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ABSTRACT 

Neuronal oscillations route external and internal information across brain regions. In the olfactory system, 
the two central nodes—the olfactory bulb (OB) and the piriform cortex (PC)—communicate with each other 
via neural oscillations to shape the olfactory percept. Communication between these nodes have been 
well characterized in non-human animals but less is known about their role in the human olfactory system. 
Using a recently developed and validated EEG-based method to extract signals from the OB and PC 
sources, we show in healthy human participants that there is a bottom-up information flow from the OB to 
the PC in the beta and gamma frequency bands, while top-down information from the PC to the OB is 
facilitated by delta and theta oscillations. Importantly, we demonstrate that there was enough information 
to decipher odor identity above chance from the low gamma in the OB-PC oscillatory circuit as early as 
100ms after odor onset. These data further our understanding of the critical role of bidirectional information 
flow in human sensory systems to produce perception. However, future studies are needed to determine 
what specific odor information is extracted and communicated in the information exchange.  

 
INTRODUCTION 

Communication within and between neural circuits 
is facilitated by oscillations in neural activity across 
a broad spectrum of frequencies (Bonnefond et al. 
2017; Buzsáki 2006; Fries 2005; Fries 2015; Hipp 
et al. 2011; Varela et al. 2001). In human and ani-
mal models alike, this oscillatory activity has been 
shown to support sensory coding, memory, and at-
tention (Lakatos et al. 2008). The mammalian olfac-
tory system was one of the earliest systems where 
such oscillatory activity was described, specifically 
within the olfactory bulb (OB) (Adrian 1942; Adrian 
1950; Freeman 1959; Freeman 1972; Freeman 
1974). Subsequent studies in model species have 
demonstrated a role for oscillations within the whole 
olfactory pathway [e.g., the piriform cortex (PC)] 
and related structures [e.g., hippocampus] (Kay 
2014; Wilson and Sullivan 2011). One fundamental 
role that neural oscillations serve is entrainment of 

activity across different regions which amplifies in-
formation flow (Bonnefond et al. 2017; Buzsáki 
2006; Fries 2005; Fries 2015; Hipp et al. 2011; 
Varela et al. 2001). This entrainment is especially 
important for olfactory processing were the infor-
mation flow between connected regions, such as 
the OB and PC, is reciprocal with beta being bot-
tom-up connection but with overturned directional-
ity during odor sampling (Gourévitch et al. 2010; 
Kay and Beshel 2010). Particularly, top-down sig-
nal flow conveys information about expectation, 
state, memory, or attention, which, in turn, shape 
beta oscillations, and more comprehensively the 
stimulus encoding in the more peripheral OB (Gou-
révitch et al. 2010; Kay and Beshel 2010; Martin 
and Ravel 2014; Wilson and Yan 2010). Similar 
events occurs in thalamocortical sensory systems, 
wherein the sensory cortex can modulate thalamic 
sensory-driven output based on context and task 
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demands (Guillery and Sherman 2002). Although 
well studied in rodent models, significantly less is 
known about the role of odor-evoked oscillations in 
the early processing stages of the human olfactory 
system. 

In one of the few studies on the oscillatory activity 
in human olfaction, Jiang and colleagues (2017) 
recently demonstrated not only that oscillatory 
activity in the theta band conveyed information odor 
within 500 milliseconds of the sniff onset in the PC, 
but also demonstrated an increased theta-specific 
phase coupling between the PC and hippocampus 
during the same temporal window. This clearly 
demonstrates that, akin to what has previously 
been demonstrated in animal models, oscillation-
dependent communication is an important 
communication tool also within the early human 
olfactory system. To date, no study has assessed 
oscillatory communication between the OB and PC 
in human participants which constitutes a 
significant gap in our knowledge of the olfactory 
system given that the OB has been suggested to 
fulfil a role comparable to both V1 (Shepherd et al. 
2004) and the thalamus (Kay and Sherman 2007) 
in the visual system. This lack of data can be 
attributed to the fact that it has not been technically 
possible to obtain non-invasive and temporally 
precise recordings from the human OB until a 
recent EEG-based methodological development — 
the electrobulbogram (EBG) — that enables a 
direct and non-invasive functional measure of the 
human OB (Iravani et al. 2020). This method, that 
was recently validated in a range of experiments as 
a reliable method to assess signal from the human 
OB (Iravani et al. 2020), has demonstrated that, like 
its non-human animal counterpart, the human OB 
generates gamma oscillations during odor 
processing (Iravani et al. 2020). 

Here, using this validated and non-invasive 
recording technique that allows us to acquire odor-
induced activity within both the human OB and PC 
during passive odor perception, we seek to answer 
the fundamental question whether reciprocal 
oscillatory connectivity between the OB and the PC 
also exists in humans. We identify a unique 
oscillatory bottom-up and top-down information 
flow in the OB-PC circuit. Importantly, we 
demonstrate that this OB-PC communication 
predicts odor identity1. 

 
1 We are here using the term identity to indicate the identity of the odorant or mixture rather than linking the term to an 
ability to name or otherwise process the odor object the odorant or mixture has become associated with. 

