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Abstract  

Cigarette smoking and alcohol use are among the most prevalent substances used worldwide 

and account for a substantial proportion of preventable morbidity and mortality, underscoring the 

public health significance of understanding their etiology. Genome-wide association studies 

(GWAS) have successfully identified genetic variants associated with cigarette smoking and 

alcohol use traits. However, the vast majority of risk variants reside in non-coding regions of the 

genome, and their target genes and neurobiological mechanisms are unknown. Chromosomal 

conformation mappings can address this knowledge gap by charting the interaction profiles of 

risk-associated regulatory variants with target genes. To investigate the functional impact of 

common variants associated with cigarette smoking and alcohol use traits, we applied Hi-C 

coupled MAGMA (H-MAGMA) built upon cortical and midbrain dopaminergic neuronal Hi-C 

datasets to GWAS summary statistics of nicotine dependence, cigarettes per day, problematic 

alcohol use, and drinks per week. The identified risk genes mapped to key pathways associated 

with cigarette smoking and alcohol use traits, including drug metabolic processes and neuronal 

apoptosis. Risk genes were highly expressed in cortical glutamatergic, midbrain dopaminergic, 

GABAergic, and serotonergic neurons, suggesting them as relevant cell types in understanding 

the mechanisms by which genetic risk factors influence cigarette smoking and alcohol use. Lastly, 

we identified pleiotropic genes between cigarette smoking and alcohol use traits under the 

assumption that they may reveal substance-agnostic, shared neurobiological mechanisms of 

addiction. The number of pleiotropic genes was ~26-fold higher in dopaminergic neurons than in 

cortical neurons, emphasizing the critical role of ascending dopaminergic pathways in mediating 

general addiction phenotypes. Collectively, brain region- and neuronal subtype-specific 3D 

genome architecture refines neurobiological hypotheses for smoking, alcohol, and general 

addiction phenotypes by linking genetic risk factors to their target genes. 
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Introduction 

The National Survey on Drug Use and Health in 2018 estimated that 27.3 million individuals were 

daily cigarette smokers and 16.6 million individuals were heavy alcohol users1. Cigarette smoking 

and alcohol use are the 1st and 3rd leading causes of mortality and morbidity, accounting for 

480,000 and 88,000 deaths per year in the United States, respectively2,3. Despite their public 

health burden, treatment options for nicotine and alcohol use disorders are limited and often fail. 

However, existing treatments can be improved and new treatments can be developed with a 

better understanding of the underlying neurobiology of addiction. Genome wide association 

studies (GWAS) on smoking and alcohol use traits have demonstrated that common variation 

explains a significant proportion of phenotypic variance of substance use4. Nearly 400 genomic 

loci were found to have an impact on smoking and/or  alcohol use traits from GWAS sample sizes 

up to 1.2 million4–7. However, the vast majority of associated variants reside in non-coding DNA, 

and their target genes and relevant neurobiological mechanisms are poorly understood. 

Examining higher-order chromatin architecture is crucial to understanding the functional 

consequences of non-coding variation by linking variants to distal genes based on chromatin 

interaction profiles8–10. Whereas the three-dimensional (3D) genomic landscape of the human 

brain has advanced our understanding of neurobiological mechanisms underlying psychiatric 

disorders9,11–13, such approaches have been essentially lacking in explaining the genetic 

architecture of substance use disorders (SUD). 

To understand the functional impact of common variants associated with cigarette smoking and 

alcohol use, we applied Hi-C coupled MAGMA (H-MAGMA)12 to GWAS of smoking and alcohol 

use traits and identified their putative target genes for further characterization5–7. Smoking and 

alcohol use traits likely affect neurocircuits that underlie addiction and include the prefrontal cortex 

(PFC), nucleus accumbens (NAc), amygdala, and midbrain dopaminergic cell groups such as 
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ventral tegmental area (VTA) and substantia nigra (SN)14–16. We reasoned that characterization 

of chromatin architecture across the brain reward circuitry is critical to understanding the gene 

regulatory mechanisms associated with substance use. With neurons being the major drivers of 

substance use behaviors, we profiled chromatin architecture from cortical neurons (CNs) in the 

dorsolateral PFC (DLPFC)17 and dopaminergic neurons (DNs) in the midbrain18. We then built H-

MAGMA inputs from CNs and DNs, and applied them to GWAS summary statistics of smoking 

and alcohol use traits. In particular, given the recent work on a potential difference in genetic 

architecture between substance consumption and clinical diagnosis of use disorder4, we mapped 

genetic variants associated with consumption or use (drinks per week [DPW5] and cigarettes per 

week [CPD])5 versus use disorder (problematic alcohol use [PAU]6 and nicotine dependence 

[ND]7) to their associated risk genes. Our analysis of substance use risk genes identified key 

biological pathways, primary cell types, and brain circuitry that might confer risk for substance 

use. In addition, we characterized genes and pathways shared between cigarette smoking and 

alcohol use traits to provide a core neurobiological basis of addiction.   

 

Result 

Epigenetic landscape of cortical and midbrain dopaminergic neurons 

Neural circuitry underlying addiction involves, among others, dopaminergic cell groups in the 

midbrain, including VTA and SN, as well as neuronal populations in the PFC14 (Figure 1A). 

However, the gene regulatory landscape in these two brain regions and its implication in genetics 

of cigarette smoking and alcohol use traits have not been studied. To understand the relationship 

between the reward circuitry and genetic underpinnings of substance use, we evaluated 

enrichment of genetic risk factors for four traits associated with alcohol use (PAU6 and DPW5) 
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and cigarette smoking (ND7 and CPD5) in cis-regulatory elements (CREs) of the midbrain and 

PFC19 (Methods). Using stratified LDSC, we demonstrated that every trait showed significant 

heritability enrichment for CREs in the midbrain and PFC (Figure 1B).  

Midbrain DNs have long been hypothesized to be the major player of the brain reward circuitry14,20. 

Thus, we investigated whether adult midbrain DN-CREs explained the heritability enrichment of 

cigarette smoking and alcohol use traits (Methods). Indeed, genetic risk factors for substance 

use traits were enriched in chromatin accessible regions of DNs derived from human induced 

pluripotent stem cells21 (hiPSC, Supplementary Figure 1A).  

