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Abstract 

 

The role of language in mediating or augmenting human thought is the subject of long-

standing debate. One specific claim links language and the ability to categorize objects based 

on a certain feature. According to this view, language resources are critical for feature-based 

categorization because verbal labels can help maintain focus on the relevant categorization 

criterion and reduce interference from other (irrelevant) features. As a result, language 

impairment is expected to affect categorization of items grouped according to a single feature 

(low-dimensional categories, e.g., ‘Things made of wood’), where many irrelevant features 

need to be inhibited, more than categorization of items that share many features (high-

dimensional categories, e.g., ‘Animals’), where few irrelevant features need to be inhibited. 

We here present findings from individuals with aphasia that go against this hypothesis 

(Experiments 1 and 2). We also present fMRI data from young healthy adults, showing that 

the language brain regions exhibit low activity level during categorization, for both low-

dimensional and high-dimensional categories (Experiment 3). In tandem, these results 

demonstrate that language is not critical for object categorization. Our work contributes to the 

growing evidence that, although language may assist in accessing task-relevant information 

(e.g., instructions), many cognitive tasks in adult brains proceed without recruiting the 

language system. 
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1. Introduction 

The role of language in mediating or augmenting thought is the subject of long-standing 

debate. According to one view, language is necessary for many cognitive functions, such as 

math, logic, and (inner) thought (e.g., Baldo et al., 2010, 2015; Bermúdez, 2007; Bickerton, 

1995; Carruthers, 2002; Darwin, 1871; Dennett, 1994). However, a large body of evidence 

supports a different view: that language is cognitively and neurally independent from the rest 

of human cognition. This evidence includes the lack of activity in the language brain regions 

during non-linguistic tasks that allegedly require language (e.g., Amalric & Dehaene, 2016, 

2019; Fedorenko et al., 2011; Ivanova et al., 2021; Monti et al., 2009, 2012), the retained 

ability of some individuals with aphasia to perform such tasks (e.g., Bek et al., 2013; Benn et 

al., 2013; Siegal & Varley, 2006; Varley et al., 2005), and variability across cultures in the 

use of language resources during thought (Kim, 2002). However, the role of language is still 

contested for one important aspect of human cognition: categorization. 

 

Like other animals, humans can convert rich, multi-dimensional perceptual inputs into a 

latent lower-dimensional structured representation of the world. Grouping discriminable 

individual objects and events into object and event classes allows us not only to decide 

whether some new object/event belongs to a particular category, but also to draw powerful 

inferences about shared properties from one category member to another (e.g., Mareschal & 

Quinn, 2001; Mervis & Rosch, 1981; Murphy, 2002; Pearce, 1994; E. E. Smith & Medin, 

1981; L. B. Smith & Heise, 1992; Wasserman et al., 1988). In contrast to other animals, 

humans additionally label individual categories with words—the core building blocks of a 

powerful communication system that allows us to share complex thoughts with one another. 

The link between words and learning the structure of new categories has been extensively 

investigated in infants/children (e.g., Ferguson & Waxman, 2017; Gershkoff-Stowe et al., 

1997; Plunkett et al., 2008; Sloutsky & Fisher, 2004; Waxman & Gelman, 2009) and, to some 

extent, in adults (Brojde et al., 2011; Lupyan et al., 2007; Lupyan & Casasanto, 2015). But 

how does language affect the process of grouping objects into categories when the category 

boundaries are already known? 

 

1.1 High-dimensional and low-dimensional categories  

Before summarizing the key evidence, it is important to introduce a distinction that has been 

considered theoretically and empirically relevant to this question. Lupyan and colleagues 
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(e.g., Lupyan, 2009; Lupyan & Mirman, 2013; Perry & Lupyan, 2014) distinguish between 

‘high-dimensional’ (HD) categories, where members share many features, and ‘low-

dimensional’ (LD) categories, where members share one or a few features. HD categories 

typically correspond to established sets that reflect either the taxonomic (similarity-based) or 

relational/thematic (contiguity- or co-occurrence-based) structure of the world (Bain, 1864; 

Mirman et al., 2017). Taxonomic HD categories can often be labeled by superordinate terms 

such as ANIMALS, FRUIT, or TOOLS. Relational HD categories correspond to common 

events/scenarios: for example, THINGS YOU TAKE ON A PICNIC or NON-FOOD 

THINGS FOUND IN THE KITCHEN. For such relational categories, the shared features 

have to do with typical co-occurrences (e.g., although a fridge and a spatula are quite 

different, they both co-occur with a large number of kitchen objects, like a stove, pots and 

pans, a kettle, etc.). In contrast to HD categories, LD categories are more likely to be novel 

groupings of items that often straddle taxonomic and relational boundaries, such as THINGS 

MADE OF WOOD or THINGS THAT ARE YELLOW (e.g., things made of wood may 

include a cupboard, a sledge, and a wooden spoon, and things that are yellow may include a 

lemon, a yellow hat, and a canary). 

 

Similar distinctions have been made by others in related literatures. For example, Barsalou 

(1983) distinguishes between ‘common’ categories, which mirror the correlational structure 

of the environment, and ‘ad-hoc’, or ‘goal-derived’, categories, which are constructed for a 

specific goal and are thus often based on a small number of features. Kloos & Sloutsky 

(2008) and Sloutsky (2010) distinguish between ‘dense’ and ‘sparse’ categories based on the 

ratio of category-relevant variance to total variance. Members of statistically dense categories 

share many inter-correlated features that matter for category membership with few or no 

irrelevant features, and members of sparse categories have very few features in common, 

with many other features varying independently and being irrelevant for category 

membership. Couchman et al. (2010) contrast family-resemblance categorization, which 

relies on judgments of overall similarity, considering multiple features in tandem, and 

criterial-attribute categorization (or ‘rule-based categorization’), which requires adhering to a 

single-dimensional criterial attribute and suppressing all other, irrelevant dimensions (see 

also Ashby & O’Brien, 2005). Langland-Hassan et al. (2021) relate the HD/LD distinction to 

the concrete/abstract distinction, arguing that concrete items have many shared features, 

whereas identifying items from an abstract category requires generalizing over many 

irrelevant properties to identify a small set of commonalities.  
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1.2 The LD-specific language recruitment hypothesis 

One claim that emerged in the literature in recent years is that language plays a special role in 

LD categorization (Lupyan, 2009, 2012; Lupyan & Mirman, 2013). The argument goes as 

follows: categorizing objects into LD/sparse categories is more cognitively costly because 

features irrelevant to the categorization criterion interfere and have to be inhibited (e.g., when 

categorizing objects by color, their shape and function have to be ignored); a verbal label 

(e.g., ‘yellow’) can help maintain focus on the relevant categorization criterion1 and reduce 

interference from irrelevant features. The LD-specific language recruitment hypothesis makes 

two predictions: i) reduced availability of language resources should lead to a greater 

disruption of LD compared to HD categorization (we will adhere to the ‘LD’/‘HD’ 

terminology in the remainder of the paper for consistency with Lupyan and colleagues’ 

work); and ii) LD categorization should engage the language system to a greater degree than 

HD categorization. 

 

The first prediction had found some support in the aphasia literature. Some patients with 

linguistic deficits have been reported to exhibit impairments in non-verbal categorization 

tasks when the task required focusing on one particular dimension and ignoring other salient 

dimensions (Cohen et al., 1980; Cohen & Woll, 1981; Davidoff & Roberson, 2004; De Renzi 

& Spinnler, 1967; Hjelmquist, 1989). Building on these findings, Lupyan (2009) manipulated 

verbal vs. spatial interference in a dual-task paradigm in neurotypical participants and found 

that verbal, but not visuo-spatial, interference affected the participants’ ability to decide 

whether an object belongs to an LD category. In contrast, verbal and visuo-spatial 

interference had similar (and negligible) effects on HD categorization. Lupyan and colleagues 

concluded that access to lexical resources (verbal labels) is important for LD categorization. 

 

In a follow-up study, Lupyan and Mirman (2013) directly compared performance on HD and 

LD categorization in individuals with aphasia and neurotypical controls. Participants were 

provided with a category label and then had to select from a picture array the subset of 

objects that belong to the target category (similar to Figure 1, top). Performance in the LD 
                                                 
1 In some places, Lupyan and colleagues talk about ‘forming the task-relevant category representations’ (e.g., 
Lupyan & Mirman, 2013, p. 1188). However, this construal is confusing given that in the paradigms used in 
these studies, the category label is always provided to the participants. As a result, we assume that the argument 
has to revolve around the maintenance of task-relevant information. 
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condition was lower for both groups, but critically, the HD vs. LD difference was larger in 

individuals with aphasia, particularly in those with low scores on a picture-naming task. 

 

However, evidence from aphasia does not provide uniform support for the LD-specific 

language recruitment hypothesis. For example, Burger and Muma (1980) found deficits in 

HD categorization in individuals with anomia and in individuals with Wernicke’s aphasia 

using a task similar to that used in Lupyan and Mirman (2013). Others described aphasia-

related categorization deficits for both HD and LD categories (Koemeda-Lutz et al., 1987) or 

no deficits in either (Hough, 1993). Further, variations in the task (such as showing the 

category label to the participant during the entire trial vs. just at the beginning of the trial) 

significantly affected categorization performance in participants with aphasia (Koemeda-Lutz 

et al., 1987), suggesting that task demands may contribute to the observed results (above and 

beyond alleged effects of category type). Finally, some have argued for a relationship 

between categorization difficulties and conceptual-semantic rather than linguistic 

impairments (Caramazza et al., 1982; Whitehouse et al., 1978; cf. Le Dorze & Nespoulous, 

1989). 

 

It is important to emphasize that even if individuals with aphasia did consistently show a 

selective impairment in LD categorization, it would not necessarily implicate language as the 

source of the deficit. In particular, the language network in the left hemisphere, especially in 

the left frontal cortex, lies adjacent to the domain-general multiple demand network, which 

supports executive functions, like working memory and inhibitory control (Assem, Glasser, et 

al., 2020; Duncan, 2010, 2013; Fedorenko et al., 2012, 2013). As a result, left hemisphere 

damage can lead to joint linguistic and domain-general executive deficits (Baldo et al., 2010; 

Gainotti et al., 1986). Prior work has shown that performance on executive function tasks, not 

language tasks, predicts success in learning novel categories (Vallila-Rohter & Kiran, 2015). 

Further, the multiple demand network, but not the language network, is robustly sensitive to 

cognitive effort across domains (e.g., Fedorenko et al., 2011, 2013; Hugdahl et al., 2015; 

Shashidhara et al., 2019), and LD categorization appears to be more cognitively challenging 

than HD categorization: LD categories are harder to learn for both human children (e.g., 

Kloos & Sloutsky, 2008) and non-human primates (Couchman et al., 2010), require 

supervision (e.g., Kloos & Sloutsky, 2008), and are generally linked with executively-taxing 

intentional learning (Ashby et al., 1998; Ashby & Ell, 2001; Ashby & O’Brien, 2005; 

Couchman et al., 2010; Kemler Nelson, 1984). Finally, information about LD category 
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membership is typically not stored but rather “computed on the fly”, which can also result in 

higher cognitive load. It is therefore possible that impaired performance on LD categorization 

(and on categorization tasks more broadly) depends primarily on domain-general executive 

resources. 

 

The second prediction of the LD-specific language recruitment hypothesis is that LD 

categories would evoke stronger activity within the language brain regions. To our 

knowledge, this hypothesis has not been directly tested in the neuroimaging literature; 

instead, many studies have investigated differences between taxonomic and thematic 

relations (e.g., Kalénine et al., 2009; Lewis et al., 2015; Sachs et al., 2008; Sass et al., 2009), 

both of which are considered HD. Further, few neuroimaging studies employ methods that 

would be required to dissociate the contributions of language-specific regions from those of 

domain-general executive regions: given the inter-individual variability in the precise 

locations of functional areas, voxels in anatomically identical locations within the frontal lobe 

might be language-specific in one individual and domain-general in another, so traditional 

group-based analyses (Friston et al., 1994) would fail to distinguish between them 

(Fedorenko et al., 2012; Fedorenko & Blank, 2020; Nieto-Castañón & Fedorenko, 2012). 