METHOD 

Participants 

A total of 29 healthy individuals (mean 
age = 27 ± SD 5.30, 18 women) participated in the 
study. All participants were non-smokers and had 
no history of head trauma leading to 
unconsciousness, nor any reported past 
neurological problems. A functional sense of smell 
was assessed using a 5-items 4-alternative cued 
odor identification task prior to EEG recording with 
all participants passing the criteria for inclusion with 
at least 3 correct answers. Considering the age 
range of our sample and given our inclusion criteria, 
the chance of erroneously including individuals with 
functional anosmia in the experiment was less than 
0.05% with this screening method. Participants 
avoided eating and drinking anything other than 
water for at least 6 hours before testing to maximize 
electrophysiological response from the olfactory 
bulb (Iravani et al. 2020). The study was approved 
by the Swedish Ethical Review Authority and 
signed informed consent from participants was 
obtained prior to participation. 

Chemicals and odor delivery   

To increase the ecological validity of the stimuli, we 
used two odor mixtures of food odors and one 
monomolecular non-food odor. These were Orange 
(Sigma Aldrich, # W282510, CAS 8008-57-9), 
Chocolate (Givaudan, VE00185273), and n-
Butanol (Merck, CAS 71-36-3) diluted to 30%, 15%, 
and 20%, respectively, in neat diethyl phthalate 
(99.5% pure, Sigma Aldrich, CAS 84-66-2). The 
dilution values are given as volume/volume from 
neat compounds and concentration for each odor 
was determined in a pilot experiment with the aim 
of producing iso-intense odors of equal 
pleasantness and familiarity. Participants in this 
experiment rated each odor and, as evident in Fig 
1, average odor intensity (BF01 = 0.34) and 
familiarity (BF01 = 0.25) were largely similar across 
odors within all three perceptual categories 
determined by Bayesian repeated measured 
ANOVA. However, there was strong evidence for 
rejecting the null hypothesis (BF01 = 0.04) for 
pleasantness, indicating that odors were 
significantly different in pleasantness. In the 
Bayesian analysis, the prior for the fixed effect was 
a normal distribution with mean of 0 and standard 
deviation 0.2. For the random effect a half Cauchy 
with scaling factor of 0.5 was considered as the 
prior.   
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Fig 1. Odor perceptual ratings. Intensity, pleasantness, and familiarity scores of odor stimuli. Violin plots show the 
distribution of the ratings. The white dot shows the median and the black box shows %75 and %25 quantiles. 
Individual data points are marked with circles in respective color. The whiskers show the extreme value of the data 
points reaching 1.5 times the inter quartile range above 75% or below 25% quantiles.  

All odors were birhinally delivered in a random 
order with a total flow rate of 3L/min for a length of 
1s (condition: Odor) using a short rise-time (i.e. less 
than 200ms) computer-controlled olfactometer 
(Lundström et al. 2010). Interspersed with the odor 
trials, there were trials consisting of 1s long 3L/min 
clean air stimuli to assess both neural processing 
during no odor nasal inhalation (condition: Clean 
Air) and potential tactile sensations caused by air 
fluctuation at the onset of a trial due to valve 
switching. After each trial, participants performed a 
four-alternative force-choice task containing the 
name of the correct odor choice, two distractor odor 
object names, and the option to select 'no odor'. 
The odor identification answers from one individual 
were excluded due to a corrupt data file. 

Moreover, to limit potential unintended tactile 
stimulation at the onset of a stimulus, a constant 
clean air flow of 0.3 L/min was maintained during 
the whole experiment and stimuli were inserted into 
the ongoing flow. Hence, considering the constant 
flow and conditions’ flow rate, a total airflow of 3.3 
L/min was held constant during the trials which 
yield 1.65 L/min per nostril after the flow is delivered 
to the individual nostril, a flow well below the 
threshold known to cause nasal irritation 
(Lundström et al. 2010). Additionally, we prevented 
potential effects of onset expectation by 
implementing a nasal inhalation-triggered design in 
which all trials’ onset were synchronized in phase 
with inhalation and unbeknown to the participant. 
Given that the activity of 50% of all Mitral and tufted 
cells in the rodent OB are intertwined with 
respiration (Kay and Laurent 1999), aligning onset 
of trials to onset of the inhalation further increased 
our signal-to-noise ratio (SNR). We enabled 
inhalation triggering by tracing the inhalation 

pattern using a small nasal temperature probe 
attached next to the right nostril (MLT415, 
ADInstrument, Colorado). A trigger-threshold, 
individually set for each participant, triggered the 
olfactometer slightly before the nadir of the 
respiratory cycle and consequently matched stimuli 
onset (factoring in the known rise-time) with nasal 
inspiration. Temperature change was sampled at 
the rate of 400 Hz (Powerlab 16/35, 
ADInstruments, Colorado) and processed in 
LabChart Pro version v7.3.8. Subsequently we 
assessed the length and the area under the curve 
of inhalations across conditions where we found no 
difference, determined by repeated measures 
ANOVA, for neither length F(3,84) = 0.74, p > .53 
nor area under the curve of inhalation F(3,84) = 
1.00, p > .39 (supplementary Fig S1). 

Timing and stimulus triggering were implemented 
within E-prime 2 (Psychology Software Tools, 
Pennsylvania). All the recordings were carried out 
in a sound attenuating and shielded booth for 
psychophysical testing with high air turnover rate to 
vent out potential lingering odors. Participants wore 
headphones with low-level white noise played 
through them during the whole experiment to avoid 
potential unintended auditory onset cues due to air 
flow from the olfactometer. The volume of the noise 
was individually adjusted to maintain participants’ 
comfort during the test. A jittered pre-stimulus 
interval (600 – 2000 ms) was added before the 
onset of each trial to further minimize predictability 
of odor onset by participants. Moreover, to limit 
odor habituation effects, a long average inter-trial 
interval (14000 ms) was used. 
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Electroencephalography, Electrobulbogram, 

neuronavigation data collection  

We collected data from 64 scalp EEG electrodes 
together with 4 electrobulbogram (EBG) electrodes 
above the eyebrows (Iravani et al. 2020). Signals 
were sampled at 512 Hz using an active-electrode 
EEG system (ActiveTwo, BioSemi, Amsterdam, 
The Netherlands). Prior to recording, we visually 
controlled the electrodes’ offset and adjusted those 
above 40mV until the offset met the satisfactory 
threshold value. EEG scalp electrode placement 
followed the international 10/20 standard and later 
during analysis were re-referenced to average of all 
electrodes. 