Given the cellular heterogeneity of the PFC, we also evaluated heritability enrichment of 

substance use traits in CREs of four major cell types (neurons, astrocytes, microglia, and 

oligodendrocytes) in the cortex22. Neurons showed the strongest heritability enrichment of 

substance use traits among the four cell types (Supplementary Figure 1B). These results 

collectively suggest that the gene regulatory relationships in CNs and DNs may provide rich 

information about genetic underpinnings of substance use traits.  

We next sought to compare gene regulatory relationships between CNs and DNs. Whereas 

substantial differences in chromatin architecture have been observed across different cell types 

in the human brain13,17,22, little information is available for the chromatin architecture in different 

brain regions and/or neuronal subtypes. We linked differential chromatin accessibility peaks 

between CNs and DNs21 to their target genes on the basis of corresponding chromatin loops 

(Methods, Figure 1C). We then measured cell-type specific expression profiles of the genes 

linked to CN- and DN-CREs. Genes linked to CN-CREs were highly expressed in cortical 

pyramidal neurons of the telencephalon (GLU1-3, 6-8), whereas genes linked to DN-CREs were 

highly expressed in midbrain dopaminergic (DOP2) and cholinergic neurons (CHO1) as well as 

subcortical-projecting glutamatergic neurons in the telencephalon (GLU5, 13-17)23 (Figure 1D).  
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We also found evidence of different enhancer wiring of dopaminergic marker genes between CNs 

and DNs. For example, FOXA2 and NR4A2, master regulators for dopaminergic neuronal 

specification and differentiation24–26, displayed different regulatory connections between CNs and 

DNs. FOXA2 was linked to two proximal enhancers in DNs as compared to one distal enhancer 

in CNs (Figure 1E). In contrast, NR4A2 was linked to multiple distal enhancers only in DNs, but 

not in CNs (Figure 1F).  

 

Figure 1. Gene regulatory landscape in cortical and dopaminergic neurons. A. Brain reward 

circuitry encompasses the midbrain (MB) and its projection to the prefrontal cortex (PFC). B. Cis-

regulatory elements (CREs) in the PFC and substantia nigra (SN) are enriched for genetic risk 
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factors for problematic alcohol use (PAU), drinks per week (DPW), nicotine dependence (ND), 

and cigarettes per day (CPD). The black dotted line represents FDR=0.05. C. Dopaminergic 

neuronal (DN) CREs were linked to their target genes using DN Hi-C data, while cortical neuronal 

(CN) CREs were linked to target genes using CN Hi-C data. D. Genes mapped to DN-CREs were 

highly expressed in midbrain dopaminergic (DOP2) and cholinergic neurons (CHO1), while genes 

mapped to CN-CREs were highly expressed in telencephalic glutamatergic neurons (GLU1, 3, 7, 

11). E-F. Different enhancer connectivity between CNs and DNs for FOXA2 (E) and NR4A2 (F) 

loci. Promoters of FOXA2 and NR4A2 are highlighted in blue, while their interaction targets in CN 

and DN are highlighted in red and orange, respectively. 

 

We next compared topologically associating domains (TADs) between CNs and DNs (Methods). 

Consistent with previous reports27, TADs were largely conserved between CNs and DNs. 

However, we noted some differences in TAD boundary strengths (defined by binSignal, see 

Methods for details) between CNs and DNs. For example, EN1 and EN2 are critical survival 

factors for DN differentiation and maintenance28. We found that EN1 was located at the TAD 

boundary whose strength is stronger in DNs than in CNs (Supplementary Figure 2A). In contrast, 

a large DN TAD in which EN2 is located was partitioned into two TADs in CNs (Supplementary 

Figure 2B). FOXA2 also showed strengthened TAD boundaries in DNs (Supplementary Figure 

2C), which corresponds to the confinement of loops in proximal space as evidenced in Figure 

1E. Importantly, these genes were more highly expressed in DNs than in CNs (Supplementary 

Figure 2). Therefore, these results indicate that different neuronal subtypes involved in substance 

use traits display distinct chromatin architecture that is coupled with transcriptional regulation.  
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CN and DN H-MAGMA identifies genes and biological pathways underlying cigarette 

smoking and alcohol use traits  

To investigate the functional impact of common variants associated with cigarette smoking and 

alcohol use traits, we next employed H-MAGMA to assign genetic variants to their target genes 

based on long-range chromatin interaction12. As heritability enrichment results suggested the role 

of CNs and DNs in cigarette smoking and alcohol use traits (Figure 1B, Supplementary Figure 

1), we generated H-MAGMA input files from CN and DN Hi-C data (hereafter referred to as CN 

and DN H-MAGMA, respectively). We applied H-MAGMA to PAU, DPW, ND, and CPD, and 

identified risk genes for each trait using a false discovery rate (FDR) threshold of 5% (Figure 2A-

B, Supplementary Tables 2 and 3).  We detected a small number of risk genes for ND in 

comparison to other GWAS, which can be attributed to the smaller sample size of ND GWAS (see 

Methods for the sample size for each GWAS). 

Next, we mapped risk genes identified from CN and DN H-MAGMA to biological pathways using 

gene ontology (GO) analysis. Rather than using a specific FDR threshold, we ran ranked-based 

GO analysis using the Z-score of H-MAGMA output files (Methods). Since we used two separate 

H-MAGMA inputs to assign common variants to their target genes, we obtained two GO results 

for each trait – one for CN H-MAGMA risk genes and the other for DN H-MAGMA risk genes. We 

then classified the results as CN-specific GO terms to represent biological pathways unique to 

CN H-MAGMA. Comparably, we classified DN-specific GO terms to represent biological pathways 

unique to DN H-MAGMA.  

We validated previous findings that ethanol metabolic processes and response to alcohol were 

associated with PAU and DPW (Figure 2C-D)4,6, and that cholinergic and nicotinic pathways were 

associated with ND and CPD5,7 (Figure 2E-F, see Supplementary Table 4 for full GO outputs). 

Notably, we also identified alcohol catabolic processes for ND and nicotinic pathways for PAU. 
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Likewise, we further identified GO terms relating to other substances of abuse. For instance, GO 

terms for PAU included response to morphine (Figure 2C), while GO terms for CPD included 

response to cocaine (Figure 2F). Taken together, these findings underscore potential genetic 

overlap and interplay among different substances of abuse. 