Unambiguously assessing the role of language in LD categorization requires identification of 

language-specific regions in individual participants and testing their responses to LD 

compared to HD conditions. 

 

1.3 Current study 

Here, we report three interlinked experiments aimed at re-examining the role of language in 

categorization. In line with recent emphasis on robust and replicable science (e.g., Ioannidis, 

2014; Poldrack et al., 2017), in Experiments 1 and 2, we attempt to conceptually replicate the 

findings of Lupyan and Mirman (2013; L&M henceforth). In Experiment 1, we closely 

follow L&M’s experimental procedure, but additionally include another brain-damaged 

control group (individuals with Parkinson’s disease, or PD) to examine general effects of 

brain damage on performance. In Experiment 2, we adjust the experimental paradigm to 

reduce general executive demands, which might affect performance (e.g., Koemeda-Lutz et 

al., 1987). Finally, in Experiment 3, we use fMRI in neurotypical individuals to test the 

prediction that the language system is engaged during LD categorization more than during 

HD categorization. 
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To foreshadow our results, we find that participants with aphasia perform worse on the 

categorization task overall, but this effect does not selectively affect LD categories. In 

Experiment 1, participants with aphasia actually performed better on LD trials than on HD 

trials. In Experiment 2, participants with low naming scores did show impaired performance 

on LD categorization compared to HD categorization; however, the performance of one 

individual with severe naming impairments was within 2 standard deviations of healthy 

controls on both LD and HD categorization. Finally, Experiment 3 revealed low engagement 

of the language network during both LD and HD categorization, with no significant 

difference between the two. Thus, the language system does not play a special role in LD 

(single-feature-based) categorization and is not engaged during categorization in general. 

 

 

2. Experiment 1 

The aim of Experiment 1 was to replicate the effects reported by L&M. In their study, L&M 

compared LD and HD categorization performance in participants with anomic aphasia and in 

neurotypical controls. They found a) lower performance on LD compared to HD categories in 

both healthy adults and participants with anomic aphasia; and, critically, b) a greater 

decrement in performance for the LD, compared to the HD condition in participants with 

aphasia. We aimed to see whether these same effects would be present in our study. To 

additionally examine the extent to which performance might depend on the general effect of 

brain damage, as opposed to a linguistic impairment, we also included a group of individuals 

with Parkinson’s disease (PD). 

 

2.1 Methods 

2.1.1 Participants 

Neurotypical older participants (N=9 (6 F), age M=67.89, SD=14.98) were recruited by 

convenience sampling; individuals with chronic aphasia (N=11 (3 F), age M=61.18, 

SD=12.09) were recruited from the UCL Aphasia Clinic Research Register. The aphasia 

group included patients with a range of aphasia types and severities. Individuals with PD 

(N=14 (8 F), age M=68.64, SD=11.69) were recruited from the Parkinson’s UK Research 

Registry (see Table 1 for detailed participant information). All participants used English as 

their primary language. Patients were offered a £10.00 reimbursement. Ethical approval was 
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granted by the UCL Research Ethics panel, Project ID: LC/2013/05, and all volunteers gave 

informed consent to participate in the experiment. 
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Table 1. Participant information, Experiment 1. 

 
Group Participant Age Education Gender TPO 

(months) 
BNT 

Neurotypical 1 75 Up to 16 F - 51 
 2 68 Up to 16 F - 55 
 3 68 Up to 16 M - 55 
 4 56 Degree-Level F - 59 
 5 98 Up to 16 F - 47 
 6 54 Degree-Level M - 53 
 7 69 Up to 16 M - 55 
 8 76 Up to 16 F - 52 
 9 47 Up to 18 F - 58 
PD 1 60 Postgraduate M 36 59 
 2 58 Degree-Level M 12 58 
 3 80 Up to 18 F 48 58 
 4 56 Postgraduate F 48 54 
 5 66 Degree-Level F 72 59 
 6 75 Degree-Level F 96 56 
 7 76 Up to 18 M 36 54 
 8 59 Degree-Level F 60 55 
 9 69 Postgraduate F 36 54 
 10 63 Postgraduate F 60 56 
 11 77 Degree-Level M 12 46 
 12 72 Postgraduate M 120 53 
 13 75 Degree-Level M 2 58 
 14 75 Postgraduate F 360 53 
Aphasia 1 52 Degree-Level M 120 30 
 2 57 Up to 16 M 84 57 
 3 52 Up to 18 M 48 52 
 4 59 Postgraduate M 120 43 
 5 79 Up to 16 F 36 50 
 6 44 Up to 18 F 12 14 
 7 81 Up to 16 M 96 57 
 8 56 Up to 18 M 60 12 
 9 57 Up to 18 M 48 51 
 10 60 Up to 16 M 132 34 
 11 76 Up to 16 F 84 14 

 

TPO- Time Post Onset; BNT- Boston Naming Test 

 

2.1.2 Design and Materials 

The critical categorization task was modeled closely on L&M’s experiment, which used 34 

unique categories (18 HD categories and 16 LD categories), with some repetition of 

categories in each condition. We chose to not repeat any categories, so we limited the 

materials to 16 categories in each condition (dropping ‘BODY PARTS’ and ‘FACIAL 

FEATURES’ from the HD set). Unlike L&M, who used cartoon images, we used high-

quality color photographs selected from the Hemera Photo Objects 5000 and Google Images. 

For each category, we selected 8-15 targets and 25-27 distractors, for a total of 1087 unique 

images (any given image appeared as a target in 0-2 categories and as a distractor in 0-2 

categories). All photographs depicted objects on a white background. The materials and the 

experimental scripts for all experiments are available on OSF: https://osf.io/guwh8/. 
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To determine the extent of lexical impairment in the aphasia group and to compare lexical 

abilities across the three groups, all participants completed the Boston Naming Test (BNT; 

Goodglass et al., 1983), where they were sequentially presented with up to 60 line drawings 

of objects and asked to overtly name each one. The standard discontinuation rule was applied, 

with testing stopped after eight consecutive failed naming attempts. No semantic or 

phonological cues were given.  

 

 
Figure 1. Trial structure in Experiment 1 (top) and Experiments 2 and 3 (bottom). HD – high 

dimensional category, LD – low dimensional category. 

  

2.1.3 Experimental Procedure  

Testing was carried out individually either in a quiet well-lit room at the UCL Aphasia clinic 

or at the participants’ home, using a MacBook Pro (Retina, 13-inch display) and an external 
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computer mouse. The experiment was set up using PsychoPy (Version 1.83), and the 

procedure closely followed that used in L&M’s experiment, except where noted. On each 

trial (see Figure 1 (top) for a sample HD and LD trial), participants were presented with a 4 

x 5 grid of images. The image sets for the individual trials—each consisting of 20 images (4 

targets and 16 distractors)—were randomly selected from the pool of targets/distractors for 

each participant separately. The category was stated at the top of the screen in lower-case 

Arial bold letters (e.g., ‘objects that hold water’) and remained on the screen for the duration 

of the trial. Participants selected the objects that belonged to the target category by clicking 

on each relevant image. A gray frame appeared around an image once it was clicked; clicking 

the image again de-selected it (removed the gray frame) to allow participants to modify 

responses. Once the participant had selected all of the images they deemed appropriate for the 

target category, they clicked a large green button with the word ‘Done’ at the bottom of the 

screen (in the L&M version, the button said ‘click here when done’). Doing so triggered the 

next trial. Although each trial contained a fixed number of targets (four), participants were 

not informed of the number of targets during the instructions and could therefore select as 

many images as they wished on any given trial. No time limit was imposed on the trials, but 

participants were encouraged to work as quickly and accurately as possible. HD and LD trials 

were interleaved, and the order of conditions was randomized for each participant. Each 

participant performed the experiment twice for a total of 64 trials (32 per condition), but in 

contrast to L&M, different sets of images were used for the two instances of each category to 

minimize practice effects. Responses were recorded for each image; response times were 

recorded for each trial (the time from the onset of the trial until the ‘Done’ button was 

pressed2). The experiment lasted approximately one hour. The BNT (Goodglass et al., 2001) 

was administered between the two runs of the experiment.  

 

2.1.4 Statistical analyses 

To determine possible differences in demographics and BNT scores across groups, we 

conducted ANOVA tests (with follow-up Bonferroni-corrected t-tests), implemented in SPSS 

22 (IBM Corp., 2013). For the critical analyses, we used linear/logistic mixed effect 

                                                 
2 L&M state that they only included ‘the correct responses’ in their RT analyses. It is not clear what is meant 
here given the internal complexity of the trials (i.e., possible errors including misses and false alarms). It is 
possible that L&M only included trials where no errors of any kind were made, but they also talk about ‘per 
click’ RTs, which is not consistent with this interpretation. It also appears that L&M analyzed median, not mean 
RTs. For simplicity and to avoid collider bias (Elwert & Winship, 2014), we chose to analyze all trials here. We 
use mean per-trial values, but we make the per-image data available on OSF (https://osf.io/guwh8/), so other 
researchers could perform additional analyses. 
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regression models (Baayen et al., 2008). Given that correct or incorrect selection of items is 

categorical in nature, we use logistic regression to analyze accuracy measures  (Jaeger, 2008). 

For response times, we use linear regression. When specifying model contrasts, we used sum 

coding for category dimension (HD vs. LD); the effect of group was therefore estimated 

across both category dimensions. For participant group (neurotypical vs. aphasia vs. PD), we 

used dummy coding with ‘neurotypical’ as the reference level; thus, the effect of category 

was estimated specifically for the neurotypical group (with interaction terms denoting 

whether the category effect differed for the aphasia/PD groups). For completeness and to 

facilitate result comparison with L&M, we also ran pairwise comparisons across groups using 

‘aphasia’ as the reference level (the results were Bonferroni-corrected, n=2). The mixed 

effect analyses were run using the lmer function from the lme4 R package (D. Bates et al., 

2015); statistical significance of the effects was evaluated using the lmerTest package 

(Kuznetsova et al., 2017); follow-up comparisons were conducted using the emmeans 

package (https://cran.r-project.org/package=emmeans). Lastly, due to a technical error, if 

participants accidently double-clicked the ‘Done’ button, the next set of images was skipped, 

and the software registered it as though no response was made by participants. As a result, we 

excluded trials where no selection was made and where the trial length was less than 5 

seconds. This resulted in the exclusion of 42 trials (out of 2177), spread randomly between 

participants, groups and categories. The analysis code is available on OSF: 

https://osf.io/guwh8/. 

 

2.2 Results 

2.2.1 Group profiles 

As expected, the neurotypical, aphasia, and PD groups differed significantly in their BNT 

scores (F(2,31)=9.85, p<.001). Post-hoc pairwise comparisons showed that the BNT scores 

of participants with aphasia (M=37.64, SD=17.78) were significantly lower than those of 

neurotypical participants (p=.005) or participants with PD (p=.001), with the latter two 

groups not differing significantly (M=53.89, SD=3.66 vs. M=55.21, SD=3.42; p>.999). The 

groups did not differ in age (F(2,31)=1.45, p=.250), but a significant difference was observed 

in the level of education (F(2,31)=14.36, p<.001): participants with PD group were 

significantly more educated than both neurotypical participants (p=.001) and participants 

with aphasia (p =.002), with the latter two not differing significantly (p>.999). 
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2.2.2 Categorization task 

Following L&M, three dependent variables were analyzed: hit rate (the number of targets 

selected out of 4), false alarm rate (the number of distractors selected out of 16), and trial 

response time (RT). To account for heterogeneity among participants and experimental 

categories, we used mixed effect regression models (Baayen et al., 2008) with category 

dimension (HD vs. LD), group (neurotypical, aphasia, and PD) and their interaction as fixed 

effects, as well as category (e.g. “DANGEROUS ANIMALS”) and participant ID as random 

effect intercepts. Categorization results are summarized in Figure 2.  