Following the attachment of all electrodes, we 
digitized their position in stereotactic space using 
an optic neuro-navigation system (BrainSight, 
Rogue Research, Montreal, Canada). We 
implemented the digitization of electrodes’ position 
by localizing fiducial landmarks such as the nasion 
and left/right preauricular as well as the central 
point of each electrode. We used these landmarks 
to co-register electrode coordinates to the standard 
MNI space. The digitized electrode positions were 
later used in the eLORETA algorithm to project 
sensor data into source space. 

Experimental design and Statistical Analyses 

EEG/EBG signals pre-processing was started by 
epoching the data from 500 ms pre-stimulus to 
1500 ms post-stimulus, followed by re-referencing 
to the average of all electrodes, band-pass filtering 
at 1-100 Hz and power line-filtering at electrical 
frequency using DFT filters (Iravani et al. 2020). 
The re-referencing to averaged electrodes enabled 
us to estimate an un-biased source activity. In total, 
135 trials were recorded from each individual 
among which there were 35 trials for each odor and 
30 trials for Clean Air. Additionally, we detected 
trials with muscle and eye-blink artifacts, using an 
automatic artifact rejection algorithm. In brief, for 
implementing the algorithm, we band-passed the 
data at frequency ranges susceptible to each 
specific artifact and estimated the amplitude using 

Hilbert transform followed by Z-scoring. We 
removed trials with Z-values more than 6 for 
muscle, and 4 for blink, artifacts at susceptible 
frequencies [for more details, please see (Iravani et 
al. 2020)]. Finally, a visual inspection was carried 
out to remove trials with exceedingly high variance. 

Source reconstruction time-course  

Source reconstruction, given a head model and a 
source model, allowed us to extract OB and PC 
time-courses. We reconstructed source space 
time-courses using eLORETA algorithm with 
common spatial filter approach, thus we used a 
common solution to reconstruct Odor and Clean 
Air, time-series in source space. The covariance 
between electrodes for 1 second of stimulus 
presentation (i.e., Odor and Clean Air) was 
calculated. Then, we constructed a spherical head-
model with four spheres (i.e., scalp, skull, grey 
matter and white matter) based on the MNI 
template with conductivity of 0.43, 0.01, 0.33, and 
0.14 (Fig 2). A grid with 1cm spacing was used for 
source modelling. We placed dipoles on the grid 
points where grey matter probability was larger 
than 40%. Digitized electrode positions were co-
registered to the head-model using a six-parameter 
affine transformation. Next, the sensor time-
courses were transformed into the source space as 
a cross production of spatial filter, estimated by 
eLORETA, and the sensor time-course. Later, we 
constrained our analysis into two ROIs where the 
dipoles corresponded to the left OB (x −6, y 30, z 
−32), right OB (x 6, y 30, z −32) (Iravani et al. 2020), 
left PC (x -22, y 0, z -14) and right PC (x 22, y 2, z 
-12) (Seubert et al. 2013). Trials with muscle and 
blink artifacts were subsequently removed and 
time-courses across hemispheres were averaged 
(Fig 2). Finally, the source activity was projected to 
the principal axis using singular value 
decomposition. Notably, the regularization 
parameter was set to 10% and applied before 
decomposition of covariance matrix in eLORETA. 
The source reconstruction was performed using 
field trip toolbox 2018 within Matlab R2019b 
(Oostenveld et al. 2011).
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Fig 2. Summary of the analysis procedure. (A) Data from 64 EEG together with 4 EBG electrodes were collected from individuals 
during an odor identification task. (B) Electrode positions were digitalized using an optical neuronavigation system to be later 
used for source reconstruction. (C) Using MNI T1 MRI template, a spherical head model, including 4 concentric spheres 
representing different head tissue, and underlying source model was created. (D) Neuro navigated electrode position, head 
model, and source model were fed into the eLORETA algorithm to reconstruct source time-courses. (E) Dipoles corresponding 
to olfactory bulb (OB) and piriform cortex (PC) were identified. (F) Time-course activity of OB and PC were extracted. (G) Trials 
with artifacts were identified and removed from further analysis. (H) Clean trials of OB and PC time-courses were transformed 
in Fourier domain. FFT denotes fast Fourier transform. (K) The OB-PC connectivity was quantified as cross spectrogram. (L) The 
effective connectivity of OB-PC was assess using spectrally resolved Granger causality.  

Extracting signal from estimated source location is 
always susceptible to signal loss. To assess the 
reconstructed signal quality, the mean amplitude of 
the source time course was estimated by applying 
a Hilbert transform followed by averaging of 
envelope signal over 1s stimulus interval and 
converting to decibels (dB). The difference 
between the mean amplitude of Odor and Clean Air 
trials were used as estimation of odor SNR. SNRs 
were subsequently sorted by their physical depth 
from the cortical surface and the 95% confidence 
interval (CI) of SNR at the depth corresponding to 
PC (i.e. 80 to 100mm) was calculated. Finally, we 
assessed the SNR at PC by comparing with 0, i.e. 

where the mean amplitude of Odor is equal to 
Clean Air. 