We identified several similarities across cigarette smoking and alcohol use traits. For example, 

neuronal processes such as neuronal migration and apoptosis were associated with cigarette 

smoking and alcohol use, which is in line with studies that have pinpointed the disruption of 

neuronal migration and neurotransmission in response to substance use29–31. We also observed 

myelination and gliogenesis to be associated with DPW and CPD, respectively, hinting at the role 

of neuron-glia interactions in substance use traits32,33. Several immune processes including T and 

B cell activation were shown to be associated with cigarette smoking and alcohol use, which 

corroborates the relationship between substance use and suppressed immunity (Figure 2E)34–38. 

We also identified a potential role of protein folding that has been shown to contribute to the stress 

response39. A potential link between substance use and neurodegeneration emerged, such as 

amyloid-beta metabolic processes for CPD and tau protein binding for DPW40,41. Lastly, pain 

perception was associated with DPW and CPD, consistent with prior research linking pain 

perception and the reward circuitry42,43. 

We also observed distinct biological processes between cigarette smoking and alcohol use traits. 

For instance, long term synaptic depression (Figure 2C) as well as learning and memory (Figure 

2D) were characteristic of alcohol use traits but not cigarette smoking, highlighting the important 

role of synaptic plasticity and memory consolidation in the mechanism of alcohol use44,45. We also 

found GO terms relating to sleep and wake cycle for alcohol use traits, which support a rich body 

of evidence suggesting that prolonged alcohol use and misuse can cause deleterious effects on 

sleep quality46,47. Cigarette smoking traits also exhibited distinct associations not observed in 
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alcohol use traits. For instance, we noted lung development to be associated with both ND and 

CPD which supports epidemiological findings of lung morbidities linked to cigarette smoking48,49.  

Discrete biological processes were also observed between CN and DN H-MAGMA. Ethanol 

metabolism and alcohol response were enriched for alcohol use traits in a DN-specific manner 

(Figure 2C-D). In contrast, the potential link between neurodegeneration and substance use was 

specific to CNs. These results suggest that the neurobiological basis of cigarette smoking and 

alcohol use traits may need to be studied in a brain region- and neuronal subtype-specific manner. 
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Figure 2. Genes and pathways associated with cigarette smoking and alcohol use traits. 
A-B. The number of risk genes for cigarette smoking and alcohol use traits based on H-MAGMA 

built from CN (A) and DN (B) Hi-C data (FDR<0.05). For each stacked bar plot, an upper bar plot 

in light blue denotes all genes, whereas a lower layer in dark blue corresponds to protein-coding 

genes. C-F. Gene ontologies (GO) enriched for PAU (C), DPW (D), ND (E), and CPD (F). CN-

specific GO terms represent terms unique to genes identified from H-MAGMA built on CN Hi-C 

data, while DN-specific GO terms represent terms unique to genes identified from H-MAGMA built 

from DN Hi-C data. Shared terms denote GO terms detected in both CN and DN H-MAGMA 

results. Dotted red line denotes FDR=0.05.  

 

Cellular expression profiles of cigarette smoking and alcohol use risk genes convey cell 

types associated with substance use 

Since CNs and DNs display heterogeneity and act in synchrony with multiple cell types, we 

leveraged single-cell RNA sequencing (scRNA-seq) datasets to further refine neuronal subtypes 

that confer risk of substance use. We first evaluated cellular expression profiles of cigarette 

smoking and alcohol use risk genes identified from CN H-MAGMA using scRNA-seq data from 

the human cortex50. We not only recapitulated our findings that genetic risk variants underlying 

cigarette smoking and alcohol use are enriched for neurons, but also observed that the risk genes 

were highly expressed in excitatory neurons (Figure 3A). Specifically, we found PAU, DPW, and 

CPD to be enriched for layer 5 pyramidal neurons (Ex5) that project to both cortical and subcortical 

areas including the striatum and the midbrain51,52 and layer 4 neurons (Ex2) that receive sensory 

signals from the thalamus, a region that has been shown to be integral to addiction by modulating 

arousal and motivation53.  
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Comparably, we examined expression profiles of cigarette smoking and alcohol use risk genes 

identified from DN H-MAGMA in midbrain cell types using scRNA-seq data from the human 

embryonic ventral midbrain54. DNs were enriched for all traits except for ND, providing additional 

evidence to support the impact of DNs in modulating substance use via the reward-circuitry14 

(Figure 3A). Within the DN lineage, we found enrichment for intermediate DNs (DA1) for all traits, 

suggesting that they may be more vulnerable to substance use. Moreover, we found enrichment 

for midbrain GABAergic neurons which have been shown to regulate a diverse set of processes 

including motor control and inhibition of dopaminergic cells, thereby modulating the reward-

circuitry55,56. Similarly, the observed enrichment of serotonergic neurons is consistent with their 

reported involvement in substance use vulnerability57.  

Next, we extended our approach to a brain-wide fashion by assessing brain regional expression 

profiles of cigarette smoking and alcohol use risk genes. We leveraged extensive scRNA-seq 

data from the mouse nervous system to determine brain regions with high expression values of 

risk genes identified by CN and DN H-MAGMA23. Both cigarette smoking and alcohol use risk 

genes were highly expressed in cortical and midbrain regions as expected (Figure 3B). We also 

found strong enrichment in the hippocampus for ND risk genes, highlighting the role of 

hippocampus-dependent learning in ND58,59. Furthermore, thalamic expression was observed for 

PAU, DPW, and CPD risk genes, which is consistent with the enrichment for Ex2 that receives 

thalamic inputs (Figure 3A) and points to the role of sensory perception in drug seeking 

behaviors60,61. Finally, our results highlight enrichment of amygdala for risk genes associated with 

cigarette smoking and alcohol use. The association of risk variants with amygdala underscores 

the role of emotional processing in substance use due to its projections to other parts of the 

reward-circuitry14. 
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Figure 3. Cellular and brain regional expression profiles of cigarette smoking and alcohol 
use risk genes. A. Top left panel represents cellular expression profiles of cigarette smoking and 

alcohol use risk genes identified from CN H-MAGMA using scRNA-seq data from the adult 

cortex50,62. Genetic risk factors underlying cigarette smoking and alcohol use exhibit strong 

enrichment in neurons. Bottom left panel represents risk gene expression across neuronal 

subclusters. OPC, oligodendrocytes progenitor cells; Ex, excitatory neurons; In, inhibitory 

neurons. Top right panel, cellular expression profiles of cigarette smoking and alcohol use risk 

genes identified from DN H-MAGMA using scRNA-seq from the ventral midbrain of human 

embryo54. We identified enrichment for dopaminergic, GABA-ergic, and serotonergic neurons in 

the midbrain. NProg, neuronal progenitors; OMNT, oculomotor and trochlear nucleus. Bottom 
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right panel, cigarette smoking and alcohol use risk genes were enriched for DA1 across DN 

development in human embryonic midbrain. NbM, medial neuroblasts and precursors of DNs; 

