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Abstract 27 

Genome and transcriptome-wide amino acid usage preference across different species is a 28 

well-studied phenomenon in molecular evolution, but its characteristics and implication in 29 

cancer evolution and therapy remain largely unexplored. Here, we analyzed large-scale 30 

transcriptome/proteome profiles such as TCGA, GTEx, and CPTAC and found that compared 31 

to normal tissues, different cancer types showed a convergent pattern towards using 32 

biosynthetically low-cost amino acids. Such a pattern can be accurately captured by a single 33 

index based on the average biosynthetic energy cost of amino acids, termed Energy Cost Per 34 

Amino Acid (ECPA). With this index, we further compared the trends of amino acid usage 35 

and the contributing genes in cancer and tissue development and revealed their reversed 36 

patterns. Finally, focusing on the liver, a tissue with a dramatic increase in ECPA during 37 

development, we found that EPCA represented a powerful biomarker that could distinguish 38 

liver tumors from normal liver samples consistently across 11 independent patient cohorts 39 

(AUROC = ~0.99) and outperformed any index based on single genes. Our study reveals an 40 

important principle underlying cancer evolution and suggests the global amino acid usage as 41 

a system-level biomarker for cancer diagnosis. 42 

 43 

KEYWORDS: Amino acid usage; Tissue development; Biosynthetic energy; Diagnostic 44 

biomarker  45 
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Introduction 46 

Amino acids are the basic building blocks of a cell. Coding sequences and gene expression 47 

profiles are two key factors determining the overall amino acid usage of a cell. Through 48 

analysis of the genomes or transcriptomes of many species, preferred amino acid usage is a 49 

well-studied topic in macroevolution. The universal trend of “Cost-Usage anticorrelation” 50 

suggests that the relative abundance of amino acids, quantified as the number of codons 51 

encoding a specific amino acid in the genome of a species, is mainly driven by their 52 

biosynthetic energy costs [1–5]. However, it remains unclear how amino acid usage of cancer 53 

cells deviates from normal tissues and evolve in different tumor contexts.  54 

   From an evolutionary point of view, cancer cells are characterized by a low degree of 55 

divergence from its tissue of origin, measured by the limited amount of somatic changes, 56 

which is in contrast to the macroevolution that happens across different taxa or even the 57 

microevolution existing between within-species individuals [6]. However, such trifling 58 

transformation does yield a wide range of phenotypic commonalities shared by distinct 59 

cancer types, including activated proliferative signaling, resistance to programmed cell death, 60 

induction of angiogenesis, and metastatic capability [7]. Among many theories proposed to 61 

understand such convergence, one appealing concept is that cancer cells bear a set of 62 

genomic, transcriptomic, and epigenomic features that can be summed up as “stemness,” [8–63 

11] which in the context of ontogeny, defines the level of reprogramming/dedifferentiation of 64 

adult tissue cells. The underlying mechanistic links between cancer evolution and tissue 65 

development have been hinted at by the observations of frequent mutations leading to 66 

reactivation of stem cell-related pathways in cancer [12,13]. However, little effort has been 67 

made to examine a potential association between these two seemingly non-overlapping 68 

processes with respect to amino acid usage. 69 

   Characterizing the amino acid usage of cancer cells not only helps us understand the 70 

evolutionary constraints in the tumor microenvironment but may also have clinical utility. In 71 

recent years, tremendous efforts have been made to identify gene expression-based 72 

biomarkers for cancer diagnosis, outcome prediction, and treatment selection, but successful 73 

cases with proven clinical values are still limited [14–16]. One factor that determines the 74 

feasibility of such biomarkers in clinical practice, the robustness, is rarely satisfied, meaning 75 

that a threshold chosen based on limited data is usually not generalizable to unseen scenarios. 76 

In contrast to conventional biomarkers based on individual genes, the amino acid usage 77 

represents a holistic property of a cellular state. Therefore, there is a possibility that its related 78 
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indices represent more robust biomarkers for clinical applications. To fill these knowledge 79 

gaps, here we performed a systematic analysis of the amino acid usage profiles across many 80 

cohorts of tumor and normal tissue samples.  81 

 82 

Results 83 

A convergence of amino acid usage across cancer types 84 

Since gene expression levels are largely associated with amino acid usage in a cell, we first 85 

examined the gene expression patterns of 30 tissue types in the Genotype-Tissue Expression 86 