PC reconstructed time-course odor SNR is 

significantly above noise level 

In previous work, we found the OB activity can be 
reliably measured using EBG electrodes, but it is of 
interest to also assess the validity and quality of 
reconstructed PC time-course. Using sensitivity 
analysis, we assessed the odor signal-to-noise 
ratio (SNR) of potential sources at various depths 
and compared the mean amplitude of Odor trials 
versus Clean Air trials as a function of source 
depth. A 3D grid with 1cm spatial resolution was co-
registered to the default MNI brain template where 
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a potential source was considered for the grid’s 
vertex if the gray matter probability of that point was 
above 40%. We found that the odor SNR was well 
above the noise level for both the left PC, t(28) = 
8.53, p < 3e-9, CI = [0.21 0.34], and the right PC, 
t(28) = 7.44 p < 4e-8, CI = [0.18 0.30], given the 
95% confidence interval of noise at the depth 
corresponding to PC, as well as situated in close 
proximity within the archived space (Fig 3). 

 

Fig 3. Signal level in the PC source reconstruction 
vs. other possible surrounding sources. Odor related 
SNR level as a function of depth with each point in graph 
showing the level of SNR for a possible dipole in the 
brain. The black dashed line marks 0, where the level of 
signal and noise are equal. Red dashed line shows 95% 
CI at the depth 80~100 mm which corresponds to PC 
depth. Left/right PC shown by orange and green circles, 
respectively, where both demonstrates SNR levels well 
above upper bond of noise CI. 

Source Connectivity  

To provide a full picture of OB-PC connectivity 
during odor processing, we characterized the 
functional and effective connectivity between OB 
and PC using two separate, yet related, analyses. 
In the following section, we first explain the 
functional connectivity analysis in which the 
reconstructed OB and PC time-courses were 
transformed into the Fourier space. This data was 
subsequently used to assess the cross 
spectrogram as a measure of functional 
connectivity. This allowed us to identify frequency 
and time points where linear information transfer 
occurred between the OB and PC. Next, using 
spectrally resolved Granger causality, we assessed 
if the relationship of OB-PC was casual (i.e. the 
effective connectivity between OB and PC). This 
was done by transforming reconstructed signals to 

the Fourier domain and calculating a transfer 
function to estimate the spectrally resolved granger 
causality (Dhamala et al. 2008). 

Functional connectivity in frequency and time  

Auto and cross spectral density of OB and PC were 
estimated by means of multi-tapered convolution 
method, implemented in the Field trip toolbox 2018 
within Matlab R2019b (Oostenveld et al. 2011). 
Odor and Clean Air trials were separately 
transferred to Fourier space with 2 tapers from 
discrete prolate spheroidal sequences (DPSS) 
using a flexible time window that captures at least 
two cycles [20 ~ 1000ms] of each frequency bin. 
The frequency smoothing parameter was set to 
80% of the targeted frequency (Fig 2). Given the 
inherent inability to achieve high sensitivity in both 
the temporal and frequency dimensions, this 
approach allowed us to have maximum time 
resolution of estimation but naturally smoothed the 
frequency dimension, proportional to frequency 
values, and thus more in gamma bands. However, 
because the gamma band is defined as a broad 
band (30~100 Hz) and odor processing in humans 
are not thought to occur in the higher range (Iravani 
et al. 2020), we prioritized high sensitivity in the 
time domain. 

Effective connectivity in frequency domain  

The frequency content of the source time-course 
during the 1 second stimulus was estimated for 
[0~100 Hz] with a step of 1Hz using multi-tapered 
fast Fourier transform with the smoothing 
parameter of 4Hz and 7 tapers from DPSS. 
Contrary to the functional connectivity analysis, in 
this effective connectivity, the window length is 
equal to total length of stimulus interval (i.e. 0-1 s), 
therefore we could afford low smoothing parameter 
and consequently achieve high frequency 
resolution. The multivariate spectrally resolved 
granger causality measures were estimated at the 
individual level by computing the transfer function 
of OB to PC and PC to OB from cross spectral 
density using Wilson-Burg algorithms (Fig 
2)(Dhamala et al. 2008). Subsequently, to increase 
the statically power, we averaged the two 
hemispheres. The statistical significance of 
effective OB-PC connectivity on the group-level 
was finally determined by two-tailed student t-test 
across subjects. 

Supported vector machine learning 

To assess whether odor information is conveyed by 
the temporal dynamic of OB-PC connection, we 
used support vector machine learning (SVM) to 
classify odors (3 odors) from the information 
provided by the level of association between OB 
and PC on the group level. One individual did not 
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respond in the identification task and was 
subsequently removed from the SVM analysis. 
Hence, data of 28 individuals was used in this 
analysis to create a subject level OB-PC 
connectivity maps for each odor. To construct the 
feature space from cross spectral density, the 
measure of OB-PC connectivity, a neighbor of 5 
and 5 samples were considered for frequency and 
time dimension, respectively. Therefore, for each 
bin of the cross spectral density map neighboring 
datapoints in the time-frequency plane within the 
distance of 5 samples in each axis  (i.e., time, 
frequency in both directions) were used to create 
the feature space. Given the distance of 5 samples 
in both directions, 11 time and 11 frequency bins 
were considered as the neighbors and used in the 
feature space. Hence, a total of 121 time-frequency 
pairs were used for each bin in the cross 
spectrogram for estimating the classification 
accuracy. The bins that had fewer than 10 
neighbors were excluded from further analysis. 
Next, the whole cross spectrogram was assessed 
in a searchlight manner. 