 

 

Figure 2. Experiment 1 results. (A) Hit Rate, (B) False Alarm Rate, and (C) Response Time (RT) 

across the three participant groups (here, RT is the time from trial onset until participants pressed the 

“Done” button). (D) Hit Rate, (E) False Alarm rate, and (F) RT plotted against participants’ BNT 

scores, a measure of naming performance. Here and elsewhere, error bars depict the standard error 

across participants. 

 

Hit rate. Participants with aphasia had similar hit rates for LD categories (M=0.84, SD=0.07) 

and HD categories (M=0.89, SD=0.07; LD>HD: β=-0.41, SE=0.28, p=.139). The overall hit 

rate for participants with aphasia (M=0.87, SD=0.08) was similar to neurotypical participants 

(M=0.90, SD=0.06; neurotypical>aphasia: β=0.24, SE=0.25, p=.338) and lower than for 

participants with PD (M=0.93, SD=0.03; PD>aphasia: β=0.72, SE=0.23, p=.002). Moreover, 

we did not observe a reliable category dimension by group interaction for the aphasia vs. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2021.03.18.436075doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.436075
http://creativecommons.org/licenses/by/4.0/


 15

neurotypical comparison (β=0.04, SE=0.18, p=.813), nor for the aphasia vs. PD comparison 

(β=0.19, SE=0.18, p=.304). Follow-up analyses showed that there was no main effect of 

category dimension across groups (β=0.34, SE=0.27, p=.813), nor within the neurotypical 

group (β=0.37, SE=0.29, p=.478) or the PD group (β=0.22, SE=0.29, p=.788). These results 

fail to replicate the findings by L&M, who reported the main effect of category dimension, as 

well as a selective impairment in LD categorization for patients with aphasia (Table 2). 

 
 
Table 2. Statistical significance (p values) of group and category dimension effects on categorization 

performance. The critical result reported by L&M is the Aphasia/Neurotypical (NT) Group by LD/HD 

interaction — highlighted in yellow — that we do not replicate. Here and below, p values in the L&M 

paper were obtained with ANOVA tests, whereas p values in our experiments were obtained with 

linear/logistic mixed effect models. See the main text for analysis details. 

Experiment Factor Hit Rate False Alarm Reaction Time 

Lupyan & Mirman Dimension (across all groups) < .001 < .001 n.s.† 

Group: NT vs. aphasia .086 n.s. .001 
Group (NT vs. aphasia)  
  x Dimension  .032 .160 .038 

Ours - Experiment 1 Dimension (across all groups) .813 .951 .249 

Group: NT vs. aphasia .338 .123 .044 
Group (NT vs. aphasia)  
  x Dimension .813 .006†† .522 

Group – PD vs. aphasia .002 .031 <.001 
Group (PD vs. aphasia)  
  x Dimension .304 .034 .091 

Ours - Experiment 2 Dimension (across all groups) .990 .985 .339 

Group: NT vs. aphasia < .001 < .001 < .001 
Group (NT vs. aphasia)  
  x Dimension .086 .075 < .001 

Group: PD vs. aphasia .005 <.001 <.001 
Group (PD vs. aphasia)  
  x Dimension .070 .381 <.001 

† no effect reported; likely null 
††the effect was in the opposite direction from that predicted by the LD-specific language recruitment hypothesis 
 

We additionally conducted an exploratory analysis to investigate the difference between the 

aphasia and PD groups. Given that the PD group had a higher average education level, we 

repeated the analysis above with ‘education level’ as an additional fixed effect. The updated 

model had a similar fit to the data compared to the original (as per the likelihood ratio test: 

χ
2=3.39, p=.065); under this model, the difference between the aphasia and the PD groups 
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was no longer significant (β=0.37, SE=0.29, p=.202). The significance of other effects was 

unchanged. 

 

False alarm rate. The false alarm rate in participants with aphasia also did not differ between 

LD categories (M=0.03, SD=0.03) and HD categories (M=0.03, SD=0.03; LD>HD: β=-0.22, 

SE=0.35, p=.534). As with the hit rate, the overall false alarm rate for participants with 

aphasia (M=0.03, SD=0.03) was comparable to that of neurotypical participants (M=0.01, 

SD=0.01; neurotypical>aphasia: β=-0.58, SE=0.37, p=.123), although participants with PD 

performed better than participants with aphasia, i.e., with fewer false alarms (M=0.01, 

SD=0.01; PD>aphasia: β=-0.74, SE=.34, p=.031). Unlike the hit rate results above, there was 

a significant interaction between category dimension (LD>HD) and group 

(neurotypical>aphasia: β=0.63, SE=0.23, p=.006; PD>aphasia: β=0.44, SE=0.21, p=.034). 

However, this interaction effect goes in the opposite direction from that predicted by the LD-

specific language recruitment hypothesis: participants with aphasia performed better on LD 

categories relative to controls. The pattern of results is also inconsistent with L&M’s results 

in that they found no interaction between group and category dimension. Lastly, follow-up 

analyses showed no main effect of category dimension across groups (β=-0.14, SE=0.34, 

p=.951), nor within the neurotypical group (β=-0.41, SE=0.38, p=.614) or the PD group (β=-

0.22, SE=0.37, p=.879). 

Similar to the hit rate analysis, an exploratory model that included ‘education level’ as a fixed 

effect explained a similar amount of variance compared to the original model (χ2=0.35, 

p=.557) and no longer showed a significant difference between the aphasia and PD groups 

(β=-0.57, SE=0.45, p=.209). The significance of other effects was unchanged. 

 

Response time. The RT analysis revealed that participants with aphasia were faster to 

respond during LD trials (M=32.36, SD=9.33) compared to HD trials (M=37.10, SD=12.90; 

LD>HD: β=-4.75, SE=2.26, p=.042), in contrast to the predictions of the LD-specific 

language recruitment hypothesis. The overall RTs for participants with aphasia (M=34.70, 

SD=11.30) were longer than for neurotypical participants (M=26.30, SD=12.10; β=-8.42, 

SE=4.02, p=.044) and the PD group (M=21.40, SD=5.14; β=-13.30, SE=3.66, p<.001). The 

interactions between group and category dimension were not significant 

(neurotypical>aphasia: β=0.82, SE=1.29, p=.522; PD>aphasia: β=1.98, SE=1.17, p=.091). 

Follow-up analyses showed no overall effect of category dimension across groups (β=3.81, 
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SE=2.19, p=.249), within the neurotypical group (β=3.92, SE=2.34, p=.271) or within the PD 

group (β=2.76, SE=2.27, p=.521). 

 

Effect of naming performance. To explore the effect of naming ability on the categorization 

task performance, we fitted a logistic mixed effect linear regression model with the BNT 

score, category dimension, and their interaction as fixed effects and participants (across the 

three groups) and categories (e.g., “DANGEROUS ANIMALS") as random effects. Similar 

to L&M, we also included education level as a fixed effect.  

 

Table 3. Statistical significance (p values) of category dimension and anomia effects on 

categorization performance. The critical result reported by L&M is the Aphasia/Neurotypical Group 

by LD/HD interaction — highlighted in yellow — that we replicate in Experiment 2 but not in 

Experiment 1. The effect of naming performance on response times is not reported in L&M, so we 

omit it from this table. 

Experiment Factor Hit Rate False Alarm 

Lupyan & Mirman Dimension ? † ? † 

PNT  .015 n.s. 

PNT x Dimension .015 n.s. 

Ours - Experiment 1 Dimension .236 .690 

BNT  <.001 < .001 

BNT x Dimension .078 .011† † 

Ours - Experiment 2 Dimension .885 .639 

BNT  .002 < .001 

BNT x Dimension .039 .090 
 
PNT – Philadelphia Naming Test; BNT – Boston Naming Test 
† no effect reported 
††the effect was in the opposite direction from that predicted by the LD-specific language recruitment hypothesis 

 

We found that BNT was a significant predictor of hit rate (β=0.28, SE=0.08, p<.001), false 

alarm rate (β=-0.47, SE=0.12, p<.001), and RT (β=-5.26, SE=1.41, p<.001), such that higher 

BNT scores corresponded to more accurate and faster performance (Figure 2D-F). There was 

no main effect of category dimension (hit rate: β=-0.31, SE=0.27, p=.236; false alarm rate: 

β=0.14, SE=0.35, p=.690; RT: β=-3.73, SE=2.14, p=.092). However, we observed an 

interaction between BNT and category dimension for false alarm rate (β=0.16, SE=0.16, 

p=.011), such that participants with lower BNT scores had higher false alarm rates for HD 

compared to LD categories. No interaction was observed for group and category dimension 
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for hit rate (β=0.11, SE=0.07, p=.078) or RT (β=0.74, SE=0.49, p=.131). Conversely, 

education was a significant predictor for hit rate (β=0.23, SE=0.07, p=.001) and RT (β=-2.95, 

SE=1.24, p=.024), but not for false alarm rate (β=-0.09, SE=0.11, p=.436). These results do 

not replicate the pattern of results reported by L&M (Table 3) and do not support the LD-

specific language recruitment hypothesis. 

 

2.3 Interim Discussion 

In Experiment 1, we aimed to test the hypothesis that language is selectively recruited to 

support LD categorization by using a setup similar to L&M’s study. Our results differed from 

those reported in the original study and did not support the LD-specific language recruitment 

hypothesis. None of the three outcome measures (hit rate, false alarm rate, RT) differed 

between LD and HD categorization conditions. Moreover, we did not replicate the key 

finding from L&M: participants with aphasia showed no selective impairment in LD 

categorization. The interactions between group and category dimension for hit rate and RT 

were not significant, and the interaction for the false alarm rate went in the opposite direction 

from that predicted by the original hypothesis. In summary, Experiment 1 provides no 

support for the hypothesis that language plays a special role in LD categorization. 

 

With regard to group differences, participants with aphasia performed as accurately as the 

neurotypical controls. Participants with PD performed better, but this difference is likely 

explained by the higher education level reported by participants in this group. As in L&M, 

our findings showed that participants with aphasia were significantly slower to complete the 

categorization task compared to the neurotypical and PD groups. However, the reason for this 

slower performance can be explained by the presence of more severe motor impairments in 

participants with aphasia than participants with PD (e.g., right hemiplegia), often 

necessitating use of their non-preferred hand. Thus, we are hesitant to place a lot of weight on 

the RT differences and primarily focus on the hit rate and false alarm results. 

 

Across groups, BNT scores significantly predicted performance on all three outcome 

measures (although this effect did not differ for LD and HD categorization). This relationship 

has at least two possible explanations. First, the categorization task, as designed by L&M, 

does require some linguistic processing: the participants need to read and understand the 

label, which often consists of multiple words (e.g., “non-food things found in the kitchen”). 

Thus, a disruption in receptive language may make the categorization task more difficult for 
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individuals with aphasia. Under this explanation, BNT scores may be a proxy for overall 

aphasia severity. The second explanation is that, due to the proximity of language-specific 

and multiple-demand brain regions in some parts of the brain (Fedorenko et al., 2012; 

Fedorenko & Blank, 2020), brain damage that causes lower BNT scores also leads to 

difficulties with executively challenging tasks. The categorization task adopted from L&M 

involves visual search and selecting among multiple options, which require substantial 

executive involvement (Petersen & Posner, 2012; Posner & Petersen, 1990); thus, 

categorization difficulties might reflect this increased recruitment of executive demand 

resources. 