DA0, immature DNs; DA1, intermediate DNs; DA2 matured DNs. B. Left, graphic representation 

of brain regions with elevated expression levels of risk genes for substance use traits. Regions 

highlighted in red are enriched for at least three of the four traits. Right, brain regional expression 

profiles of cigarette smoking and alcohol use risk genes using scRNA-seq from the mouse 

nervous system23. We detected enrichment spanning multiple brain regions including cortex, 

amygdala, and midbrain.  

 

Shared genetic architecture among substance use  

Individuals often become dependent on multiple substances, and these comorbidities may be 

driven by shared genetic signal6,63. We hypothesized that biological characterization of pleiotropic 

genes between cigarette smoking and alcohol use traits would identify neurobiological 

mechanisms underlying shared genetic architecture of substance use traits. 

We first calculated genetic correlations and gene-level overlap across cigarette smoking and 

alcohol use traits using LD score regression (LDSC)64 and rank-rank hypergeometric overlap 

(RRHO) test65, respectively (Supplementary Figure 3). We found that RRHO of DN H-MAGMA 

outputs gives stronger gene-level overlaps than that of CN H-MAGMA. For example, 119 and 

3,120 genes were shared between PAU and CPD using CN and DN H-MAGMA, respectively 

(Figure 4A, Supplementary Figure 3C). These results suggest that DNs may play a central role 

in explaining comorbidity in substance use. Because the PAU and CPD showed a significant 

genetic correlation (genetic correlation = 0.19) and gene-level overlap (RRHO Z-score = 12.16), 

we selected shared genes between PAU and CPD in DN H-MAGMA to serve as pleiotropic genes 

(Figure 4A, Supplementary Table 5). Pleiotropic genes were enriched for synaptic function and 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2021.03.18.436046doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.436046


cell junction organization (Figure 4B), suggesting that alterations in synaptic organization may 

influence core features of substance use. We further evaluated cellular expression profiles of 

pleiotropic genes in the human embryonic ventral midbrain. We again found enrichment for 

dopaminergic, GABAergic, and serotonergic neurons, indicating their potential function in 

substance use biology (Figure 4C). 

Based on our hypothesis that pleiotropic genes between cigarette smoking and alcohol use traits 

may represent risk genes shared across multiple SUD, we next examined whether they are 

dysregulated in response to other substances. We overlapped our pleiotropic genes with 

differentially expressed genes (DEGs) in the mouse NAc after cocaine treatment66. We found a 

significant proportion of our pleiotropic genes was dysregulated in response to cocaine (Figure 

4D). We also compared the cellular expression profiles of pleiotropic genes in a saline versus 

cocaine treatment condition66. We found that pleiotropic genes were downregulated in response 

to cocaine in clusters of DNs that represent D1- and D2-type medium spiny neurons (Figure 4E, 

Supplementary Figure 4). Taken together, these results indicate that pleiotropic genes derived 

from cigarette smoking and alcohol use traits can provide insights into the core neurobiological 

mechanism of substance abuse. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2021.03.18.436046doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.436046


 

Figure 4. Pleiotropic genes highlight shared neurobiological bases of cigarette smoking 
and alcohol use. A. Overlap between PAU and CPD risk genes identified by DN H-MAGMA 

using a rank rank hypergeometric overlap (RRHO) test. Overlapping genes represent pleiotropic 

genes. B. Biological processes and molecular functions enriched for pleiotropic genes. Dotted red 

line denotes FDR=0.05. C. Cellular expression profiles of pleiotropic genes in the midbrain (top 

plot) and dopaminergic lineage (bottom plot). Pleiotropic genes are enriched for GABAergic 

midbrain neurons and intermediate DNs (DA1). D. Overlap between pleiotropic genes and 

differentially expressed genes (DEGs) in the mouse NAc after cocaine treatment (Fisher’s exact 

test, p=6.88x10-6; odds ratio [OR]=1.60; 95% confidence interval [CI]=1.34-1.96). E. Cellular 

expression changes of pleiotropic genes in response to cocaine treatment66. The x-axis indicates 

dopaminergic clusters identified in the mouse NAc while the y-axis indicates scaled expression 

values of the pleiotropic genes in each cluster. Drd1-MSN, dopamine receptor D1 medium spiny 

neurons enriched for D1-like family; Drd2-MSN and Drd2-MSN2, dopamine receptor D2 medium 

spiny neurons; Drd3-MSN, dopamine receptor D3 medium spiny neurons.  
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Drug repurposing analysis 

A fundamental issue facing the treatment of SUD is the limited number of effective medications 

available. Although medications such as Naltrexone67 and Nicotine Replacement Therapies 

(NRT)68 have been traditionally used to treat alcohol use disorder and nicotine addiction, 

respectively, their efficacies are lacking or produce severe adverse outcomes, rendering the need 

for new treatment. To address this challenge, we used the Drug Signature and Drug Matrix 

databases of EnrichR69, a comprehensive gene analysis tool to identify potential drug candidates 

for SUD based on genetic evidence. We identified several significantly enriched drug candidates 

for cigarette smoking and alcohol use traits (Supplementary Table 6). Among these included 

mood stabilizers and selective serotonin reuptake inhibitors such as Fluoxetine, Citalopram, and 

Imipramine, consistent with their potential therapeutic benefits in some patients diagnosed with 

nicotine or alcohol dependency72,73. We further identified enrichment for antipsychotics such as 

Chlorpromazine and Clozapine, pointing to some degree of convergence of addiction-relevant 

risk genes with molecular pathways implicated in other types of psychiatric illnesses. These 

findings speak to the well-documented epidemiological70,71 and genetic72,73 evidence supporting 

the comorbidity between psychiatric illnesses and substance use.  