Features were unity normalized and the data was 
partitioned into one-leave-out scheme with all the 
three odor stimuli conditions counter balanced, 
spanning all the cases where each subject were left 
out at least once. Next, we classified the 3 Odor 
stimulus conditions. The mean accuracy on the 
group level was compared with the chance level 
(.33; given 3 odor categories) using non-parametric 
statistics, 5000-permutation Monte Carlo test. 
Finally, the accuracy for the individual odors were 
extracted from the time-frequency point found in the 
mean accuracy map. Given that each odor has a 
slightly different latency and frequency 
representation in human OB (Hughes et al. 1969), 
we allowed for ±40ms jitter in latencies and ± 10 Hz 
in frequencies for estimating the individual odor 
accuracies. 

RESULTS 

Early fast, and late slow, functional connectiv-

ity between olfactory bulb and piriform cortex 

We first set out replicate our past finding, that the 
OB initially processes odors in the gamma 
frequency (Iravani et al. 2020), to assure that the 
EBG method extends also to this dataset. For this 
analysis, we used maximum frequency resolution 
to validate our OB source extraction method 
whereas subsequent analyses described below 

maximize temporal resolution. As previously 
published, the OB demonstrated initial oscillations 
in the gamma range (Fig 4A). Having replicated our 
past finding, we first assessed participants ability to 
correctly identify all odor presented to them during 
the experiment to assure that odors could be 
identified by name. We found that all participants 
but one (whose respond file was corrupted) were 
able to correctly identify the odors, and Clean Air 
as such, with high accuracy (mean: 89% ± 9%). We 
then assessed the functional connectivity, 
measured as information transfer in cross spectral 
analysis, between OB and PC during the odor 
presentation using cross spectrograms. The 
reconstructed OB and PC time-courses were 
transformed into Fourier domain and the auto and 
cross spectral density was estimated using multi-
tapering convolution method comparing Odor to 
Clean Air conditions (inhalation of odorless air). In 
the OB, we found, as expected, initial gamma 
activity followed by beta activity (Fig 4B), whereas 
activity in lower frequencies (theta and beta) were 
found for the PC (Fig 4C). More importantly, 
assessing functional connectivity between OB-PC, 
we found a temporal transition across frequencies 
when assessing the cross spectrogram (Fig 4D). 
The earliest odor related functional connectivity 
was demonstrated around 100ms in high gamma 
~70Hz, t(28) = 2.131, p < .042, CI = [0.003 0.151], 
which then evolved to slower oscillations around 
500-700ms in low gamma ~35Hz, t(28) = 2.32, p < 
.028, CI = [0.013 0.200], to beta (~16 Hz) around 
740-840ms, t(28) = 2.466, p < .020, CI = [0.018 
0.194], and transferring to theta/delta (3 Hz) at later 
time points around 670-1000ms, t(28) = 2.620, p < 
.014, CI=[0.031 0.257](Fig 4D). There are multiple 
reports of laterality differences in odor processing 
(Royet and Plailly 2004). In a next step, we 
therefore separately analyzed processing in the left 
and right OB-PC connectivity. Here, we found a 
similar pattern for OB-r.PC and OB-l.PC.  However, 
comparing Odor with Clean Air for OB-l.PC we find 
a weaker early gamma, t(28) = 1.27, p > .21, but 
significant late beta, t(28) = 2.32, p < .028 CI = 
[0.022 0.345] and theta/delta t(28) = 2.68, p < .012, 
CI = [0.032 0.241] (supplementary  Fig S2). Further 
analysis indicated that the difference in early 
gamma is potentially driven by the Clean Air, t(28) 
= 2.03, p = .05 rather than Odor, t(28) = 1.54, p > 
.13 (supplementary Fig S3), although this potential 
effect was not significant. 
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Fig 4. Auto and cross spectrogram of OB and PC. (A) Heatmap shows OB power spectrogram with finer fre-
quency, rather than temporal resolution, to replicate original finding of OB processing (Iravani et al. 2020) (B) 
Heatmap of t-values for the spectral density of olfactory bulb (OB), when compared Odor against Clean Air. (C) 
Similarly, spectral density for Piriform cortex (PC) when comparing Odor against Clean Air. (D) The cross spectro-
gram shows frequency and time points where OB and PC are related, or functionally connected more for Odor com-
pared with Clean Air. In panels b-d, t-values are color coded according to color scale on right side of figure using 
identical scale. 
 

Reciprocal effective functional connectivity 

between olfactory bulb and piriform cortex 

Connectivity between two neural populations can 
be described either as functional or effective. 
Functional connectivity refers to the mere statistical 
dependency of amplitude (Kaboodvand et al. 2018; 
Biswal et al. 1995) or phase of signal between two 
populations (Kaboodvand et al. 2020; Kaboodvand 
et al. 2019) whereas effective connectivity refers to 
a predictive relationship between two populations 
(Eldawlatly and Oweiss 2010). To assess the 
effective connectivity between OB and PC, we used 
the frequency domain of Granger causality, a 
popular method for assessing if the future of a time 
series 𝑥 can be predicted of the past of time series 
𝑦 over and above what can be predicted from the 

past of 𝑥 alone (Granger 1969). This allowed us to 
characterize the function of olfactory circuitry in a 
directed manner both in the time and frequency 
domains (Seth et al. 2015). The reconstructed time-
courses of bilateral OB and PC were transformed 
into the Fourier space by multi-tapered fast Fourier 
algorithm. In the frequency domain, the relationship 