(GTEx) cohort [17] (Figure S1A) and 31 cancer types in The Cancer Genome Atlas (TCGA) 87 

cohort [18] (Figure S1B). Using the t-distributed stochastic neighborhood embedding (t-88 

SNE)[19] projection, we found that samples of a common tissue origin largely formed a 89 

single cluster regardless of being normal or cancerous. In addition, cancer types with the 90 

same tissue origin, such as brain cancers (glioblastoma multiforme [GBM] and lower grade 91 

glioma [LGG]), kidney cancers (kidney renal clear cell carcinoma [KIRC] and kidney renal 92 

papillary cell carcinoma [KIRP]), lung cancers (lung adenocarcinoma [LUAD] and lung 93 

squamous cell carcinoma [LUSC]), and liver cancers (hepatocellular carcinoma [LIHC] and 94 

cholangiocarcinoma [CHOL]), tended to be mingled or closer to each other than to other 95 

cancer types. We observed similar patterns in two other large, pan-cancer cohorts, PCAWG 96 

[20], and MET500 [21] (Figure S1C and D). Consistent with previous studies [18,22], these 97 

results indicate that cancer cells largely retain their tissue-specific gene expression profiles. 98 

   To study whether this tissue-specific pattern holds for amino acid usage, we calculated the 99 

similarity of transcriptome-based amino acid usage by integrating the gene expression 100 

profiles and the amino acid frequencies of protein-coding genes (Figure 1A) and visualized 101 

their patterns in the same way. Similar to the strong tissue specificity observed in the gene 102 

expression analysis, we found that normal tissues of the GTEx cohort still had distinct amino 103 

acid usage patterns (Figure 1B). We further confirmed this result by co-clustering amino acid 104 

usage profiles of the Human Protein Atlas (HPA) cohort [23] with corresponding GTEx 105 

tissue types (Figure S2A). More intriguingly, samples of a multi-species multi-tissue cohort 106 

[24] were principally separated by tissue type rather than by species, suggesting that tissue-107 

specific amino acid usage is highly conserved across mammals (Figure 1C).   108 

   In sharp contrast to normal tissues, when clustered by amino acid usage, samples of 109 

different cancer types were much less separated and did not segregate on the basis of tissue 110 

origins (Figure 1D). To further confirm this observation, we clustered amino acid usage 111 
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profiles of two other cancer cohorts, PCAWG and MET500, and observed a dramatic loss of 112 

tissue-specificity relative to the patterns observed in the gene expression-based analysis 113 

(Figure S1C and D and Figure S2B and C). To ensure that the detected pattern was not due to 114 

a disparity in sample size or unmatched tissue types, we leveraged a conservative GTEx-115 

TCGA mapping to only include normal and tumor samples whose tissue origins are matched 116 

without ambiguity, then performed down-sampling within individual tissue-specific cohorts, 117 

and finally, applied t-SNE to redo a supervised clustering. The results remained the same for 118 

the comparison between down-sampled GTEx and TCGA samples (Figure S2D and E) as 119 

well as for that between TCGA tumor samples and the normal adjacent to tumor (NAT) 120 

(Figure S2F and G). This observation is important since, evaluating tumor purity and gene 121 

signatures, recent studies have shown that NAT samples reside in an intermediate state 122 

between healthy and tumor [25,26]. 123 

   The observation that amino acid usage for cancer cells failed to preserve their distinct tissue 124 

origins raised two possibilities: (i) cancer cells evolved to possess highly stochastic amino 125 

acid usage profiles both within and between cancer types; or (ii) they went through 126 

convergence of amino acid usage, thereby losing the constraint of the original tissue 127 

specificity. To identify the correct hypothesis, we simply asked whether, in the 20-128 

dimensional space (each dimension representing the frequency of specific amino acid), the 129 

distances between samples of different cancer types were shorter than those among samples 130 

of different normal tissues. Based on Pearson’s distance, for each sample, we defined an 131 

amino acid usage convergence index that measured its distance to all other samples of 132 

different tissue or cancer types. Through a comparative analysis of GTEx normal vs. TCGA 133 

tumor and TCGA NAT vs. tumor, we found that tumor samples showed significantly 134 

increased convergence than normal samples, a pattern consistently observed across all 135 

surveyed cancer types (Figure 1E and F).  Furthermore, we compared the variations of amino 136 