 

Why did we fail to find support for the LD-specific language recruitment hypothesis? One 

possibility is that the selective impairment in LD categorization manifests only in individuals 

with low naming performance. Thus, we might have missed the effect of interest because we 

recruited participants with a fairly wide range of naming scores. To address this potential 

concern, we conducted a modified version of the categorization experiment with a new set of 

participants, with a focus on individuals with severe naming impairments in the aphasia 

group. 

 

 

3. Experiment 2 

The aim of Experiment 2 was three-fold. First, we wanted to follow up on the relationship 

between naming ability (BNT scores) and categorization performance, which was reported by 

L&M and found in Experiment 1. Thus, we recruited participants with aphasia who had 

severe anomia, as measured by the BNT (score range 1-11, compared to 12-57 in Experiment 

1; see Tables 1 and 4). Second, we adjusted the paradigm to minimize executive demands, 

including attention, visual search, selection/inhibition, and updating. Third, we sought to 

validate a version of the task that could be used in an fMRI setting (time-locked to events). 

See Figure 1 (bottom) for the modified task setup. 

 

3.1 Method 

3.1.1 Participants 

Neurotypical participants (N=15 (15 F), age M=72.47, SD=6.41) were recruited by 

convenience sampling; patients with chronic aphasia and severe lexical access impairment 
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(N=5 (all males), age M=66.60, SD=8.91) were recruited from Aphasia volunteer research 

registers; PD patients (N=15 (1 F), age M=66.60, SD=6.38) were recruited from the 

Parkinson’s UK Research Registry (see Table 4 for detailed participant information). None 

of the participants took part in Experiment 1. All participants used English as their primary 

language and were offered a £15.00 reimbursement. Ethical approval was granted by the 

UCL Research Ethics panel, Project ID: LC/2013/05, and all volunteers gave informed 

consent to participate in the experiment. 

 

Table 4. Participant information, Experiment 2. 
 

Group Participant Age Education Gender 
TPO 

(months) 
BNT 

Neurotypical 1 68 Degree-Level F - 51 

 2 61 Postgraduate F - 41 

 3 85 Degree-Level F - 54 

 4 73 Postgraduate F - 58 

 5 72 Up to 18 F - 58 

 6 77 Postgraduate F - 55 

 7 77 Degree-Level F - 59 

 8 66 Degree-Level F - 57 

 9 66 Postgraduate F - 54 

 10 76 Degree-Level F - 59 

 11 65 Postgraduate F - 56 

 12 80 Up to 18 F - 45 

 13 74 Postgraduate F - 54 

 14 71 Degree-Level F - 57 

 15 76 Degree-Level F - 47 

PD 1 71 Degree-Level M 24 58 

 2 78 Degree-Level M 24 47 

 3 64 Postgraduate M 30 48 

 4 72 Postgraduate M 18 59 

 5 54 Degree-Level M 204 58 

 6 72 Degree-Level M 4 48 

 7 62 Postgraduate F 120 56 

 8 65 Postgraduate M 17 59 

 9 74 Up to 18 M 96 56 

 10 67 Up to 16 M 60 54 

 11 67 Postgraduate M 72 59 

 12 59 Postgraduate M 30 58 

 13 59 Degree-Level M 48 60 

 14 67 Degree-Level M 18 55 

 15 68 Degree-Level M 98 48 

Aphasia 1 58 Up to 18 M 42 5 

 2 68 Up to 16 M 68 9 

 3 77 Up to 18 M 111 11 

 4 57 Degree-Level M 34 1 

 5 73 Up to 18 M 326 4 

 

TPO- Time Post Onset; BNT- Boston Naming Test 

 
3.1.2 Design and Materials 
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The categories were identical to those of Experiment 1. The images were also largely the 

same although some were replaced by better quality photographs. Unlike Experiment 1, we 

presented the images sequentially (Figure 2, bottom). Each block started with a category 

label, followed by 12 images presented one at a time. The category label remained on the 

screen to minimize memory demands. The images for each category block were randomly 

selected from the general set of pictures for that category. The number of targets varied 

across blocks (minimum: 4, maximum: 6) so as to minimize the implicit learning of a fixed 

number of targets, which could have incentivized participants to keep track of the total 

number of targets and thereby increase their cognitive load. Categories were grouped by 

dimension (LD/HD) into groups of 4, for a total of 8 blocks (4 blocks per dimension). These 

8-block sequences (“runs”) were separated by a rest period of fixation (10s in duration). The 

order of runs, the order of conditions within runs (LD first vs. HD first), the order of 

categories within runs, and the order of images within category blocks were randomized for 

each participant. 

 

3.1.3 Experimental Procedure 

Testing was carried out individually either in a quiet well-lit room at a clinic nearest to the 

participant’s location or in their home, using a Dell Latitude E5540 (14.1-inch display). The 

experiment was set up using Python (version 2.7.10). Each category block started with an 

instruction screen presented for 2s that read ‘Please find [CATEGORY LABEL]’ (e.g., 

‘Please find objects that hold water’). Given that the participants in the aphasia group were 

severely lexically impaired and had difficulty processing orthographic information, the 

experimenter read the category label aloud to all participants (in all groups) during this trial-

initial 2s window. This screen was followed by a sequence of 12 images presented one at a 

time for a maximum of 10s per image. For each image, participants had to decide whether the 

depicted object belong to the target category by pressing one of two keys on the keyboard: 

the ‘Y’ key marked with a green sticker for YES, or the ‘N’ key marked with a red sticker for 

NO. If no response was recorded for 10s, the experiment advanced to the next image. 

Responses and response times were recorded for each image. The experiment lasted 

approximately 1 hour. The BNT was administered at the beginning of the testing session.  

 

3.1.4 Statistical analyses 

The statistical analysis procedure was the same as in Experiment 1. No trials were excluded.  
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3.2 Results 

3.2.1 Group profiles 

As expected, the groups differed significantly in their BNT scores (F(2,32)=202.67, p<.001). 

Post-hoc pairwise comparisons revealed that the BNT scores of participants with aphasia 

(M=6.00, SD=4.00) were significantly lower than both neurotypical participants (p<.001) and 

participants with PD (p<.001), with the latter two groups not differing significantly 

(M=53.67, SD=5.42 vs. M=54.87, SD=4.73, p>.999). The groups did not differ in age 

(F(2,32)=3.23, p=.053), but a significant difference was observed in the level of education 

(F(2,32)=5.42, p=.009), with neurotypical participants and participants with PD having 

significantly more years of education than participants with aphasia (p=.010 and p=.016, 

respectively). The neurotypical participants and participants with PD did not differ (p >.999). 

 

3.2.2 Categorization task 

As in Experiment 1, three dependent variables were analyzed: hit rate, false alarm rate, and 

RT. Categorization results are summarized in Figure 3. 

 

Hit rate. Similar to the results of Experiment 1, participants with aphasia had similar hit rates 

for LD categories (M=0.88, SD=0.08) and HD categories (M=0.91, SD=0.06; LD>HD: β=-

0.34, SE=0.29, p=.252). Participants with aphasia had overall lower hit rates (M=0.90, 

SD=0.07) compared to neurotypical participants (M=0.97, SD=0.02; neurotypical>aphasia: 

β=1.45, SE=0.32, p<.001) and participants with PD (M=0.95, SD=0.03; PD>aphasia: β=0.86, 

SE=0.31, p=.005), which is consistent with Experiment 1’s negative relationship between 

naming ability and categorization performance. We did not observe a reliable category 

dimension by group interaction for the aphasia vs. neurotypical comparison (β=0.44, 

SE=0.26, p=.086), nor for the aphasia vs. PD comparison (β=0.42, SE=0.23, p=.070).  

Follow-up analysis showed that there was no main effect of category dimension across 

groups (β=0.05, SE=0.25, p=.990), nor within the neurotypical group (β=-0.11, SE=0.30, 

p=.960), or the PD group (β=-0.08, SE=0.28, p=.975). Overall, the group comparison of hit 

rate (Figure 3A) does not support the LD-specific language recruitment hypothesis. 
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Figure 3. Experiment 2 results. (A) Hit Rate, (B) False Alarm Rate, and (C) Response Time 

(RT) across the three participant groups (here, RT is the time until participants pressed a 

“yes” or “no” button for each image within a trial). (D) Hit Rate, (E) False Alarm Rate, and 

(F) RT plotted against participants’ BNT scores, a measure of naming performance.  

 

False alarm rate. The false alarm rate results (Figure 3B) were consistent with the hit rate 

results. Participants with aphasia had comparable false alarm rates for LD categories 

(M=0.13, SD=0.08) and HD categories (M=0.11, SD=0.10; LD>HD: β=0.13, SE=0.27, 

p=.626). The overall false alarm rate among participants with aphasia (M=0.12, SD=0.09) 

was higher than in neurotypical participants (M=0.02, SD=0.02; neurotypical>aphasia: β=-

1.91, SE=0.32, p<.001) and participants with PD (M=0.02, SD=0.02; PD>aphasia: β=-1.94, 

SE=0.32, p<.001). The group by category dimension interactions were not significant for 

either the neurotypical vs. aphasia comparison (β=-.38, SE=.21, p=.075), nor the PD vs. 

aphasia comparison (β=-0.19, SE=0.22, p=.381). Follow-up analyses showed no effect of 

category dimension across groups (β=0.06, SE=0.25, p=.985), nor within the neurotypical 

group (β=0.25, SE=0.29, p=.732) or the PD group (β=0.06, SE=0.29, p=.990). 

 

Response time. RTs in Experiment 2 were the only measure where the pattern was consistent 

with the LD-specific language recruitment hypothesis. Participants with aphasia were slower 

to respond during LD trials (M=2.37, SD=0.70) compared to HD trials (M=2.22, SD=0.64; 

LD>HD: β=0.16, SE=0.08, p=.044). The overall RTs for participants with aphasia (M=2.30, 

SD= 0.64) were longer than for neurotypical participants (M=1.48, SD= 0.34; β=-.81, 
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SE=0.19, p<.001) and participants with PD (M=1.43, SD=0.29; β=-0.86, SE=0.19, p<.001). 

We also observed an interaction between group and category dimension for both the 

neurotypical vs. aphasia comparison (β=-0.23, SE=0.03, p<.001) and the PD vs. aphasia 

comparison (β=-0.19, SE=0.03, p<.001), such that participants with aphasia had longer RTs 

for LD categories compared to HD categories. Follow-up analyses showed no overall effect 

of category dimension across groups (β=-0.02, SE=0.07, p=.985), within the neurotypical 

group (β=0.07, SE=0.07, p=.669) or within the PD group (β=.04, SE=0.07, p=.907), 

suggesting that the LD vs. HD difference was specific to participants with aphasia. Note, 

however, that the effect size of the interactions is much smaller than the overall differences 

between the aphasia group and the two control groups (Figure 3C). 

 

Effect of naming performance. To explore the effect of naming ability on categorization 

performance in this revised version of the task, we again fitted mixed effect regression 

models with BNT scores, category dimension, interaction between BNT and category 

dimension, and education level as fixed effects, and participants (across the three groups) and 

categories as random effects. We found that BNT still significantly predicted all dependent 

variables (hit rate: β=0.38, SE=0.13, p=.002; false alarm rate: β=-0.58, SE=0.12, p<.001; RT: 

β=-0.29, SE=0.07, p<.001). As in Experiment 1, this model did not reveal a main effect of 

category dimension (hit rate: β=0.04, SE=0.26, p=.884; false alarm rate: β=-0.12, SE=0.26, 

p=.639; RT: β=-0.02, SE=0.07, p=.742); however, unlike Experiment 1, we observed an 

interaction between BNT and category dimension for hit rate (β=0.16,  SE=0.08, p=.039) and 

RT (β=-0.08, SE=0.01, p<.001). We did not observe such an interaction for false alarm rate 

(β=-0.11, SE=0.07, p=.090). Finally, education was no longer a significant predictor for any 

dependent variable (hit rate: β=0.11, SE=0.15, p=.484; false alarm rate: β=-0.20, SE=0.15, 

p=.190; RT: β=-0.01, SE=0.08, p=.940). 