between OB and PC was assessed as a function of 
frequency for both afferent versus efferent 
directionality (Fig 5A, B) and Odor versus Clean Air 
(Fig 5C, D) using multivariate spectrally resolved 
Granger causality. Benefiting from the directionality 
of the Granger causality method, we found that 
higher frequencies with peaks in the beta range 
around ~30Hz, t(28) = 2.953, p < .006, CI = [0.208 
1.150], and gamma around ~58 Hz, t(28)=2.865, p 
< .008, CI = [0.148 0.888], facilitated the afferent 
connection (i.e. from OB to PC; Fig 5A). For the 
reverse connection, the efferent link from PC to OB, 
we only found connection in the lower delta 
frequency, t(28) = 5.074, p < .0001, CI = [1.076 
2.533], and theta frequencies around 6Hz, 
t(28)=2.078, p < .047, CI = [0.011 1.605], during 
odor processing (Fig 5B). There was no significant 
relationship in signals from OB to PC induced by a 
inhalation (Clean Air > Odor) except from a 
connection in a narrow band around 60-70 Hz, t(28) 
= 2.145, p < .041, CI = [0.019 0.809] (Fig 5C). 
Likewise, no significant inhalation-related 
relationship was found for the reverse direction, 
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from PC to OB (Fig 5D). There was no absolute 
effect of laterality for the effective connectivity, 
neither from OB to PC or vice versa, or for neither 
the Odor nor Clean Air-Odor contrast, except for a 

single peak at ~55 Hz, t(28) = 2.74, p < .011, CI = 
[0.08 0.59], that was stronger for right rather than 
left hemisphere when Odor was contrasted against 
Clean Air (supplementary Fig S4).  

 
 
Fig 5. Effective connectivity between OB and PC for incoming versus outgoing during Odor and Clean Air. 
(A) Spectrally resolved Granger causality analyses during the 1 second odor presentation show significant effective 
connectivity from OB to PC in the beta and low gamma band for Odor compared to Clean Air. (B) Significant 
connectivity is found from PC to OB in slower delta/theta band for Odor compared with Clean Air. (C) Connectivity 
from afferent, OB to PC, shows a significant increase in effective connectivity for Clean Air vs Odor in a narrow band 
around 60-70 Hz. (D) No relationship found for Clean Air from efferent, PC to OB. In all panels, colors indicate 
frequency band division and red star in graph indicate significant peaks. 

Connectivity between the olfactory bulb and 

piriform cortex in low gamma reflects odor 

identity 

We found reciprocal causal relationships between 
OB and PC, but in different frequency bands. The 
afferent connection from OB to PC was found to be 
in broad band beta/gamma and efferent link, from 
PC to OB, in slow delta and theta band. To assess 
whether patterns of this connectivity could be linked 
to odor, we further tested if our included odors 

could be read out from OB-PC connectivity using 
support vector machine (SVM), a supervised 
learning approach. The main prediction was that if 
content-specific representations are contained 
within the OB-PC connectivity, then the SVM 
classifier should significantly differentiate between 
the three odors. Alternatively, if the OB-PC 
connectivity is due to a non-specific effect of odor 
stimulation, then the classifier should not be able to 
differentiate between the odors. In addition, we 
were interested not only if, but also when, 
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information about the odor might be transferred. 
Therefore, we used SVM on the cross spectrogram 
of OB-PC to identify frequency/time points where 
the odor identify can be read out above the chance 
level. To facilitate this approach, we unity-
normalized values from the cross spectrogram for 
each condition and assessed each map during 1 
second stimulus and broad band (1~100 Hz) in a 
searchlight framework on the individual level. When 
assessing the cross spectral density of OB-PC 
using SVM, we found that a time-frequency window 
around 100ms and 35-45 Hz allowed us to 
dissociate the three odors. Mean classifying 
accuracy within this window was significantly above 
chance level with peak of mean accuracy being .42 
(Fig 6A), t(27) = 3.29, p < .002, and probability 
confidence interval range CI-range = 0.001 using 
5000 Monte Carlo permutations test (Fig 6B). In 
addition, we found that an extended area around 
300ms after odor onset in the 50-70Hz frequency 
range, a small area at the same time around 30Hz, 
and intermitting time-periods in the theta band 
facilitated classification. The slight differences 
between the descriptive map (Fig 6A) and 
statistical map (Fig 6B) might possibly be due to 
non-normal distribution of accuracies that has been 

resolved by the non-parametric Monte Carlo 
permutations test in this analysis. To further assess 
whether this classification was due to spurious non-
specific effects, we repeated the classification but 
for connectivity between the OB and postcentral 
gyrus (PCG). We selected PCG because it is an 
area that demonstrate low functional connectivity 
probability with piriform cortex in the large online 
Neurosynth database (www.neurosynth.org) yet 
has been demonstrated to process non-odorous 
intranasal stimuli. We found no above chance 
classification accuracy around 100ms and 35-
45Hz, thus suggesting that the odor classification 
within this time window is specific to OB-PC 
connectivity (Fig 6D, 6E).  

We further assessed the accuracies for the 
individual odors in the area where accuracy was 
above chance in the OB-PC connectivity map. We 
found .71, .68 and .61 accuracy for n-Butanol, 
Chocolate, and Orange, respectively (Fig 6C). 
Repeating the same analysis for OB-PCG 
connectivity map showed indiscriminative patterns 
for odors (Fig 6F).     