acid frequencies across NAT samples and tumor samples of different cancer types based on 137 

the same set of standard deviations. Indeed, the extent to which amino acids are differentially 138 

used in tumors was markedly reduced than that in NATs (Figure S4A and B). Collectively, 139 

these results indicated a strong convergence rather than a stochastic transformation of amino 140 

acid usage across cancer types, supporting our second hypothesis. 141 

 142 

Cancer cells tend to use biosynthetically low-cost amino acids  143 

To understand how such a convergent pattern occurs, we quantified the differential usage of 144 

each amino acid in tumors vs. normal tissues and found no highly consistent trend across 145 
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cancer types in terms of increased or decreased usage (Figure S4C). However, when taking a 146 

higher view of the heatmap, structurally complex amino acids, such as tryptophan and 147 

cysteine, tended to be significantly depleted in most cancer types, whereas those with 148 

relatively simpler structures tended to be significantly enriched in a majority of cancers. 149 

Because the structural complexity of the amino acids correlates well with the energy cost of 150 

their biosynthesis [1], we hypothesized an association between the biosynthetic energy cost 151 

of amino acid and its usage tendency in cancers. Indeed, we observed a strong negative 152 

correlation between the biosynthetic energy cost and the net number of cancer types in which 153 

the usage of an amino acid was significantly increased (Figure 2A, Rs = -0.56, p = 0.01), 154 

suggesting that cancer cells prefer amino acids with a lower biosynthetic energy cost. We 155 

previously introduced two indices, ECPAgene, and ECPAcell, which quantify the average 156 

biosynthetic energy cost per amino acid for a gene and a cell (or a sample), respectively [27] 157 

(Figure 2B). ECPAgene is based on the amino acid frequency encoded in a gene, and ECPAcell 158 

considers the expression levels and amino acid frequencies of all the genes in a cell. A high 159 

ECPA value indicates that the gene or the cell tends to use biosynthetically expensive amino 160 

acids. We found that compared to NAT samples, ECPAcell of the tumor samples became 161 

significantly lower for 9 out of the 15 tested cancer types, while no significantly opposite 162 

patterns were observed (Figure 2C). To confirm this pattern at the proteomic level, we 163 

extended these analyses to six cancer proteomics datasets from the Clinical Proteomic Tumor 164 

Analysis Consortium (CPTAC) [28] and others [29,30], covering five cancer types. 165 

Strikingly, in all the cases, proteins that were significantly up-regulated in tumor samples 166 

(log2FC > 0, FDR < 0.05) had significantly lower ECPAgene than the proteins that were 167 

significantly down-regulated (log2FC < 0, FDR < 0.05) (Figure 2D). These results indicate 168 

that cancer cells reshaped their gene/protein expression programs to use biosynthetically 169 

inexpensive (or structurally simpler) amino acids, thereby losing their original tissue-specific 170 

amino acid usage profiles. Finally, we sought to test if our ECPA index is insensitive to the 171 

expression of genes with extremely high abundance, including those encoding certain 172 

housekeeping proteins as well as tissue-specific proteins. After removal of all genes that 173 

either encode cytoplasmic and mitochondrial ribosome proteins or rank within top 200 in 174 

median TPM of the same cancer type, we recalculated the ECPA index for each sample and 175 

found that the pattern of consistent decrease of ECPAcell in tumor samples across multiple 176 

cancer types was almost perfectly reproduced (Figure S3). 177 

   We next tested whether the amino acid usage convergence level of a tumor was correlated 178 

with its ECPAcell. Indeed, we found a strong inverse relationship for seven out of the nine 179 
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cancer types where ECPAcell was significantly lower in tumors (Figure 2E). Thus, the more a 180 

tumor follows a convergent path to a common state of amino acid usage, the higher the bias it 181 

has toward using biosynthetically low-cost amino acids. These results also suggest that 182 

ECPAcell is a simple, informative, interpretable index that effectively captures the overall 183 

preference of amino acid usage for a specific sample. Therefore, we focused on this index in 184 

subsequent analyses. 185 

 186 

Biosynthetically expensive amino acids are increasingly used during tissue development 187 