 

Single case analysis. Scrutiny of individual participants’ scores casts some doubt on the 

relationship between BNT and categorization performance. Specifically, participant A4 in the 

aphasia group (Table 4) had a very low BNT score (1/60), but nonetheless performed very 

well relative to both the neurotypical and PD groups (hit rate: LD 94%, HD 97%; false alarm 

rate: LD 2.54%, HD 4.17%; all results are within 2 SD of mean performance in the 

neurotypical group). This dissociation indicates an absence of a direct causal relationship 

between naming and categorization.  
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3.3 Interim discussion 

Experiment 2 had several goals, including an additional attempt to replicate differences 

between LD and HD categorization, investigating the effect of severe naming impairments on 

categorization performance, testing whether the LD-specific language recruitment hypothesis 

may find support in a paradigm modified to reduce executive demands, and validating a 

paradigm for use in fMRI. We discuss our results below. 

 

We did not find evidence that LD categorization is overall more challenging than HD 

categorization: no significant differences were observed between LD and HD categories for 

any of the performance measures (hit rate, false alarm rate, and RT). This result is consistent 

with Experiment 1 and fails to replicate the results of L&M, who report lower performance 

on LD categorization across groups. However, this finding does not necessarily undermine 

the critical claim of the LD-specific language recruitment hypothesis, namely, that 

participants with aphasia would exhibit a selective impairment in LD categorization.  

 

As in Experiment 1, naming ability significantly predicted performance on all three outcome 

measures. Furthermore, because in this experiment we specifically recruited participants with 

aphasia who had poor naming performance, we also observed a group difference: participants 

with aphasia had lower hit rates, more false alarms, and longer response times than the two 

control groups. This evidence points to a link between naming performance and 

categorization. However, as in Experiment 1, this link might arise from the fact that task 

instructions are presented verbally; thus, linguistic impairments might affect task 

performance simply because they make it more challenging to process the instructions.  

 

Another reason to be skeptical of a direct link between naming and categorization is an 

instance of dissociation between these two tasks: participant A4 had a BNT score of 1, and 

yet performed similar to controls on the categorization task. Dissociation cases are critical in 

informing debates about cognitive architecture in general and about the role of language in 

enabling other cognitive abilities in particular (e.g., Caramazza & Coltheart, 2006). Naturally 

occurring brain lesions do not respect the boundaries between functionally distinct brain 

areas, and comorbidities or associations of impairments are common (e.g., E. Bates et al., 

2003). For example, damage to the left inferior frontal gyrus is likely to cause multiple 

cognitive impairments due to a high functional heterogeneity of that region (Fedorenko et al., 

2012; Fedorenko & Blank, 2020). Thus, a correlation we observe between naming ability and 
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categorization might be caused by the fact that the regions supporting these functions are 

located nearby (rather than by the fact that these two functions are supported by the same 

brain region/mechanism). The dissociation we observe in participant A4 supports this 

possibility and suggests that the language-categorization link might be caused by anatomical 

coincidence rather than by cognitive interdependency. In any case, it is clear that in some 

cases, severely limited lexical access does not prevent success on the categorization task, 

revealing that intact linguistic skills are not necessary for categorizing objects. 

 

One of the primary goals of Experiment 2 was to establish whether the putative effect of 

language on LD categorization might manifest itself more clearly and consistently if the 

categorization task is modified to reduce the overall cognitive load. We did not find this 

effect when looking at response accuracies: participants with aphasia did not show a selective 

impairment in hit rate nor a selective increase in false alarm rate for LD categories. However, 

we did observe an interaction between RT and category dimension, such that participants 

with aphasia had longer RTs for LD categories compared to HD categories. We also observed 

an interaction between naming ability and category dimension, such that lower BNT scores 

were associated with lower hit rate on LD categories more so than on HD categories, and 

with longer RTs on LD categories more so than on HD categories. This pattern is consistent 

with the LD-specific language recruitment hypothesis; however, the fact that we did not 

observe such a pattern in Experiment 1, which followed L&M’s design and procedure more 

closely, suggests that this effect is not stable and varies depending on the makeup of the 

aphasia group and, possibly, the details of the experimental setup. Further, the group by 

category dimension interaction was absent for the false alarm rate. Given that, in Experiment 

1, the interaction effect for the false alarm rate went in the opposite direction from that 

predicted by the LD-specific recruitment hypothesis, we find it difficult to reconcile the 

results from the two experiments with that hypothesis. 

 

The results of Experiments 1 and 2 did not allow us to definitively answer the question of 

whether language plays a key role in LD categorization. Group comparisons in both 

experiments failed to replicate the selective LD categorization impairments as reported in 

L&M; moreover, in Experiment 1, the effect of aphasia on false alarm rate was actually 

higher for HD categories. On the other hand, Experiment 2 did show a selective decrease in 

hit rate (and increase in RTs) for LD categories in participants with low naming scores, as 
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predicted by the LD-specific language recruitment hypothesis. However, even this piece of 

evidence is undermined by the dissociation case of participant A4. 

 

To definitively establish whether LD categorization recruits the language system, we next 

turned to fMRI.  

 

4. Experiment 3 

To test the relationship between language and categorization at a neural level, we conducted 

an fMRI experiment. In this experiment, neurotypical participants performed the same 

LD/HD categorization task as participants in Experiment 2, as well as two localizer tasks 

used to identify the networks of interest: the language network, which responds selectively to 

linguistic input (Braga et al., 2020; Fedorenko et al., 2010, 2011), and the multiple demand 

network, which is sensitive to general cognitive effort and implicated in executive functions 

(Assem, Glasser, et al., 2020; Duncan, 2010; Fedorenko et al., 2013). Examining activation 

patterns in both the language and the multiple demand networks allows us to examine their 

contributions to LD and HD categorization. 

 

As discussed before, brain damage leading to aphasia is often comorbid with multiple 

demand network damage: the language-selective regions and these domain-general regions in 

left inferior frontal cortex lie in close proximity to each other (Blank et al., 2014; Fedorenko 

et al., 2012; Fedorenko & Blank, 2020), with precise locations varying substantially across 

individuals. Thus, impaired categorization performance of participants with aphasia in 

Experiments 1 and 2 could have potentially arisen from damage to either network (or to 

both). Experiment 3 allows us to disambiguate between these possibilities. If, as suggested by 

L&M, LD categorization indeed relies on language more than HD categorization, we expect 

to see more activity within the language system during LD trials compared to HD trials. 

Further, if LD categorization is a more cognitively demanding task, we expect to see higher 

responses within the multiple demand network during LD trials compared to HD trials (in 

accordance with the fact that multiple demand regions are sensitive to effort across diverse 

tasks; Duncan & Owen, 2000; Fedorenko et al., 2013; Hugdahl et al., 2015). Finally, if a 

brain network does not respond to either LD or HD categorization, we can conclude that this 

network is not recruited for this task. 
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4.1 Method 

4.1.1 Participants 

Fourteen neurotypical participants (7 F, age M=22.31, SD=3.51) were recruited from MIT 

and the surrounding community and paid $60 for their participation. All were native speakers 

of English. One participant was left-handed (see Willems et al., 2014, for motivation to 

include left-handers in cognitive neuroscience research) but showed typical left-lateralized 

language activations as determined by the language localizer task (described below). All 

participants gave informed consent in accordance with the requirements of MIT’s Committee 

On the Use of Humans as Experimental Subjects (COUHES). 

 

4.1.2 Design, materials, and procedure 

Each participant completed a language localizer task aimed at identifying language-

responsive brain regions (Fedorenko et al., 2010), a spatial working memory (WM) task 

aimed at identifying the multiple demand network (Fedorenko et al., 2013), and the critical 

categorization task. Some participants completed one or more additional tasks for unrelated 

studies. The entire scanning session lasted two hours. 

 

Language network localizer. Participants read sentences (e.g., NOBODY COULD HAVE 

PREDICTED THE EARTHQUAKE IN THIS PART OF THE COUNTRY) and lists of 

unconnected, pronounceable nonwords (e.g., U BIZBY ACWORRILY MIDARAL MAPE 

LAS POME U TRINT WEPS WIBRON PUZ) in a blocked design. Each stimulus consisted 

of twelve words/nonwords. The sentences > nonword-lists contrast has been previously 

shown to reliably activate high-level language processing regions and to be robust to changes 

in the materials, task, and modality of presentation (Chen et al., in prep.; Fedorenko et al., 

2010; Mahowald & Fedorenko, 2016; Scott et al., 2017). For details of how the language 

materials were constructed, see Fedorenko et al. (2010). The materials are available at 

http://evlab.mit.edu/funcloc. Stimuli were presented in the center of the screen, one 

word/nonword at a time, at the rate of 450ms per word/nonword. Each stimulus was preceded 

by a 100ms blank screen and followed by a 400ms screen showing a picture of a finger 

pressing a button, and a blank screen for another 100ms, for a total trial duration of 6s. 

Participants were asked to press a button whenever they saw the picture of a finger pressing a 

button. This task was included to help participants stay alert and awake. Condition order was 

counterbalanced across runs. Experimental blocks lasted 18s (with 3 trials per block), and 
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fixation blocks lasted 14s. Each run (consisting of 5 fixation blocks and 16 experimental 

blocks) lasted 358s. Each participant completed 2 runs. 

 

Multiple demand network localizer. Participants had to keep track of four (easy condition) or 

eight (hard condition) sequentially presented locations in a 3×4 grid (Fedorenko et al., 2013). 

The hard > easy contrast has been previously shown to robustly activate multiple demand 

regions (Assem, Blank, et al., 2020; Blank et al., 2014; Fedorenko et al., 2013; Mineroff et 

al., 2018). Stimuli in both conditions were presented in the center of the screen across four 

steps. Each of these steps lasted for 1s and presented one location on the grid in the easy 

condition, and two locations in the hard condition. Each stimulus was followed by a choice-

selection step, which showed two grids side by side. One grid contained the locations shown 

on the previous four steps, while the other contained an incorrect set of locations. Participants 

were asked to press one of two buttons to choose the grid that showed the correct locations. 

Condition order was counterbalanced across runs and participants. Experimental blocks 

lasted 32s (with 4 trials per block), and fixation blocks lasted 16s. Each run lasted 448s, 

consisting of 12 experimental blocks (6 per condition), and 4 fixation blocks. Twelve 

participants completed two runs and two participants completed one run. 

 

Critical categorization task. The categorization materials were the same as those used in 

Experiment 2 (see Figure 1, bottom). The timing differed in the following way. In order to 

make blocks uniform in duration, each category block started with a category label presented 

for 2s, and then the 12 images were presented sequentially at the fixed speed of 2s per image. 

As in Experiment 2, any given category block contained between 4 and 6 target images. 

Participants were asked to press a button if the picture belonged to the target category and not 

to press anything if it did not. As before, the category label was displayed at the top of the 

screen for the duration of the trial to minimize memory demands. Category blocks lasted 26s 

(2s category label presentation + 2s * 12 images), and fixation blocks lasted 14s. Each run, 

consisting of 12 category blocks (6 LD and 6 HD) and 4 fixation blocks, lasted 368s. Each 

participant completed 3 runs. Across the 3 runs, any given participant saw a random subset of 

the 32 categories, with some categories repeating (but never repeating within a run; see 

Appendix 1 Table 1 for details). Condition order was counterbalanced across runs and 

participants. 
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4.1.3 fMRI data acquisition 

Structural and functional data were collected on the whole-body, 3 Tesla, Siemens Trio 

scanner with a 32-channel head coil, at the Athinoula A. Martinos Imaging Center at the 

McGovern Institute for Brain Research at MIT. T1-weighted structural images were collected 

in 176 sagittal slices with 1mm isotropic voxels (TR=2530ms, TE=3.48ms). Functional, 

blood oxygenation level dependent (BOLD), data were acquired using an EPI sequence (with 

a 90o flip angle and using GRAPPA with an acceleration factor of 2), with the following 

acquisition parameters: thirty-one 4mm thick near-axial slices acquired in the interleaved 

order (with 10% distance factor), 2.1mm×2.1mm in-plane resolution, FoV in the phase 

encoding (A>>P) direction 200mm and matrix size 96mm×96mm, TR=2000ms and 

TE=30ms. The first 10s of each run were excluded to allow for steady state magnetization. 