 

 

 

Fig 6. Odor identity is read out from OB-PC connectivity. (A) Heatmap shows the accuracy for classifying 3 
odorants by assessing the connectivity of OB-PC using SVM. (B) Heatmap shows the t-map of accuracy for the 
connectivity of OB-PC. The accuracy of 4 standard deviations above chance level (.33) was achieved around 100ms 
post odor onset and 35-45 Hz shown by black box. (C) The confusion matrix for the OB-PC connectivity shows the 
accuracy for each individual odor. n-Butanol, Chocolate, and Orange were classified with accuracy .71, .68 and .61, 
respectively (D) Heatmap shows the accuracy for classifying 3 odorants by assessing the connectivity of OB-PCG 
using SVM. (E) The t-map accuracy is shown as the heatmap, where we found no accuracy above chance level 
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within the time-frequency of interest shown by black box where the odor could be read out from OB-PC connectivity. 
(F) The confusion matrix for the connectivity of OB-PCG show an indiscriminative arrangement.  

DISCUSSION 

Here we have captured the functional connectivity 
of the human OB and PC during odor perception. 
We show that this dynamic connectivity is based on 
a wide range of oscillatory frequencies that change 
as a function of the direction of the signal and the 
time from odor onset. We demonstrated that odor 
can be decoded from the OB-PC oscillatory 
connectivity as early as 100ms after odor onset, 
thereby suggesting that odor identity, here defined 
as the identity of the odorant rather than its 
associated object, is at least in part deciphered in 
OB-PC oscillatory communication. Importantly, 
these findings show that while human and non-
human animals share commonalities in OB-PC 
connectivity, the human OB-PC connectivity has 
partly different frequency distribution. 

Source reconstruction from human surface EEG is 
spatially less specific than, for example, surgically 
placed intracranial electrodes; although, EEG as a 
method was recently demonstrated to be a reliable 
method for extracting radial and deep sources 
(Piastra et al. 2021). That said, we have previously 
shown and extensively validated in several 
experiments that the EBG signal can be effectively 
extracted and that it reliably originates from the OB 
(Iravani et al. 2020). Indeed, here we replicated our 
past finding of an early (<150ms) odor-dependent 
OB signal in the gamma band. The PC dipole is 
more difficult to validate. Our sensitivity analyses 
did, however, demonstrate that our PC sources 
achieve higher odor-dependent SNR than other 
possible source-locations in the surrounding area. 
Moreover, in our analyses of the PC spectrogram in 
response to odor stimulation, we partially replicated 
previous findings obtained from intracranial 
electrodes implanted in the human PC (Jiang et al. 
2017). Using these two dipoles, we found reciprocal 
communication between OB and PC in different 
frequency bands. Except weak gamma afferent 
communication, our result indicates a lack of 
communication between OB and PC during the no 
odor trials which emphasize the dependency on the 
casual communication between OB and PC in 
response to odors. Moreover, afferent connections 
from OB to PC during odor stimuli seemed to utilize 
mainly the gamma and beta band whereas the 
efferent, top-down connection operated primarily in 
the theta band. Differences in frequencies for 
afferent and efferent connections have previously 
been reported in both the olfactory (Fourcaud-
Trocmé et al. 2019; Kay 2014) and visual systems 
(Bastos et al. 2015; van Kerkoerle et al. 2014). 

Generally, in the animal model literature, higher 
frequencies, such as gamma, has been linked to 
within area processing and afferent ‘bottom-up’ 
communication whereas lower frequencies, such 
as beta, have been linked to efferent ‘top-down’ 
communication (Richter et al. 2017; Bastos et al. 
2015; Frederick et al. 2016). Indeed, odor 
stimulation produces OB-PC coherence in the beta 
band, which is mainly induced by efferent 
communication (Neville and Haberly 2003; Gray 
and Skinner 1988; Martin et al. 2006). However, 
others have found afferent communication from the 
hippocampus to the OB in the beta and theta band 
(Gourévitch et al. 2010) where the beta 
communication is more relevant for before odor 
sampling (Kay and Freeman 1998), suggesting that 
it is a too simplistic notion that beta is restricted to 
efferent communication. Whether these 
discrepancies are due to differences in task-
demand (Beshel et al. 2007; Frederick et al. 2016) 
or region-specific effects is currently unclear but 
from a biophysics point of view, the slower beta 
oscillations are more suited for long range 
transmission of information between areas, such as 
between OB and hippocampus (Kopell et al. 2000). 
Likewise, the use of non-invasive recording 
methods might promote slower oscillations and it 
worth noting that these signals are obtained in 
healthy humans. Nonetheless, we demonstrated 
here that in humans, afferent communication from 
the OB to PC is dominated by the gamma band but 
also activity in the high-beta band. Although it is 
unclear whether it constitutes a meaningful 
difference, it is interesting to note that this beta 
band activity is in the higher range (around 30Hz) 
of what is commonly observed in animal models 
where 15-30 Hz are commonly reported in the 
literature (cf. Martin and Ravel 2014). It is not clear, 
however, what impact the behavioral tasks used in 
the different studies might have for the 
demonstrated differences in odor processing 
between the human and non-human animal 
literature. 