To elucidate the underlying cause for the convergence of amino acid usage in cancer, we first 188 

sought to understand how tissue-specific amino acid usage patterns are established during 189 

development. Using the ECPAcell index, we quantified the overall amino acid usage of liver 190 

and kidney tissues across different development stages in mammals, including humans, mice, 191 

rats, rabbits, and opossums. Intriguingly, both tissues showed an increasing trend of ECPAcell 192 

along their developmental trajectories in all five mammals (Figure 3A and B). A closer 193 

inspection of the ECPAcell trend lines led to two observations: i) key turning points of 194 

ECPAcell in different species tend to happen at corresponding developmental stages; and ii) 195 

the rise of ECPAcell in the liver takes concave trajectories while that in the kidney takes 196 

convex trajectories, suggesting that the establishment of high ECPAcell status is driven by 197 

evolutionarily conserved synchronous molecular events that possess strong tissue specificity. 198 

To confirm this pattern, we collected another three independent RNA-seq datasets on mouse 199 

liver development and found a consistent ECPAcell increase along the developmental paths in 200 

all three cases (Figure 3C-E). 201 

   To pinpoint which gene modules are responsible for the tissue-specific build-up of a high 202 

ECPAcell status, we first defined a “ΔECPAcell contribution index” for each gene, which 203 

quantified the contribution of the gene to the global shift of ECPAcell (see Materials and 204 

methods). We then divided all genes into 15 equal bins based on their index values and 205 

employed a mutual information-based enrichment identification algorithm called iPAGE [31] 206 

to detect the enrichment of these gene groups with well-established functional gene modules. 207 

We noted that genes contributing to the ECPAcell increase were conserved among mammals 208 

but were tissue-specific. For the liver, the enriched modules included glucuronosyltransferase 209 

activity and complement activation (Figure 3F, Figure S5A, C and E); and for the kidney, the 210 

enriched modules included sphingolipid biosynthetic process and zinc/calcium ion 211 

homeostasis (Figure 3G, Figure S5B, D, and F). 212 
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   Development-related cellular states that are instituted in adulthood can be prone to 213 

significant transformation or even complete collapse during aging [32]. To further understand 214 

how tissue-specific amino acid usage patterns alter when the tissue undergoes senescence, we 215 

gathered independent transcriptome profiles of aging livers and kidneys in humans, mice, and 216 

rats, and characterized the ECPAcell patterns. Both tissues showed a stable pattern of high 217 

ECPAcell status with reasonable fluctuations (Figure S6A-C). We concluded that tissue-218 

specific, preferred usage of biosynthetically expensive (or structurally complex) amino acids, 219 

characterized by a high-ECPAcell status, was gradually formed during development and 220 

remained largely unchanged in aging. 221 

 222 

Amino acid usage convergence of tumor follows a reversed path of tissue development 223 

The strong convergence of amino acid usage across different cancer types is reminiscent of 224 

the “reverse-evolution” concept for tumorigenesis. As demonstrated above, this idea is well 225 

illustrated by the observation that there is a consistent decline of ECPAcell in tumors, whereas 226 

there is a gradual increase of ECPAcell during tissue development. To test the hypothesis that 227 

cancer evolution and tissue development move in opposite directions with respect to amino 228 

acid usage, we assessed whether the genes that boosted ECPAcell in tissue development were 229 

overlapped with those that reduced ECPAcell in tumors of the corresponding tissue origin and 230 

vice versa. Following the same method of computing ΔECPAcell contribution index for tissue 231 

development, we measured the contribution of individual genes to ΔECPAcell in cancer 232 

evolution for three cancer types for which gene expression profiles of normal developing 233 

tissues are available, namely LIHC, KIRC, and KIRP. Based on their contributions to 234 

ΔECPAcell in either development or tumorigenesis, we divided individual genes into four 235 

quadrants with zero as the cutoff. We then used Fisher’s exact test to analyze the overlap of 236 

developmental ΔECPAcell-positive-contributing genes with tumorigenic ΔECPAcell-negative-237 

contributing genes and vice versa. We observed that genes indeed tended to make opposite 238 

contributions to ΔECPAcell in tumorigenesis and tissue development (Figure 4A-C, Fisher’s 239 

exact test, LIHC, p = 1.6×10-156; KIRC, p = 1.9×10-39; KIRP, p = 8.9×10-30). Furthermore, for 240 

the genes reducing ECPAcell in tumorigenesis and increasing ECPAcell in development, their 241 

ΔECPAcell contribution index in these two processes were significantly negatively correlated 242 