 

4.1.4 fMRI data preprocessing 

MRI data were analyzed using SPM12 and custom MATLAB scripts (available in the form of 

an SPM toolbox from https://evlab.mit.edu/funcloc/). Each participant’s data were motion 

corrected and then normalized into a common brain space (the Montreal Neurological 

Institute (MNI) template) and resampled into 2mm isotropic voxels. The data were then 

smoothed with a 4mm FWHM Gaussian filter and high-pass filtered (at 200s). Effects were 

estimated using a General Linear Model (GLM) in which each experimental condition was 

modeled with a boxcar function (modeling entire blocks) convolved with the canonical 

hemodynamic response function (HRF). 

 

4.1.5 Defining individual functional regions of interest (fROIs) 

Responses to the critical categorization experiment were extracted from regions of interest 

that were defined functionally in each individual participant (Nieto-Castañón & Fedorenko, 

2012; Saxe et al., 2006). Three sets of functional regions of interest (fROIs) were defined—

one for the language network, one for the multiple demand network, and one for the putative 

LD>HD categorization regions. To do so, we used the Group-constrained Subject-Specific 

(GSS) approach (Fedorenko et al., 2010; Julian et al., 2012). In particular, fROIs were 

constrained to fall within a set of “parcels”, which marked the expected gross locations of 

activations for the relevant contrast. For the language network, the parcels were generated 

based on a group-level representation of language localizer data from 220 participants. For 

the multiple demand network, the parcels were generated based on a group-level 

representation of spatial working memory task data from 197 participants. For the putative 
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LD categorization regions, we generated the parcels based on the data collected in this study. 

The parcels are available on OSF (https://osf.io/guwh8/). To create each set of parcels, 

individual activation maps for the relevant localizer contrast were binarized (by turning all 

voxels significant at the p<.001 whole-brain threshold (uncorrected) into 1s, and the rest into 

0s) and overlaid in the MNI space to create a probabilistic overlap map. Note that for the 

multiple demand network, the individual activation maps were averaged across the two 

hemispheres prior to binarizing. The map was then smoothed (FWHM = 6mm), and voxels 

with fewer than 10% of participants overlapping were excluded. The resulting map was 

divided into regions using a watershed algorithm. Finally, we excluded parcels that did not 

show significant effects for the relevant localizer contrast in a left-out run or did not contain 

supra-threshold voxels in at least 60% of the participants (for language and multiple demand 

networks) or in at least 50% of the participants (for putative LD categorization regions). For 

the multiple demand network, we also a) excluded parcels in the visual cortex (the hard 

condition includes more visual information than the easy condition and thus yields more 

activation in the visual cortex), and b) divided a parcel that encompassed parts of both the 

precentral gyrus and the opercular portion of the inferior frontal gyrus according to the 

macroanatomical boundary. 

 

For each participant, each set of masks was intersected with the participant’s activation map 

for the relevant contrast (sentences>nonwords for the language network, hard>easy spatial 

WM for the multiple demand network, and LD>HD for putative LD categorization regions). 

Within each mask, the voxels were sorted based on their t values for the relevant contrast, and 

the top 10% of voxels were selected as that participant’s fROI. This top n% approach ensures 

that the fROIs can be defined in every participant, thus enabling us to generalize the results to 

the entire population (Nieto-Castañón & Fedorenko, 2012). 

 

4.1.6 Examining the functional response profiles of fROIs 

After defining fROIs in individual participants, we evaluated their responses to the conditions 

of interest by averaging the responses across voxels to get a single value per condition per 

fROI. The responses to the localizer conditions (sentences and nonwords for language fROIs, 

hard and easy working memory conditions for multiple demand fROIs, and LD and HD 

categorization for categorization fROIs) were estimated using an across-runs cross-validation 

procedure, where one run was used to define the fROI and the other to estimate the response 

magnitudes, then the procedure was repeated switching which run was used for fROI 
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definition vs. response estimation, and finally the estimates were averaged to derive a single 

value per condition per fROI per participant. This cross-validation procedure allows one to 

use all of the data for defining the fROIs as well as for estimating their responses (see Nieto-

Castañón & Fedorenko, 2012, for discussion), while ensuring the independence of the data 

used for fROI definition and response estimation (Kriegeskorte et al., 2009). Two participants 

completed only one run of the multiple demand localizer task; therefore, we did not estimate 

the strength of their responses to the hard and easy multiple demand localizer conditions but 

ensured that the whole-brain activation maps for the hard>easy contrast looked as expected. 

 

4.1.7 Statistical analyses 

Similar to Experiments 1 and 2, we analyzed our data using mixed effect regression models 

(Baayen et al., 2008). For hit rate and false alarms we use logistic regression (Jaeger, 2008). 

For RT and fROIs response magnitudes, we use linear regression. In all models, condition 

was a fixed effect and participant was a random intercept. The model for the multiple demand 

network included hemisphere as an additional fixed effect. For language and multiple 

demand network analyses, we also included fROI as a random intercept and then ran follow-

up analyses on individual fROIs using false discovery rate (FDR) correction (Benjamini & 

Hochberg, 1995) for the number of fROIs in each network. Behavioral analyses used sum 

coding for condition (LD vs. HD in the categorization task and Hard vs. Easy in the multiple 

demand localizer task). Neuroimaging analyses used custom contrasts (see Appendix 2 for 

detailed contrast specification). The mixed effect analyses were run using the lmer function 

from the lme4 R package (D. Bates et al., 2015); statistical significance of the effects was 

evaluated using the lmerTest package (Kuznetsova et al., 2017). The hypotheses-specific 

contrasts were defined using the hypr package (Rabe et al., 2020). 

 

If linguistic resources are engaged during categorization, we would expect an overall high 

response of the language network to categorization conditions. Further, if, as L&M have 

argued, LD categorization taxes linguistic resources to a greater extent, we would expect to 

see stronger response of this network to the LD compared to the HD condition. Lastly, if LD 

categorization is generally more taxing, we would expect to see greater responses to the LD 

condition in the domain-general multiple demand regions that are sensitive to effort across 

diverse tasks (Duncan, 2010, 2013; Fedorenko et al., 2013; Hugdahl et al., 2015). 
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4.2 Results 

4.2.1 Behavioral data 

Multiple demand network localizer. Due to a technical error, behavioral data for one 

participant got overwritten. For the remaining thirteen participants, performance on the 

spatial working memory task was as expected: participants were more accurate and faster in 

the easy condition (accuracy M=93.91%, SD=3.00%; reaction time (RT)=1.18s, SD=0.16s) 

than the hard condition (accuracy M=79.65%, SD=12.03%; RT M=1.52s, SD=0.25s). Mixed 

effect models with condition as a fixed effect and participant as a random intercept showed 

that both accuracy and RT effects were significant (accuracy: β=-1.41, SE=0.202, p < .001; 

RT: β=0.33, SE=0.027, p < .001). 

 

Critical categorization task. The hit rate for the two categorization conditions was not 

significantly different (LD M=93.62%, SD =9.84%; HD M=93.42%, SD =8.65%; LD>HD 

β=0.03, SE=0.22, p=.897). Similarly, the number of false alarms did not significantly differ 

across conditions (LD M=3.01%, SD =1.43%; HD M =3.34%, SD =2.39%; LD>HD β=-0.37, 

SE=0.38, p=.329). Finally, there was no significant difference between response times in the 

LD condition (RT=0.81s, SD=0.1s) and the HD condition (RT=0.84s, SD=0.1s; LD>HD β=-

0.03, SE=0.02, p=.156). 

 

 
Figure 4. Categorization responses within the language brain network. (A) Parcels used to define 

functional regions of interest (fROIs) in individual participants. (B) Average responses within the 

language network to four conditions of interest (sentence reading and nonword reading vs. LD and 

HD categorization). (C) fROI responses to the four conditions of interest.  

 

4.2.2 Functional response profile of the language network 
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Although the sentence reading condition elicited strong responses in the language fROI, the 

responses to the categorization task were only marginally above 0 (β=0.42, SE=0.19, p=.054; 

see Figure 4), not significantly different from responses to nonword reading (β=0.13, 

SE=0.09, p=.144), and significantly weaker than responses to sentences (β=-1.49, SE=.09, 

p<.001). Further, there was no significant difference between responses to LD and HD 

categorization (β=-0.02, SE=0.10, p=.848).  

 

Follow-up analyses in individual language fROIs (Appendix 2 Table 1) showed that 

responses to categorization were significantly above 0 in frontal fROIs (MFG, IFG, and 

IFGorb). However, none of the responses were significantly higher than responses during the 

control task, nonword reading, indicating that these responses are not language-specific. 

Thus, our results suggest that the language network is not involved in either LD or HD 

categorization in neurotypical participants. 

 

4.2.3 Functional response profile of the multiple demand network 

Multiple demand network responses to categorization were significantly above 0 (β=1.07, 

SE=0.21, p<.001; see Figure 5) and stronger than responses to control conditions from the 

language localizer task (categorization > sentences: β=0.73, SE=0.08, p<.001; categorization 

> nonwords: β=0.41, SE=0.08, p<.001). However, they were weaker than responses to the 

spatial working memory task (β=-1.43, SE=.07, p<.001), indicating that the working memory 

task was more effortful. The responses to the categorization task were stronger in the left 

hemisphere (β=0.24, SE=0.09, p=.005). We also observed an interaction between the working 

memory > categorization contrast and hemisphere (β=0.29, SE=0.13, p=.024), showing that 

the working memory task engages the right hemisphere to a greater extent. There was also an 

interaction between the Hard>Easy working memory task and hemisphere, such that the 

effect was greater in right hemisphere (β=0.38, SE=0.19, p=.040). 

 

Importantly, there was a small but significant difference between responses to LD and HD 

categorization tasks (β=0.19, SE=0.09, p=.025), indicating that LD categorization is slightly 

more effortful than HD categorization in neurotypical participants. 
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Figure 5. Categorization responses within the multiple demand brain network. (A) Left hemisphere 

parcels used to define functional regions of interest (fROIs) in individual participants. (B) Average 

responses within the left hemisphere fROIs to four conditions of interest (hard and easy working 

memory tasks vs. LD and HD categorization). (C) Left hemisphere fROI responses to the four 

conditions of interest. (D-F) Parcels, average responses, and fROI-level responses in the right 

hemisphere. 

 

Follow-up analyses on individual fROIs (Appendix 2 Table 2) showed that responses to 

categorization were significantly above 0 in all fROIs. However, they were weaker than the 

overall responses to the working memory task in almost all fROIs (except left middle frontal 

fROI). This result highlights the domain-general nature of these responses. Further, none of 

the fROIs had significantly different responses to LD and HD categories, despite the presence 

of this effect in the network-level analysis. 

 

4.2.4 Whole-brain analyses 

We also conducted a whole-brain analysis to identify fROIs that might respond more strongly 

to LD or HD categorization but lie outside the language and multiple demand fROIs 

described above. The GSS analysis (see Methods for details) revealed that no regions 

exhibited consistent HD>LD responses across participants; however, the LD>HD contrast 

revealed two parcels, both located in left parietal lobe (Figure 6). Further analysis of fROIs 

defined within these parcels showed that the LD>HD response only reached significance in 

fROI 2 (β=0.43, SE=0.17, p=.013), but not in fROI 1 (β=0.58, SE=0.30, p=.060). The overall 
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categorization response was significantly above 0 in fROI 1 (β=0.65, SE=0.19, p=.001) but 

not fROI 2 (β=-0.13, SE=0.15, p=.389).  