 

Discussion 

We interrogated chromatin interaction profiles of CNs and DNs, two primary neuronal subtypes 

involved in the neurocircuitry of addiction, to map GWAS risk variants of cigarette smoking and 

alcohol use traits to their target genes.  

We built enhancer-promoter interaction landscapes in CNs and DNs by combining Hi-C and 

ATAC-seq, and demonstrated brain region- and neuronal subtype-specific gene regulatory 
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relationships. We then employed these profiles to perform CN and DN H-MAGMA, which was 

used to identify risk genes and neurobiological pathways underlying PAU, DPW, ND, and CPD. 

Investigation into the biological pathways underlying cigarette smoking and alcohol use risk genes 

revealed the important role of drug catabolic process and alcohol metabolic process in substance 

use. Notably, we found that substance use risk genes were enriched for pathways associated 

with other neurodegenerative disorders such as tau protein binding for DPW and amyloid-beta 

metabolic process for CPD. The association between substance use and neurodegenerative 

disorders has been observed in a mouse model of Alzheimer’s disease where alcohol exposure 

was shown to heighten neuronal and behavioral deficits related to Alzheimer’s disease74. Thus, 

our results provide additional evidence to support that substance use and neurodegenerative 

disorders may share underlying genetic risk factors75,76 and that risk variants associated with 

alcohol use may exacerbate neurodegenerative disorders by disrupting protein metabolism. We 

also identified an association between cigarette smoking and food intake which is in line with the 

previous reports linking weight gain with smoking cessation77,78.  

We next surveyed the cellular expression profiles of cigarette smoking and alcohol use risk genes 

to refine cortical and midbrain neuronal subtypes that confer risk for substance use. Within CNs, 

we found that cigarette smoking and alcohol use risk genes were highly expressed in 

glutamatergic neurons, providing an additional level of support for the neuronal basis of 

addiction14. Interestingly, we have previously shown that risk genes of psychiatric disorders were 

also enriched for glutamatergic neurons12. Based on prior epidemiological studies reporting higher 

substance use among individuals with mental health issues, these results suggest potential 

cellular basis of comorbidity between substance use and psychiatric disorders63. We also 

identified potential divergence between ND and CPD such that, risk genes associated with ND 

were enriched for inhibitory neurons, in contrast to the observed excitatory enrichment for CPD 

risk genes. While this may hint to distinct biological patterns underlying use (CPD) versus a use 
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disorder (ND), caution should be exercised as this finding could also be influenced by the smaller 

number of genes associated with ND in comparison to CPD due to the smaller sample size of ND 

GWAS. Our cellular expression profiles within the DN lineage showed enrichment for intermediate 

DNs (DA1), suggesting early development as a critical time period for risk of substance use79,80. 

Finally, we leveraged cigarette smoking and alcohol use risk genes to identify brain circuitry of 

addiction based on the hypothesis that defining brain regions most relevant to substance use may 

help derive better targeted approaches to treating SUD. In addition to the cortical and midbrain 

enrichment, we found enrichment for amygdala and thalamus, reinforcing that multiple brain 

regions are important for understanding substance use and addiction.   

To further characterize how cigarette smoking and alcohol use risk genes can expand our 

understanding of substance use and addiction as a whole, we generated a list of pleiotropic genes 

between PAU and CPD. In contrast to individual risk genes being more focused on individual 

substance use traits, we reasoned that pleiotropic genes would provide us with the opportunity to 

identify principal pathways associated with addiction. Therefore, we generated pleiotropic genes 

using both CN and DN H-MAGMA output files. DNs, but not CNs, showed strong gene-level 

overlap between PAU and CPD, conveying that DNs might be the central cell type that mediates 

pleiotropy. Based on our hypothesis that pleiotropic genes might translate beyond just cigarette 

smoking and alcohol use traits, we compared them with DEGs in response to cocaine66. Indeed, 

we showed that pleiotropic genes were likely to be dysregulated in response to cocaine in the 

mouse NAc, demonstrating that these genes may be more susceptible to a wide range of 

substance use.  

Lastly, we took advantage of EnrichR to identify potential drug candidates to treat ND and alcohol 

use disorder. We found potential drug candidates including those already on the market to treat 

various psychiatric illnesses such as depression and schizophrenia, further supporting a shared 
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genetic architecture between psychiatric illnesses and substance use. Together, we demonstrate 

that H-MAGMA built from brain region- and neuronal subtype-specific chromatin architecture can 

successfully identify risk genes and biologically relevant processes associated with cigarette 

smoking and alcohol use. 

 

Methods 

Nuclei sorting 

Brain tissue was cut and dounced with 5 mL of lysis buffer with RNase inhibitor, then transferred 

to an ultracentrifuge tube, followed by immediately adding 9 mL of sucrose buffer underlaid 

beneath the solution (see Supplementary Table 1 for sample information). The samples were 

then spun at 24,000 rpm in an ultracentrifuge for 1 hour at 4°C. Next, the pellet was resuspended 

with 1mL of 0.1% BSA in DBPS, which was subsequently left on ice for 5-10 minutes. Pre-

conjugated Nurr1 primary antibody (N4664) that had been incubated with the secondary antibody 

(Alexa 647) for an hour was then added to the nuclei suspension. Subsequently, 1.5 uL of NeuN 

antibody conjugated with Alexa 488 was added. Samples were wrapped in foil and rotated for 2 

hours at 4°C. After 2 hours of incubation, DAPI was added to the reaction. The nuclei suspension 

is immediately taken to be processed on a FACSAria flow cytometry sorter, with all gates modified 

to eliminate debris and divide cells effectively, resulting in an apparent separation of nuclei 

populations through their fluorescent cell signal. 

Dopaminergic neuronal Hi-C library generation  

Post-FACS sorting, 6,000 dopaminergic neuronal nuclei (NeuN+/Nurr1+) were processed through 

the Arima-HiC Kit User Guide for Mammalian Cell Lines (A51008, San Diego, CA) according to 

the manufacturer’s instructions. Afterwards, genomic DNA was purified using the Beckman 
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Coulter AMPure® SPRIselect Beads (Indianapolis, IN). Subsequently, samples were sonicated 

utilizing the Covaris S220 (Woburn, MA), then size selected and purified using Beckman Coulter 

AMPure® SPRIselect Beads (Indianapolis, IN) to target for 300–500 base pair sized fragments. 