One possible reason for our finding of beta 
oscillatory involvement in both afferent and efferent 
communication in humans is the difference in 
respiration pace between humans and rodents. The 
respiratory and olfactory systems are linked and 
respiratory cycles in humans are significantly 
slower compared to rodents (Mainland and Sobel 
2006; Rojas-Líbano et al. 2014). Moreover, an 
intercranial study in humans found that the 
inspiratory cycle entrains oscillatory activity in PC, 
demonstrating that respiration, and potentially the 
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respiration pace, moderates the neural activity in 
PC (Zelano et al. 2016). Given the tight coupling 
between breathing phase and odor perception, 
where orthonasal odors are primarily experienced 
during the inhalation phase, this difference may 
result in species-specific differences in 
communication frequencies within the olfactory 
system. In line with this notion is a recent evidence 
that cross-frequency coupling is dependent on 
respiration pace (Hammer et al. 2020). A further 
indication supporting this notion is our results 
demonstrating that efferent communication from 
the PC to OB during odor stimulation was 
dominated by theta oscillations, a frequency that in 
the animal literature has been linked to respiration 
(Kay 2014). Interestingly, a recent intracranial study 
in human participants undergoing elective surgery 
for intractable epilepsy provided further evidence 
for odor related theta activities by demonstrating 
that odor processing within the PC is dominated by 
theta activity (Jiang et al. 2017). Together, this 
shows that to fully understand similarities and 
differences in processing, translational studies 
comparing model organisms with human 
participants using identical tasks and odors are 
needed. 

Past studies have demonstrated that odor can be 
decoded from activity within the PC assessing both 
patterns of distributed piriform neurons in rodents 
(Roland et al. 2017; Rennaker et al. 2007) and 
oscillatory signals (Jiang et al. 2017) as well as 
summated neural responses in humans (Howard et 
al. 2009). Here we demonstrated that it is also 
possible to decode odor from the OB-PC 
connectivity as early as 100ms after odor onset. 
These types of analyses lack directionality but given 
the early time of the identified decoding cluster and 
our granger causality analyses demonstrating 
bottom up directionality in this frequency band, it is 
likely that our analyses are tapping into information 
from the OB to the PC. However, it should be noted 
that even though we identified a homogeneous and 
extended cluster in the 35-45Hz frequency, we only 
had 42% classification accuracy. Although this is 
significantly different from chance level (33%), it is 
not a strong result; potentially due to the low 
number of odors, thereby the confinement of 
available perceptual space was not allowing a clear 
odor differentiation. Using a larger battery of odors 
in future studies might provide a better classifying 
accuracy. Alternatively, our results might link to the 
unique perceptual experience of these three odors 
and not generalizable to other odors. Nonetheless, 
the latency of the decoding results corresponds with 
past intracranial recording from the PC where odor 
related activity was found within 500ms (Jiang et al. 

2017) and also occurs at a time point that is close 
to the initial OB processing response (about 100ms 
past odor onset) that we have shown earlier using 
a similar method (Iravani et al. 2020), and replicate 
in this data (Fig 4a). However, the above chance 
performance extends to two temporal windows 
around 300ms for gamma band and reverberate 
during the full 1s for theta band (Fig 6B). Although 
speculative, these findings fit well with the directed 
Granger connectivity results (Fig 5A, 5B).  
Additionally, our decoding finding is further 
strengthened by the fact that we were not able to 
decode odor from OB connectivity within the same 
time period based on connectivity with the control 
region (i.e., PCG), thus supporting the specificity of 
our OB-PC finding. However, when we separately 
assessed the accuracy for odors, we obtained the 
maximum accuracy of 71% for n-Butanol whereas 
the accuracy for Chocolate and Orange were found 
to be 68% and 61%, respectively, suggesting 
heterogeneity in classifier performance across 
odors; perhaps due to differences in the latency and 
frequency of odor representations in the OB-PC 
connectivity. Moreover, the non-specificity and high 
dimensionality of the employed classification 
scheme unfortunately makes it difficult to deduce 
exactly what aspect of the odor that is coded in the 
OB-PC connection. When we assessed the 
perceptual aspect of odor, we only found the effect 
for pleasantness. However, this differences in the 
pleasantness did not modulate the inhalation 
parameters, length of inhalation or area under the 
curve. Given that inhalation response is such a 
robust measure of odor valence that is used as 
clinical test (Frank et al. 2003), the finding of no 
difference in the inhalation parameters as function 
of odors suggest that potential effects of 
pleasantness cannot have a decisive influence on 
the results. We argue that the surprisingly large 
difference in pleasantness ratings between odors 
might originate from a contrast effect given that our 
odor stimuli did not span a large section of available 
perceptual space. Additionally, assessing the 
confusion matrix brought to view that two pleasant 
odors are not confused by the decoding method, 
hence, making it unlikely that pleasantness is an 
underlying parameter that is encoded in the OB-PC 
connection. The question regarding what exactly is 
decoded might be better assessed in animal 
models where fewer trials are needed to obtain high 
SNR, or in human experiments with a large and 
diverse set of odors that vary in molecule structure, 
quality, associations, and valence and therefore the 
contribution of each factor can be systematically 
explored. 
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In summary, using a novel, non-invasive technique 
for assessing activity in the first central relay in the 
olfactory pathway, we demonstrated here that the 
olfactory bulb and piriform cortex, two essential 
nodes in the human olfactory system, show 
reciprocal, oscillation-based, communication in a 
frequency- and time-dependent manner during 
odor stimulation. In response to an odor stimulus, 
the olfactory bulb’s afferent communication to the 
piriform cortex is dominated by oscillation in the 
gamma and beta bands. Top-down piriform cortex 
input to the olfactory bulb, in contrast, was 
dominated by theta band oscillations. Moreover, we 
demonstrated that odor identity could be decoded 
from this reciprocal interaction within 100ms of odor 
onset. These data further our understanding of the 
critical role of bidirectional information flow in 
human sensory systems to produce perception. 
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