 

Importantly, both fROIs responded to the working memory task more strongly than to the 

categorization task (fROI 1: β=1.66, SE=0.21, p<.001; fROI 2: β=0.64, SE=0.12, p<.001), 

indicating that these regions likely respond to general cognitive effort rather than to LD 

categorization (or feature selection) specifically. Neither of the two fROIs exhibited a 

sentences>nonwords effect (fROI 1: β=-0.51, SE=0.30, p=.094; fROI 2: β=-0.28, SE=0.17, 

p=.098), which shows that these regions do not respond to linguistic input.  

 

The whole-brain analysis provides additional evidence against the LD-specific language 

recruitment hypothesis and shows that differences in LD vs. HD categorization, if present, are 

likely caused by domain-general mechanisms. 

 

 

Figure 6. Results of the whole-brain analyses. (A) Parcels defined with the LD>HD 

categorization contrast. (B) Responses to conditions of interest within the two fROIs (defined 

as the top 10% of voxels within each parcel, sorted by the magnitude of the LD>HD 

response). WM – working memory task. 

 

4.3 Experiment 3 interim discussion 

In Experiment 3, we used fMRI to examine neural responses to LD and HD categorization. 

Our main goal was to evaluate the hypothesis that LD categorization relies more heavily on 

linguistic resources compared to HD categorization. For this purpose, we identified the 

language network individually in 14 healthy adults and examined its responses during HD 

and LD categorization. The language network exhibited low responses to both categorization 

tasks, which did not differ from activations elicited by reading of nonword sequences (a low-
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level control condition). There was no difference between responses to LD categories and 

responses to HD categories, contra the prediction that the language network would be 

selectively or preferentially engaged during LD categorization. 

 

Unlike the language network, the domain-general multiple demand network (also defined 

individually in each participant) was engaged during categorization, indicating that this task 

is cognitively challenging. This network responded more strongly to LD than HD 

categorization, but this effect was small. The whole-brain analyses specifically aimed at 

identifying regions with stronger responses to LD than HD categorization confirmed these 

results: both fROIs it identified responded more strongly to a general working memory task 

than to categorization task, and the LD>HD effect was small or not statistically significant. 

We conclude that categorization, and LD categorization in particular, relies on domain-

general multiple demand regions and not on language-specific regions. 

 

Whereas previous work suggested that a region within left angular gyrus is involved in 

inhibiting irrelevant semantic information (Lewis et al., 2019), as may be required for LD 

categorization, the results of our study suggest that activation of the language-responsive 

portion of the left angular gyrus was comparable during LD and HD categorization. If 

anything, this language fROI showed numerically higher activation during HD 

categorization, suggesting that it may be recruited for recognizing and thinking about 

established sets more than for constructing novel sets that may require inhibition of object-

irrelevant characteristics. We also did not find significant differences in the engagement of 

the language fROIs in the left inferior frontal cortex during LD and HD categorization. These 

results are in contrast to findings from Lupyan et al. (2012), which suggested that TMS to the 

left inferior frontal cortex disrupted performance on LD but not HD categorization. This may 

be because the left inferior frontal cortex contains not only language-responsive areas, but 

also multiple demand areas (Fedorenko et al., 2012; Fedorenko & Blank, 2020), and 

interfering with the latter areas’ activity may have a disproportionately higher effect on LD 

categorization. 

 

The response to categorization within the multiple demand network was stronger in the left 

hemisphere, consistent with the view that label-based categorization recruits the left 

hemisphere more strongly (e.g., Franklin et al., 2008; Gilbert et al., 2006). This makes the 

categorization task similar to logic and math, which also evoke left-lateralized responses 
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within the multiple demand network (Amalric & Dehaene, 2016; Monti et al., 2009, 2012; 

Pinel & Dehaene, 2009). Importantly, our result demonstrates that, just because the function 

is left-lateralized, it is not necessarily related to language (contra, e.g., Gilbert et al., 2006; 

see also Holmes & Wolff, 2012). 

 

All in all, results from Experiment 3 disconfirm the hypothesis that LD categorization relies 

on linguistic resources. Instead, they show that categorization recruits the multiple demand 

brain regions and that LD categorization is, on average, slightly more effortful that HD 

categorization. 

 

 

5. Discussion 

We reported three experiments that evaluated the hypothesis that linguistic resources are 

essential for performing feature-based, or low-dimensional (LD), categorization—what we 

refer to as the ‘LD-specific language recruitment hypothesis’ (Langland-Hassan et al., 2021; 

Lupyan, 2009; Lupyan et al., 2012; Lupyan & Mirman, 2013). In Experiment 1, we aimed to 

replicate the results of Lupyan and Mirman (2013), who showed a selective impairment in 

LD categorization in individuals with aphasia. Our results failed to replicate this critical 

finding, although they did show that naming ability, as measured by Boston Naming Test 

(BNT) scores, was a significant predictor of overall categorization performance. 

 

In Experiment 2, we modified the experimental design to reduce general task complexity and 

examined the specific contribution of naming ability to categorization by recruiting a group 

of participants with low naming scores. Similar to Experiment 1, we found no significant 

interaction between participant group and LD/HD categorization. However, we did find a 

significant interaction between BNT and LD/HD categorization for one of the two accuracy 

measures (hit rate). Although this result lends some support to the LD-specific language 

recruitment hypothesis, a case-by-case analysis identified an individual with a severe naming 

impairment (with a score of 1 out of 60 on the BNT) who performed within the neurotypical 

range on both HD and LD categorization. Evidence from patients with brain lesions remains 

an important way to establish whether specific cognitive capacities are necessary for 

performance on particular tasks (Rorden & Karnath, 2004). Such studies have previously 

demonstrated that many high-order cognitive functions are not affected even in the presence 

of severe linguistic deficits (e.g., Apperly et al., 2006; Bek et al., 2013; Chen et al., in prep.; 
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Varley et al., 2001, 2005; Varley & Siegal, 2000; Willems et al., 2011). Based on Experiment 

2, we therefore concluded that lexical retrieval is not necessary for successful categorization, 

including categorization based on single features. 

 

In Experiment 3, we used a complementary approach and examined the engagement of the 

language network and a domain-general multiple-demand network in HD and LD 

categorization using fMRI in neurotypical adults. The language network was not engaged 

during either LD or HD categorization: its responses did not significantly differ from 

responses during the control nonword reading task. This observation goes against the 

hypothesis that categorization (either LD or HD) relies on linguistic resources. In contrast, 

the multiple demand network was recruited during the categorization task, consistent with 

prior evidence of its involvement in diverse cognitively challenging tasks (Assem, Glasser, et 

al., 2020; Duncan, 2010, 2013; Fedorenko et al., 2013). It responded more strongly during 

LD than HD categorization, consistent with the hypothesis that LD categorization is more 

cognitively challenging (e.g., Fedorenko et al., 2011, 2013; Hugdahl et al., 2015; Shashidhara 

et al., 2019). However, this effect was small and did not come out as statistically significant 

in any of the individual multiple demand regions in follow-up analyses. In sum, we find little 

evidence in favor of the LD-specific language recruitment hypothesis. 

 

Why did we find no, little, or inconsistent differences in performance and neural responses 

between LD and HD categories? A possible explanation is that “LD” and “HD” category 

types are not natural kinds. As discussed in the introduction, different researchers have 

emphasized different distinctions among categories, such as natural/ad hoc, 

taxonomic/thematic, dense/sparse, concrete/abstract, etc. Many of these distinctions are not 

isomorphic with the LD/HD distinction. In particular, HD categories encompass both 

taxonomic (e.g., “animals”) and thematic (e.g., “non-food things found in the kitchen”) 

categories. Multiple studies show that the processing of taxonomic and thematic relations 

relies on distinct cognitive and neural mechanisms (e.g., Kalénine et al., 2009; Lewis et al., 

2015; Sass et al., 2009; Schwartz et al., 2011; Xu et al., 2018); collapsing them into one 

“HD” category type leads to substantial within-HD heterogeneity and may therefore obscure 

potential HD/LD differences. 

 

Furthermore, not all LD categories as defined by Lupyan and Mirman (2013) necessarily 

involve conceptual processing. For instance, many are based on color, e.g. “things that are 
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yellow”. Although color is often encoded as part of the conceptual representation of an 

object, this conceptual representation was not required for the task in question: participants 

were simply asked to indicate whether the object they were viewing was yellow, and 

decisions could be made on the basis of surface perceptual features alone. Thus, even if ‘true’ 

(semantic) LD categories are indeed harder to process than HD categories, inclusion of 

perception-based color categories could have prevented us from reliably observing this 

difference. 

 

Our results appear to be somewhat inconsistent with recent work by Langland-Hassan et al. 

(2021), who observe that individuals with aphasia were slower when processing abstract 

categories compared to concrete categories. The authors argue that the abstract/concrete 

distinction is similar to the LD/HD distinction because members of abstract categories share 

fewer common features. However, another important difference is the kind of features used 

for categorization. For instance, their example of an abstract category “predict” (which 

includes a weatherperson and a fortune-teller) relies on an unobservable functional similarity 

rather than on an observable visual similarity. Unobserved features play an important role in 

the use of verbal category labels (Gelman & Roberts, 2017), so it’s possible that language 

mediates categorization based on latent features rather than LD categorization per se. In 

short, the LD/HD and the abstract/concrete distinction do not cleanly map onto each other, 

which makes it difficult to compare the results of our experiments to those by Langland-

Hassan et al. All in all, the typology of category types remains vague and inconsistent, and 

more careful work should be done to establish meaningful category distinctions and thus 

facilitate comparisons across studies. 

 

So, what can we conclude about the role of language in categorization, at least in the kind of 

paradigm introduced by Lupyan & Mirman (2013)? Based on the current series of studies, we 

suggest that, in this task, linguistic resources are primarily recruited during the instruction 

processing stage. In order to successfully sort objects into categories, participants need to 

read (or listen) and encode the category label, which can explain why participants with severe 

aphasia may show impairments on this task. Another possible role for language is via verbal 

rehearsal in order to hold verbal labels active in working memory. Such assistive role of 

language labels has been observed in conditions of high cognitive demand (e.g., during 

mathematical calculation; Benn et al., 2012; Klessinger et al., 2012). However, evidence from 

Experiment 3 shows that language resources implemented in the language network (i.e., 
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lexico-semantic and combinatorial processing; Fedorenko et al., 2020) are not involved in the 

categorization process itself, as evidenced by low activation in the language network during 

categorization. Instead, categorization in neurotypical individuals might recruit low-level 

verbal/phonological rehearsal, which appear to rely on lower-level speech processing 

mechanisms (e.g., Scott & Perrachione, 2019) and the domain-general multiple-demand 

network (e.g., Fedorenko et al., 2011; Shashidhara et al., 2020). Thus, the verbal rehearsal 

account is quite different from L&M’s original LD-specific language recruitment hypothesis. 

 

Other results from psycho- and neurolinguistics also support the view that linguistic resources 

are not necessary for categorization. If access to linguistic representations were necessary for 

categorization, categorizing images would take longer than categorizing words; instead, they 

take approximately the same amount of time (Potter & Faulconer, 1975). When asked to 

match a picture with a label, participants do not explicitly generate/rehearse verbal labels in 

advance unless there is an additional memory demand (e.g., if images disappear from the 

screen) (Pontillo et al., 2015). Previous work also shows that language is not necessary for 

performing tasks that require isolating a specific aspect (“feature”) of the semantic 

representation, including theory of mind inferences (Varley et al., 2001; Varley & Siegal, 

2000) and thematic role identification (Ivanova et al., 2021). Our work therefore adds to the 

growing body of evidence for a separation between linguistic and visual semantic processing. 