(Figure 4D-F). 243 

   While the gene-level analyses above were possibly hindered by the fact that cancer 244 

progression is highly heterogeneous even within the same cancer type [33,34], we can expect 245 

that a sample-level analysis would be more efficient to detect potential reverse relationships 246 
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between cancer evolution and tissue development regarding amino acid usage. To this end, 247 

we defined the “developmental reversal index” for each tumor sample, which quantifies how 248 

strongly its gene expression pattern reversed what was instituted in tissue development. 249 

Specifically, we first calculated the gene-expression fold change of each tumor sample in 250 

terms of that averaged over the adjacent normal samples in order to measure the 251 

transcriptomic shift during tumorigenesis. We then measured the strength of anti-correlation 252 

between such a shift and the expression changes of the same gene set along the 253 

developmental trajectories of matched tissues (see Materials and methods). Interestingly, 254 

using this index to stratify cancer patients in terms of overall survival time, we found that a 255 

higher developmental reversal value was consistently associated with a worse prognosis 256 

(Figure 4G-I), suggesting that more aggressive tumors tend to have gene expression profiles 257 

more reversed in the tissue development trajectory.   258 

   Finally, we employed a multivariate linear regression model to clarify the associations 259 

between how biased a tumor sample tends to be in using biosynthetically inexpensive amino 260 

acids (represented by ECPAcell), how far it travels on the path of amino acid usage 261 

convergence relative to other cancer types (represented by amino acid usage convergence 262 

index), and how strongly its gene expression pattern reversed from what was instituted in 263 

tissue development (represented by the developmental reverse index). Remarkably, both the 264 

convergence level and the developmental reversal level were strongly anti-correlated with 265 

ECPAcell across cancer types (Figure 4J-L). We, therefore, put forward an integrated model in 266 

which cancer cells initiated from distinct tissue origins converge into a common state 267 

favoring the use of biosynthetically inexpensive amino acids through reversed paths of tissue 268 

development (Figure 4M). 269 

 270 

The amino acid usage index, ECPAcell, is a robust biomarker for liver cancer diagnosis 271 

Among different cancer types in our ECPAcell analysis, the difference between liver normal 272 

and liver tumor samples was striking, making this tissue stand out from others (Figure 2C). 273 

Indeed, by quantifying the downward shift of ECPAcell (ΔECPAcell) between tumor and the 274 

matched NAT pairs, the top two cancers were CHOL and LIHC, both of which originate 275 

from the liver (Figure 5A). We suspected that such a striking pattern could be attributed to 276 

liver-specific gene expression. To test this, we calculated ECPAcell of both GTEx normal 277 

samples and TCGA NAT samples based only on tissue-specific genes [35] and ranked the 278 

tissues by their average ECPAcell. Indeed, the liver ECPAcell level was higher than almost all 279 
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other tissues (Figure 5B and C) (although the pancreas showed an even higher ECPAcell 280 

according to the GTEx samples, the pattern did not hold for TCGA NAT samples). Of note, 281 

while the sample size of LIHC-NAT was as large as 50, the variation of their ECPAcell based 282 

on tissue-specific genes was low. Furthermore, a comparison of the developmental ECPAcell 283 

trend lines for different human tissues revealed that a fast and early build-up of a high-284 

ECPAcell status only existed for the liver (Figure 5D). We observed similar patterns in other 285 

mammals as well (Figure S7A-D). These results suggest that during development, the liver 286 

acquires a very high ECPAcell state, and the liver-specific genes are the underlying 287 

contributing factor.  288 

   Given (i) the extremely high ECPAcell level of liver tissue, and (ii) the dramatic difference 289 

between liver tumor and matched normal samples, we speculated whether ECPAcell could be 290 

utilized as a novel biomarker for detecting liver cancer. To this end, we first collected 11 291 

independent liver-cancer RNA-seq datasets (including TCGA LIHC and CHOL) where 292 

matched tumor and adjacent normal biopsies were simultaneously collected, thereby enabling 293 

a direct comparison of ECPAcell between these conditions. In all cases, the tumor samples 294 

showed significantly reduced ECPAcell with large effect sizes (Figure 6A).  295 

   To evaluate more rigorously the capacity of ECPAcell to serve as a diagnostic marker in 296 

discriminating liver tumors from normal tissues, we employed the area under the receiver 297 