Samples were then enriched in biotin using the Arima-HiC Kit for Library Preparation, alongside 

the Swift Biosciences® Accel-NGS® 2S Plus DNA Library Kit (San Diego, CA). Afterwards, the 

Swift Biosciences Accel-NGS 2S Plus DNA library kit (21024, Ann Arbor, MI) was utilized for end 

repair and adapter ligation. Unique indices were ligated to each sample using the Swift 

Biosciences 2S Indexing Kit (26148). DNA libraries were amplified and purified using the Kapa 

Hyper Prep Kit (NC0709851, Wilmington, MA) and Beckman Coulter AMPure® SPRIselect Beads 

according to the manufacturer’s instructions. Resulting Hi-C libraries were sequenced through 

Illumina NovaSeq 6000 (150 bp paired-end sequencing) at a depth of 400 million reads per 

sample. 

Hi-C analysis 

We applied HiC-Pro (v2.11.1)81 to the DN Hi-C18. In brief, we used Bowtie2 (v2.3.5.1)82 with --

very-sensitive -L 30 --score-min L,-0.6,-0.2 --end-to-end --reorder to align Hi-C reads to hg19 from 

UCSC database, and obtained unique mapped read pairs (valid pairs). Valid pairs were then used 

to generate Hi-C contact matrices at 10kb and 40kb resolutions. Hi-C contact matrices were 

subsequently normalized using Iterative Correction and Eigenvector decomposition (ICE) built in 

HiC-Pro. FitHiC2 (v2.0.7)83 was then used to call chromatin interactions with -U 2000000 -L 20000  

-r 10000 -p 2. Significant promoter-anchored interactions, declared as chromatin contacts within 

1Mb at an FDR threshold <1%, were defined based on overlap with gene promoter regions (2kb 

upstream and downstream of transcription start sites [TSS]). CN Hi-C data was obtained from Hu 

et al. 202017.  
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TopDom (v0.9.1)84 with default arguments was used to define topologically associating domains 

(TADs) from normalized 40kb contact matrices. TopDom firstly computed the average contact 

frequency (defined as a value of binSignal) between upstream and downstream regions for each 

bin. The binSignal values demarcate TAD boundaries such that it shows local minimum in a TAD 

boundary while it is relatively high within a TAD domain. We then used pheatmap (v1.0.12) 

package to visualize chromatin contact maps. 

Information about samples and Hi-C libraries for DN are described below: 

Hi-C library Sample information cis reads total reads cis 
ratio 

991  Male, 35 yo 
African American 158,222,950 230,186,257 0.69 

1325  Female, 45 yo 
African American 192,097,648 266,025,620 0.72 

1423  Female, 46 yo 
African American 164,038,226 197,508,199 0.83 

1562  Male, 36 yo 
Caucasian 176,575,402 237,642,800 0.74 

1883   Male, 45 yo 
African American 243,313,838 325,461,515 0.75 

Pooled 934,248,064 1,256,824,391 0.74 

 

Gene regulatory relationships of cortical and dopaminergic neurons  

RNA-seq and ATAC-seq data from CNs and DNs (cortical glutamatergic neurons) were obtained 

from GEO (GSE129017)21. We used FastQC (v.0.11.8)85 to check the quality of RNA-seq and 

ATAC-seq reads.  

For RNA-seq analysis, clean reads were mapped to the human reference genome (hg19) from 

the UCSC database with HISAT2 (v.2.2.1)86 using default parameters. We assembled and 
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quantified transcripts using StringTie (v.2.1.2)87. Normalized expression values (fragments per 

kilobase of exon model per million reads mapped, FPKM) of DN marker genes were compared 

between CNs and DNs. 

For ATAC-seq analysis, we applied Bowtie2 (v2.3.5.1)82 with --very-sensitive to map clean reads 

from ATAC-seq to hg19 from the UCSC database. After filtering out mitochondrial reads, duplicate 

reads were further removed by Picard (v.2.20.1, http://broadinstitute.github.io/picard/) by 

MarkDuplicates function. We then ran MACS2 (v.2.1.0.20150731)88 with --nolambda --nomodel 

to call open chromatin regions. Blacklisted regions from ENCODE were removed from the 

MACS2-called peaks. Finally, we used DiffBind (v.2.13.1)89 to analyze differentially open 

chromatin regions between CN and DN ATAC-seq data. Differentially open chromatin regions 

were selected on the basis of FDR<0.05. Differential ATAC-seq peaks between CNs and DNs 

were intersected with promoter-anchored interactions to identify enhancer-promoter interactions.  

GWAS datasets 

We used the largest publicly available GWAS datasets from European ancestries of cigarette 

smoking and alcohol use traits. Datasets used were: Problematic alcohol use (PAU)6, N = 

435,563; Drinks Per Week (DPW)5, N = 941,280; Nicotine Dependence (ND)7, N = 78,067; 

Cigarettes Per Day (CPD)5, N = 337,334.  

LD score regression analysis 

Stratified LD score regression (LDSC)90 was used to estimate the enrichment of SNP-based 

heritability for PAU, DPW, ND, and CPD GWAS. Cis-regulatory elements (CREs) of the PFC and 

substantia nigra (SN) were defined as regions marked as active transcriptional start site (TSSs, 

state 1), flanking active TSSs (state 2), genic enhancers (state 6) and enhancers (state 7) in the 

chromHMM core 15-state model19. We acquired CREs of CNs and DNs by converting chromatin 
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accessibility peaks reported in Zhang et al21 to hg19 using liftOver. CREs of different cell types in 

the cortex were obtained by merging H3K27ac and H4K3me3 peaks reported from Nott et al22. 

Genetic variants were annotated to corresponding CREs, and SNP-based heritability enrichment 

was calculated using the GWAS summary statistics mentioned above.  

H-MAGMA and gene selection  

H-MAGMA input files were generated from the midbrain DN Hi-C data (DN H-MAGMA). Briefly, 

exonic and promoter SNPs were assigned to the genes in which they reside, while intronic and 

intergenic SNPs were coupled to their target genes based on significant chromatin interactions 

detected in DNs. For CN H-MAGMA, we used H-MAGMA input previously generated from NeuN-

positive cells sorted from the dorsolateral prefrontal cortex (DLPFC)17. These input files are 

available in the GitHub repository at https://github.com/thewonlab/H-MAGMA.  