 

Overall, our study shows that categorizing items is not a language-dependent task in the adult 

brain, regardless of whether the categorization is made on the basis of multiple features (HD) 

or a single feature (LD). Instead, this task relies on domain-general multiple demand neural 

resources. Our work provides evidence against the view of language as an aid for feature-

based (LD) categorization and highlights the value of complementing patient studies with 

neuroimaging experiments. 
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Appendix 1: Experiment 3, Material Presentation Details 
 
 
Table 1. Distribution of category use across participants (i.e., the number of times each participant 

saw each category during the categorization experiment, summed across runs). 

  Subject ID 

Condition Category 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

HD animals that live in water 1 1 1 0 0 0 1 1 2 1 1 2 2 2 

HD birds 2 0 1 1 1 3 1 2 1 2 3 1 3 1 

HD clothes 1 1 1 1 1 0 1 0 0 2 1 0 1 1 

HD dangerous animals 2 1 2 1 1 0 1 1 1 1 1 0 0 1 

HD farm animals 1 1 3 2 0 0 2 2 2 1 3 1 2 1 

HD fruit 1 2 1 1 2 2 0 0 1 1 1 2 1 0 

HD home appliances 2 2 0 1 1 2 2 1 0 1 0 2 0 1 

HD insects 2 2 1 3 1 2 1 2 1 2 1 2 1 2 

HD musical instruments 0 1 1 0 3 0 2 1 2 2 2 1 1 1 

HD non food things found in the kitchen 2 1 0 0 2 2 0 2 2 1 1 2 0 1 

HD objects found in the laundry room 1 1 0 2 1 1 1 2 1 1 1 0 1 1 

HD objects that hold water 0 1 2 2 0 1 2 0 0 1 1 1 2 2 

HD objects used for transportation 1 2 1 1 1 1 0 1 3 1 0 0 1 1 

HD things that fly 1 2 3 1 0 1 2 2 1 0 1 2 0 2 

HD tools 1 0 0 2 2 2 2 0 0 0 0 1 0 0 

HD vegetables 0 0 1 0 2 1 0 1 1 1 1 1 3 1 

LD animals with stripes 2 1 2 2 0 1 2 0 1 2 0 1 0 2 

LD long thin objects 0 0 2 2 1 1 1 1 0 2 2 1 2 2 

LD small objects 1 2 0 1 2 1 0 1 1 1 1 0 1 1 

LD things made of wood 1 1 1 3 2 1 2 1 0 1 2 2 0 0 

LD things that are blue 2 1 1 1 1 1 1 1 0 0 1 0 1 1 

LD things that are brown 1 2 1 0 3 1 2 2 2 1 2 0 1 1 

LD things that are green 1 0 1 1 0 2 1 1 2 2 1 1 0 1 

LD things that are orange 2 1 2 2 1 2 0 1 1 1 0 2 2 1 

LD things that are red 1 1 1 1 0 1 1 1 2 0 2 1 2 1 

LD things that are round 1 1 1 1 1 1 0 1 3 1 2 0 1 1 

LD things that are soft 0 0 2 0 2 1 1 2 1 0 2 2 1 2 

LD things that are very large 1 1 1 2 1 2 1 1 1 1 1 2 3 0 

LD things that are white 3 2 1 1 1 0 1 0 1 1 0 3 0 2 

LD things that are yellow 2 3 0 0 0 1 2 2 1 3 1 1 2 0 

LD things with doors 0 1 1 0 1 1 2 2 1 1 0 1 2 3 

LD things with handles 0 1 1 1 2 1 1 1 1 1 1 1 0 0 
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Appendix 2: Experiment 3, fROI-Specific Results  

Condition contrasts were designed to test the following null hypotheses.  

Language network:   

(1) 
�����

�
� 0    

(2) �� � ��    (main) 
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������

�
� ���	��
�� 

(4) 
�����

�
� ������ 

LD – low-dimensional categorization; HD – high-dimensional categorization. 

 

Multiple demand network: 
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HardWM – hard working memory task, EasyWM – easy working memory task. 

 

Putative LD categorization regions (results reported in the main text): 
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Table 1. Mixed-effect linear regression results for language fROIs. p-values were FDR-corrected for 

the number of fROIs. Significant p-values are highlighted in bold. S – sentence reading, N – nonword 

reading, LD – low-dimensional categorization, HD – high-dimensional categorization. 

ROI Regression Term Beta p-value 
IFGorb Categorization>0 0.48 .005 

 
LD>HD 0.04 .932 

 
S>Categorization 1.21 <.001 

 
N>Categorization 0.02 .905 

IFG Categorization>0 0.90 <.001 

 
LD>HD 0.02 .932 

 
S>Categorization 1.41 <.001 

 
N>Categorization -0.15 .510 

MFG Categorization>0 0.63 .005 

 
LD>HD 0.11 .932 

 
S>Categorization 2.41 <.001 

 
N>Categorization 0.75 .031 

PostTemp Categorization>0 0.27 .094 

 
LD>HD 0.10 .932 

 
S>Categorization 1.81 <.001 

 
N>Categorization 0.26 .114 

AntTemp Categorization>0 -0.02 .760 

 
LD>HD -0.08 .932 

 
S>Categorization 1.52 <.001 

 
N>Categorization 0.22 .114 

AngG Categorization>0 0.24 .165 

 
LD>HD -0.30 .575 

 
S>Categorization 0.57 <.001 

 
N>Categorization -0.34 .086 

 

Table 2. Mixed-effect linear regression results for multiple demand fROIs. P-values were FDR-

corrected for the number of fROIs. Significant p-values are highlighted in bold. H – hard working 

memory task, E – easy working memory task, LD – low-dimensional categorization, HD – high-

dimensional categorization. 

Hemisphere fROI # fROI name Regression Term Beta p-value 
L 1 postParietal Categorization>0 1.44 <.001 

   
LD>HD 0.28 .902 

   
Hard WM>Easy WM 1.37 <.001 

   
WM>Categorization 2.69 <.001 

   
Nonwords>Categorization -0.90 <.001 

   
Sentences>Categorization -1.36 <.001 

L 2 midParietal Categorization>0 0.98 .004 

   
LD>HD 0.30 .902 

   
Hard WM>Easy WM 1.40 <.001 

   
WM>Categorization 2.32 <.001 

   
Nonwords>Categorization -0.07 .913 

   
Sentences>Categorization -0.65 .034 

L 3 antParietal Categorization>0 0.88 .003 

   
LD>HD 0.47 .902 

   
Hard WM>Easy WM 1.14 <.001 

   
WM>Categorization 2.10 <.001 

   
Nonwords>Categorization -0.17 .567 

   
Sentences>Categorization -0.71 .004 

L 4 supFrontal Categorization>0 0.77 .007 

   
LD>HD 0.23 .902 

   
Hard WM>Easy WM 0.97 .002 
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WM>Categorization 2.16 <.001 

   
Nonwords>Categorization -0.28 .355 

   
Sentences>Categorization -0.38 .139 

L 5 precentral_A Categorization>0 2.23 <.001 

   
LD>HD 0.37 .902 

   
Hard WM>Easy WM 1.34 <.001 

   
WM>Categorization 0.98 <.001 

   
Nonwords>Categorization -0.56 .058 

   
Sentences>Categorization -0.97 <.001 

L 6 precentral_B Categorization>0 1.42 <.001 

   
LD>HD 0.17 .902 

   
Hard WM>Easy WM 1.12 <.001 

   
WM>Categorization 0.71 .001 

   
Nonwords>Categorization -0.66 .030 

   
Sentences>Categorization -0.77 .004 

L 7 midFrontal Categorization>0 1.29 <.001 

   
LD>HD 0.18 .902 

   
Hard WM>Easy WM 0.94 <.001 

   
WM>Categorization 0.25 .178 

   
Nonwords>Categorization -0.86 .002 

   
Sentences>Categorization -1.25 <.001 

L 8 midFrontalOrb Categorization>0 1.15 .006 

   
LD>HD 0.13 .902 

   
Hard WM>Easy WM 1.29 <.001 

   
WM>Categorization 0.65 .003 

   
Nonwords>Categorization -0.62 .034 

   
Sentences>Categorization -1.08 <.001 

L 9 insula Categorization>0 0.81 <.001 

   
LD>HD -0.01 .953 

   
Hard WM>Easy WM 0.72 <.001 

   
WM>Categorization 0.49 <.001 

   
Nonwords>Categorization -0.38 .008 

   
Sentences>Categorization -0.49 <.001 

L 10 medialFrontal Categorization>0 0.95 <.001 

   
LD>HD -0.01 .953 

   
Hard WM>Easy WM 0.79 <.001 

   
WM>Categorization 0.59 <.001 

   
Nonwords>Categorization -0.40 .033 

   
Sentences>Categorization -0.56 .001 

R 1 postParietal Categorization>0 1.15 <.001 

   
LD>HD 0.26 .902 

   
Hard WM>Easy WM 1.68 <.001 

   
WM>Categorization 3.18 <.001 

   
Nonwords>Categorization -0.84 .009 

   
Sentences>Categorization -1.14 <.001 

R 2 midParietal Categorization>0 0.74 .004 

   
LD>HD 0.31 .902 

   
Hard WM>Easy WM 1.72 <.001 

   
WM>Categorization 2.09 <.001 

   
Nonwords>Categorization 0.05 .913 

   
Sentences>Categorization -0.43 .148 

R 3 antParietal Categorization>0 0.33 .040 

   
LD>HD 0.35 .902 

   
Hard WM>Easy WM 1.23 <.001 

   
WM>Categorization 1.98 <.001 

   
Nonwords>Categorization 0.00 .989 

   
Sentences>Categorization -0.27 .273 

R 4 supFrontal Categorization>0 0.70 .013 

   
LD>HD 0.14 .902 

   
Hard WM>Easy WM 1.55 <.001 
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WM>Categorization 2.77 <.001 

   
Nonwords>Categorization -0.06 .913 

   
Sentences>Categorization -0.20 .526 

R 5 precentral_A Categorization>0 1.48 <.001 

   
LD>HD 0.19 .902 

   
Hard WM>Easy WM 1.40 <.001 

   
WM>Categorization 1.22 <.001 

   
Nonwords>Categorization -0.35 .353 

   
Sentences>Categorization -0.68 .032 

R 6 precentral_B Categorization>0 1.73 <.001 

   
LD>HD 0.29 .902 

   
Hard WM>Easy WM 1.65 <.001 

   
WM>Categorization 1.21 <.001 

   
Nonwords>Categorization -0.72 .067 

   
Sentences>Categorization -1.08 .004 

R 7 midFrontal Categorization>0 0.91 .009 

   
LD>HD 0.17 .902 

   
Hard WM>Easy WM 1.71 <.001 

   
WM>Categorization 1.08 <.001 

   
Nonwords>Categorization -0.26 .485 

   
Sentences>Categorization -0.64 .036 

R 8 midFrontalOrb Categorization>0 0.89 .003 

   
LD>HD 0.05 .953 

   
Hard WM>Easy WM 1.89 <.001 

   
WM>Categorization 0.96 <.001 

   
Nonwords>Categorization -0.39 .306 

   
Sentences>Categorization -0.86 .007 

R 9 insula Categorization>0 0.72 .001 

   
LD>HD -0.04 .902 

   
Hard WM>Easy WM 0.85 <.001 

   
WM>Categorization 0.42 <.001 

   
Nonwords>Categorization -0.34 .013 

   
Sentences>Categorization -0.46 <.001 

R 10 medialFrontal Categorization>0 0.84 <.001 

   
LD>HD 0.06 .902 

   
Hard WM>Easy WM 1.23 <.001 

   
WM>Categorization 0.63 <.001 

   
Nonwords>Categorization -0.35 .073 

   
Sentences>Categorization -0.60 .002 
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