operating characteristic curve (AUROC) as a performance metric. To ensure the robustness 298 

of our analyses, we only included six datasets with sample size ≥12. The ECPAcell index was 299 

able to separate tumor vs. normal samples with very high ROC scores (median value = 0.993, 300 

range = 0.982 - 1.00, Figure 6B). To compare the predictive power of ECPAcell relative to 301 

individual gene-based biomarkers, we calculated the average AUROC of all detectable genes 302 

across the six datasets and assessed their performance in the same way. Among 9,559 genes 303 

assessed, only three genes (CCT3, DDX39A, and FLAD1) showed slightly better performance 304 

than ECPAcell (0.992), but none of them had statistically significant superiority (Figure 6C 305 

and D). In addition, ECPAcell showed significantly higher discriminating power than the 306 

usage of any single amino acid (Figure 6E). Along with accuracy, a key feature of a 307 

successful biomarker is its robustness. To assess this feature, we computed the coefficient of 308 

variation (CV) for the optimal thresholds of ECPAcell and individual genes across different 309 

datasets as an indicator of robustness. ECPAcell showed exceptionally high robustness with its 310 

CV as low as 7.9×10-3, about 5× smaller than the lowest CV of any single gene-based 311 

biomarker (Figure 6F). Notably, the three genes that had a statistically insignificant 312 

advantage over ECPAcell by AUROC had extremely unstable optimal cutoffs among different 313 
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datasets, suggesting their limited power in detecting liver cancer across diverse clinical 314 

scenarios. Collectively, these results suggest that, as a system-level feature capturing the 315 

global usage of amino acids in a sample, ECPAcell represents a promising biomarker for liver 316 

cancer diagnosis, and possesses both high accuracy and exceptional robustness.  317 

Discussion 318 

Here we performed a systematic analysis on transcriptome and proteome-based amino acid 319 

usage across a broad range of cancer types. Using a previously introduced index, ECPAcell, 320 

our results revealed, for different tumors, a convergent pattern toward a cellular state of using 321 

more biosynthetically low-cost amino acids. In parallel, we studied the amino acid usage in 322 

the developmental trajectories of multiple organs and uncovered diverse paths into a tissue-323 

specific high-ECPAcell status that were evolutionarily conserved across mammals. Thus, a 324 

reverse relationship existed between cancer evolution and tissue development, which can be 325 

viewed as reminiscent of the widely accepted concept of the cancer cell “stemness.” 326 

Furthermore, given the long-standing parallels between phylogeny and ontogeny [36], 327 

supported by recent evidence [24,37,38], it would be reasonable to interpret cancer evolution 328 

as a reversed process of not only the development of an organism or its tissues but also the 329 

evolution of species. It has been argued that one key mechanism adopted by cancer cells to 330 

obtain fitness in spite of the diversity of the microenvironments is to unleash the force that is 331 

suppressed in multicellular organisms but is borne by unicellular organisms that are at the 332 

very bottom of the evolutionary hierarchy [39–43]. Thus, amino acid usage, a key aspect of 333 

cellular metabolism, may provide a unique perspective to understand the fundamental 334 

principles governing cancer progression, tissue development, and macroevolution, three 335 

evolutionary processes on different scales.  336 

   With the advances in transcriptome profiling technology, gene expression-based 337 

biomarkers have attracted wide attention for tumor detection and patient stratification. 338 

However, due to the high heterogeneity of cancer and intrinsically stochastic nature of gene 339 

expression, biomarkers based on either a single gene or a set of genes tend to suffer from 340 

numerical instability, thereby performing poorly. As demonstrated for liver cancer diagnosis, 341 

our ECPAcell index represents a system-level biomarker that has at least three remarkable 342 

advantages. First, ECPAcell captures a global cellular state by retaining the entire 343 

transcriptome as its information source, thereby conferring unparalleled robustness. Second, 344 

ECPAcell was derived de novo from the gene expression profile of a sample, thus independent 345 

of external reference, which might introduce large noise predominantly attributable to batch 346 
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effect. Third, in contrast to data-driven metrics, ECPAcell has a well-defined biological 347 

meaning, the biosynthetic energy cost of amino acids. Because of these properties, ECPAcell 348 

is an extremely robust diagnostic biomarker for liver cancer with a nearly constant threshold 349 

for tumor-normal segregation. Further efforts are warranted to assess the utility of this index 350 

in other cancer types and clinical applications. 351 

 352 

Materials and methods 353 

Data acquisition and processing 354 

We obtained the gene-level expression values (e.g., fragments per kilobase per million 355 