Using these input files, we ran Hi-C coupled MAGMA (H-MAGMA) v.1.0891 as previously 

described with the following code12.  

magma_v1.08/magma -–bfile g1000_eur –pval <GWAS summary statistics> 

use=rsid, p ncol=N -–gene-annot <MAGMA input annotation file> -–

out<output file> 

H-MAGMA converts SNP-level p-values into gene-level p-values, from which we selected protein-

coding genes that are significantly associated with cigarette smoking and alcohol use traits at 

FDR<0.05. Since we used both cortical and dopaminergic Hi-C datasets, we obtained two gene 

sets, one from running CN H-MAGMA and the other from running DN H-MAGMA. These genes 

were used for subsequent functional analyses.  
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Gene ontology  

We performed gene ontology (GO) analyses to identify biological pathways underlying cigarette 

smoking and alcohol use traits. Rather than using a selected set of genes with a specific FDR 

cutoff, we ran a rank-based gene ontology analysis using the Bioconductor package g:Profiler 

(v.0.7.0)92. Briefly, genes were ranked based on Z-scores calculated by H-MAGMA, such that 

genes more significantly associated with a given trait are listed at the top. Biological pathways 

over-represented by the highly ranked genes were selected. 

gprofiler(<Ranked gene list>, organism=“hsapiens”, ordered_query=T, 

significant=T, max_p_value=0.05, min_set_size=15, max_set_size=600, 

min_isect_size=5, correction_method=“fdr”, hier_filtering=“strong”, 

custom_bg=background gene set, include_graph=T, src_filter=“GO”) 

Cellular expression 

We identified cellular expressions of cigarette smoking and alcohol use risk genes using publicly 

available single cell RNA sequencing data (scRNA-seq)50,54,62. Given that GWAS power can 

influence the number of significant genes for a given trait, we used two different FDR thresholds 

to select cigarette smoking and alcohol use risk genes. We used FDR<0.1 for GWAS for ND, 

given that there were <20 genome-wide significant loci; FDR<0.05 for PAU, DPW, and CPD given 

>20 genome-wide significant loci. Next, we used scRNA-seq data from the human cortex to 

annotate cell-type specific and neuronal subcluster specific expressions of CN H-MAGMA risk 

genes for PAU, DPW, ND, and CPD50,62. Upon gene selection, we scaled expression profiles of 

each cell using the scale (x, center=T, scale=F) function in R and calculated the average 

expression of H-MAGMA risk genes in a given cell. Cell types (e.g. Neurons, Astrocytes, 

Microglia, Endothelial, Oligodendrocytes) and neuronal subclusters (e.g. excitatory and inhibitory 
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neurons) with highest average expression values were identified as central cell types underlying 

cigarette smoking and alcohol use traits. Similarly, we annotated DN H-MAGMA risk genes to 

midbrain cell-types identified from scRNA-seq from the human embryonic ventral midbrain during 

development54. Midbrain cell types include Radial glial (Rgl), Neuroblast, Progenitors (consisting 

of medial floorplate, lateral floorplate, midline, and basal plate progenitors), Neuronal progenitors 

(NProg), Oligodendrocyte progenitor cells (OPC), Dopaminergic neurons, Endothelial, 

GABAergic neurons, Microglial, Oculomotor and trochlear nucleus (OMTN), Pericytes, Red 

nucleus, and Serotonergic neurons. Lastly, we sought to identify specific dopaminergic clusters 

enriched for cigarette smoking and alcohol use risk genes. To achieve this, we annotated DN H-

MAGMA risk genes to the dopaminergic lineage identified from the human embryonic ventral 

midbrain54. 

Regional expression pattern 

We measured brain regional expression profiles of cigarette smoking and alcohol use risk genes 

using a comprehensive dataset of the mouse nervous system from Zeisel et al. 201823. Of the 24 

brain regions represented, we analyzed the following regions: Cortex, Hippocampus, Amygdala, 

Striatum, Thalamus, Hypothalamus, Midbrain, Cerebellum, and Spinal cord. We generated a new 

list of risk genes for cigarette smoking and alcohol use traits by combining CN and DN H-MAGMA 

risk genes using union(x,y) in R to ensure that our findings were not being dominated by a 

specific H-MAGMA gene set. Next, we scaled each brain regional expression profile using 

scale(x, center=T, scale=F) in R  and calculated the average expression of H-MAGMA 

risk genes. Regions with relatively enriched expression were identified as brain regions 

associated with cigarette smoking and alcohol use traits.  
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Pleiotropic genes 

To identify shared neurobiological mechanisms between cigarette smoking and alcohol use traits, 

we compared gene-level association statistics of PAU and CPD using the rank-rank 

hypergeometric overlap (RRHO, v.1.40)65 R package. Because non-coding genes could result in 

spurious relationships, we restricted our analysis to protein-coding genes and ran RRHO with the 

following command line.  

RRHO.result = RRHO (Gene list 1, Gene list 2, outputdir=“~/output/”,  

alternative=“enrichment”, labels=c(“Gene list 1”, “Gene list 2”), 

BY=TRUE, log.ind=TRUE, plot=TRUE) 

Overlapping genes between PAU and CPD as identified by RRHO output files served as 

pleiotropic genes for downstream analyses. To identify biological pathways underlying pleiotropic 

genes, we ran GO analyses as previously described92. Because RRHO does not provide a ranked 

gene list, we performed GO analyses on the unranked pleiotropic genes with the following 

command line. 

gprofiler(<Unranked pleiotropic gene list>,  organism=”hsapiens”, 

ordered_query=F, significant=T, max_p_value=0.05, min_set_size=15, 

max_set_size=800, min_isect_size=5, correction_method=”fdr”, 

hier_filtering=”moderate”, custom_bg=background gene set, 

include_graph=T, src_filter=”GO) 

Differentially expressed genes in response to cocaine 

To test for cell-type specific changes of pleiotropic genes in response to cocaine, we first 

overlapped H-MAGMA genes with differentially expressed genes (DEGs) in the rodent nucleus 

accumbens (NAc) upon cocaine exposure66. DEGs from dopaminergic cell clusters (Drd1-MSNs, 
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Drd2-MSNs1, Drd2-MSNs2, Drd3-MSNs) identified from the NAc were converted from the rodent 

