	drug	combination	response,	

called	comboFM,	was	recently	introduced	using	drug	combination	screening	data	as	a	training	

dataset	(46).	comboFM	uses	a	factorization	machine	to	model	the	cell	context-specific	drug	

interactions	through	higher-order	tensors.	Julkunen	et	al.	demonstrated	that	comboFM	enables	

leveraging	information	from	previous	experiments	performed	on	similar	drugs	and	cells	as	

training	data	when	predicting	responses	of	new	combinations	in	so	far	untested	cells	(testing	

data).	They	displayed	high	predictive	performance	and	robust	applicability	of	comboFM	in	

various	prediction	scenarios	using	experimental	validation	of	a	set	of	previously	untested	drug.	

However,	we	expounded	that	predication	accuracy	of	inter-cluster	design	strategy	of	drug	

combinations	based	on	multipartite	networks	can	be	achieved	independently	of	the	high-quality	

training	dataset.		

Strictly	speaking,,	in	the	present	study,	we	revisited	the	analysis	of	nominal	variables,	

namely	drug	name	and	sample	id,	in	drug	screening	results	for	data	mining	using	graph	theory,	

which	we	termed	the	nominal	data	mining	approach.	We	first	considered	data	quality	control,	

such	as	outlier	detection,	outlier	treatment,	and	biological	and	technical	replicates.	Because	of	the	

discrete	explanatory	independent	variable	(i.e.,	drug	doses)	(47),	we	assumed	that	regression-

based	measurements	might	even	be	discarded;	hence,	we	demonstrated	that	median	values	can	

represent	an	appropriate	weight	score	to	compare	drug	functionality	for	network	reconstruction.	

These	values	were	used	to	quantify	and	weight	the	bipartite	network,	which	reflect	the	

interaction	strength	of	drugs	and	biological	samples.	Then,	two	similarity	networks	were	

provided	by	weighted	network	projection	to	detect	the	topological	structure	of	networks,	i.e.,	

network	communities.	We	showed	that	network	communities	represent	a	rationale	starting	

point	to	propose	a	combinational	drug	regimen.	Our	computational	and	experimental	validation	
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steps	amplified	the	logic	of	our	proposed	platform.	As	a	result,	while	training	datasets	were	not	

required	in	this	method	to	predict	drug	combination,	drug	response	data	alone	was	sufficient	for	

prediction	without	integrating	with	prior	knowledge	of	biochemical	profiling.	

	

Noting	that	the	occurrence	of	synergistic	toxicities,	which	can	arise	from	additive	toxicities	

when	targets	are	shared	by	the	combined	drugs,	is	a	major	barrier	to	applying	combination	

therapy	in	the	clinic	(48).	If	drug	screening	data	on	healthy	cells	is	available,	we	suggest	that	a	

similar	strategy	for	predicting	toxicity	without	losing	efficacy	is	also	essential	before	the	future	

translational	experiment.	Ianevski	et	al.	previously	illustrated	the	importance	of	a	desired	

synergy-efficacy-toxicity	balance	for	predicting	patient-customized	drug	combinations	(18).	

Hence,	a	drug-response	data	on	healthy	cells	is	demanded	to	complement	synergistic	interactions	

of	drug	combinations	with	toxicity	predictions	Indeed,	where	drug	synergy	and	toxicity	data	are	

optimally	matched	for	combinatorial	therapy,	stronger	and	longer-lasting	outcomes	of	drug	

combinations	can	be	predicted.	

Furthermore,	prospective	works	would	necessitate	the	provision	of	further	patient-derived	

experimental	validations.	Despite	the	fact	that	our	prediction	is	solely	dependent	on	the	drug	

sensitivity	dataset,	our	suggested	combinations	address	the	common	mutational	assigned	

etiology	of	AML.	Remarkably,	this	combination	was	proposed	purely	on	the	grounds	of	the	

phenotypic	response	of	cancer	cells	or	patient	samples	to	the	drugs,	with	no	previous	knowledge	

of	the	disease's	genetic	origin.	
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Supplementary	figures	
	
Supplementary	figure	1:	Drug	and	patient	nodes	in	the	projected	networks	of	the	Beat	AML	
dataset.	The	nodes	are	ordered	based	on	the	strength	of	each	node,	which	is	the	sum	of	the	edge	
weights	of	the	adjacent	edges	for	each	node.	
	
Supplementary	figure	2:	The	complete	interaction	landscapes	for	all	the	135	drug	
combinations.	
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