HUGO Gene Nomenclature Committee (HGNC) symbol to their homologous human Ensembl 

gene IDs. Rodent genes that did not have a corresponding human Ensembl ID were removed 

from analysis, resulting in a total of 12,437 cocaine background genes from the dopaminergic 

clusters. We next selected for DEGs at FDR adjusted p-value<0.05 from the dataset, resulting in 

a total of 608 significant dopaminergic DEGs from the cocaine background genes. These 608 

significant DEGs were classified as cocaine DEGs for analysis. Because cocaine background 

genes differ from all H-MAGMA background genes, we generated a comparable H-MAGMA risk 

gene set by overlapping pleiotropic genes with the cocaine background genes. Next, we 

compared the proportion of pleiotropic genes that overlapped with cocaine DEGs using the 

Venn(x) function in the Vennerable package (v.3.1.0.9000) in R. We also applied a Fisher’s 

exact test to test for significance of overlap as follows: 

fisher.test(matrix(c(overlapping set, Gene list 1-overlapping set, Gene 

list 2-overlapping set, cocaine background genes),2,2) 

Lastly, to assess cell-type specific transcriptional changes of pleiotropic genes upon cocaine 

treatment, we compared transcriptional changes between saline vs. cocaine in the scRNA-seq 

data66. Briefly, we scaled each cell using the scale(x, center=T, scale=F)function in R 

and generated box plots comparing saline vs. cocaine treatment for each cluster (e.g. Astrocytes, 

Dopaminergic neurons, GABAergic neurons, Glutamatergic neurons, Metabotropic glutamate 

receptor [Grm8-MSN], Microglia, Mural cells, Oligodendrocytes, Polydendrocytes, Interneurons). 

To test if our risk genes behave differently after cocaine treatment, we compared cellular 

expression levels between saline and cocaine treatment using the t.test (x1, x2) function 

in R.  
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Drug enrichment analysis  

We used EnrichR69 to obtain a list of potential drug candidates for cigarette smoking and alcohol 

use risk genes. We limited our analysis to the Drug Signature (DsigDB) and Drug Matrix 

databases of EnrichR as they were the most comprehensive drug libraries available on the 

platform. Using cigarette smoking and alcohol use risk genes identified with the threshold of 

FDR<0.05 for PAU, DPW, ND, and CPD, we adjusted drug associated p-values provided by 

EnrichR after multiple testing correction and selected for significant drugs approved by the Food 

and Drug Administration (FDA) and small molecules. 

Data Availability 

CN (syn21760712) and DN (syn24184521) Hi-C datasets described in this manuscript are 

available via the PsychENCODE Knowledge Portal (https://psychencode.synapse.org/). The 

PsychENCODE Knowledge Portal is a platform for accessing data, analyses, and tools generated 

through grants funded by the National Institute of Mental Health (NIMH) PsychENCODE program. 

Data is available for general research use according to the following requirements for data access 

and data attribution: (https://psychencode.synapse.org/DataAccess). H-MAGMA input and output 

files are available in the Github repository (https://github.com/thewonlab/H-MAGMA). GWAS 

summary statistics for DPW and CPD were obtained from 

https://genome.psych.umn.edu/index.php/GSCAN. GWAS summary statistics for ND and PAU 

were obtained from dbGaP with the accession numbers and phs001532.v1.p1 and 

phs001672.v3.p1, respectively. RNA-seq and ATAC-seq data from iPSC-derived CNs and DNs 

were obtained from GSE129017.  
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Code Availability 

All custom code used in this work is available in the following Github repository: 

https://github.com/thewonlab/H-MAGMA. 
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Supplementary Figure Legend 

 

Supplementary Figure 1. Heritability enrichment of cigarette smoking and alcohol use 
traits in DNs and cortical cell types. A. Heritability enrichment of cigarette smoking and alcohol 

use traits using stratified LDSC. Genetic risk variants associated with cigarette smoking and 

alcohol use traits are enriched for DN-CREs. B. Cell-type specific heritability enrichment of 

cigarette smoking and alcohol use traits in the cortex. We observed neuronal enrichment for 

cigarette smoking and alcohol use traits. Dotted line indicates FDR=0.05. Astro, astrocyte; Micro, 

microglia; Neuro, neuron; Oligo, oligodendrocyte.  
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Supplementary Figure 2. Difference in chromatin architecture between CNs and DNs. 
Normalized contact frequency matrices for EN1 (A), EN2 (B), and FOXA2 (C) loci (highlighted in 

green). Heatmaps represent 40kb normalized Hi-C contact matrices of CNs (top) and DNs 

(middle). Z-axis, normalized contact frequency. Barplots in the bottom represent binSingal values 

calculated from normalized Hi-C contact matrices of CNs (red) and DNs (orange). Normalized 

expression values of EN1, EN2, and FOXA2 demonstrate their elevated expression in DN. 

Wilcoxon Rank Sum test was used to calculate p values. 
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Supplementary Figure 3. Genetic correlations and overlapping genes between cigarette 
smoking and alcohol use traits. A. LDSC and RRHO were used to estimate genetic correlations 

and gene-level overlap between cigarette smoking and alcohol use traits, respectively. Bottom 

left plot represents genetic correlations (rg) while top right plot denotes gene-level overlap using 

CN H-MAGMA output files. B. Overlap between PAU and CPD risk genes identified by CN H-

MAGMA using RRHO. C. Genetic correlations (bottom left) and gene-level overlap from DN H-

MAGMA output files. 
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Supplementary Figure 4. Cellular expression changes of pleiotropic genes in response to 
cocaine treatment. The x-axis indicates cell types identified from the mouse NAc while the y-

axis indicates scaled expression values of pleiotropic genes within a given cluster. T-tests were 

used to measure significance. FDR of significant pairs are represented with asterisks. * FDR 

adjusted p<0.05; *** FDR adjusted p<0.001; **** FDR adjusted p<0.0001. Drd1-MSN, dopamine 

receptor D1 medium spiny neurons enriched for D1-like family; Drd2-MSN and Drd2-MSN2, 

dopamine receptor D2 medium spiny neurons; Drd3-MSN, dopamine receptor D3 medium spiny 

neurons; Grm8-MSN, glutamatergic neurons metabotropic glutamate receptor; Oligo, 

oligodendrocyte. 
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