[FPKM] or transcripts per million [TPM]) of the TCGA cancer sample cohorts, the GTEx 356 

normal tissue cohort, and the MET500 metastatic tumor cohort, from the Xena data portal 357 

(https://xenabrowser.net/datapages/); the HPA cohort from the HPA data portal 358 

(http://www.proteinatlas.org/); and the PCAWG cohort from the ICGC data portal 359 

(https://dcc.icgc.org/releases/PCAWG/transcriptome/). We also obtained the gene expression 360 

values of the mammalian tissue development cohorts 361 

from ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) under the accession IDs E-MTAB-362 

6769 (chicken), E-MTAB-6782 (rabbit), E-MTAB-6798 (mouse), E-MTAB-6811 (rat), E-363 

MTAB-6813 (rhesus macaque), E-MTAB-6814 (human), and E-MTAB-6833 (opossum); 364 

and two independent RNA-seq datasets of mouse liver development from the Gene 365 

Expression Omnibus (GEO) under the accession IDs GSE58733 and GSE58827, as well as 366 

from ArrayExpress under the accession ID E-MTAB-2328. Finally, we obtained RNA-seq 367 

datasets of aging mouse liver and kidney from GEO under the accession ID GSE132040.  368 

   To convert gene-level FPKM values to TPM [44] values for a gene g� in a sample s� , we 369 

used the formula: 370 

�����,��  
�

��	���,��

∑ ��	���,��
�
�	


� 10� 

where the denominator on the right side is the sum of FPKM values of all the genes for an 371 

individual sample.  372 

   We downloaded raw RNA-seq fastq files of human liver cancer from GEO under the 373 

accession IDs GSE65485, GSE119336, GSE77314, GSE77509, GSE63863, GSE94660, 374 

GSE25599, GSE124535, and GSE55758; files of aging rat liver from the Sequence Read 375 

Archive (SRA) under the accession ID PRJNA516151, and files of TCGA LIHC and CHOL 376 

cohorts from the GDC Data Portal (https://portal.gdc.cancer.gov/). MultiQC [45] was used to 377 
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assess the quality of the sequencing files and the performance of the preprocessing steps. 378 

Transcript-level abundances were quantified by Salmon [46] using the GRCh38 379 

transcriptome as the reference. Gene-level TPM values were aggregated from transcript-level 380 

TPM values by tximport [47]. 381 

   We obtained the proteomics datasets of KIRC, COAD, LUAD, and OV patient cohorts 382 

from the CPTAC data portal (https://cptac-data-portal.georgetown.edu/). We obtained two 383 

proteomics datasets of liver cancer from the NODE data portal 384 

(https://www.biosino.org/node/index/) and the CNHPP data portal 385 

(http://liver.cnhpp.ncpsb.org/), respectively. 386 

 387 

Calculation of transcriptome-based amino acid usage 388 

We used the following formula to compute the amino acid frequency matrix given an RNA-389 

seq dataset (see also Fig. 1a):  390 

���� � �������
� 

where � is a matrix of genes g
, g�, … , g�  by samples s
, s�, … , s�  with entries as TPM 391 

values, and A is a matrix of genes g
, g�, … , g� by amino acids a
 , a� , … , a�� with entries as 392 

relative frequencies of amino acids computed using the protein sequences annotated in the 393 

Swiss-Prot and TrEMBL databases hosted by the UniProt website (https://www.uniprot.org/). 394 

When a gene has multiple isoforms, we used its canonical sequence, as defined by UniProt 395 

based on criteria such as transcript length, relative abundance, and evolutionary conservation, 396 

in our analyses. We also repeated our analyses using transcript-level TPM data, where all 397 

isoforms annotated by ENSEMBL were included and had nearly identical results. 398 

 399 

Variation analysis of amino acid usage for TCGA samples 400 

To illustrate the variation of amino acid usage of NAT samples from different tissues, we 401 

computed z-scores based on the average frequencies for individual amino acids across tissues. 402 

To compare these with the variations in amino acid usage of tumor samples across cancer 403 

types, instead of using de novo standard deviations to compute z-scores, we used the set of 404 

standard deviations derived for the NAT samples to obtain z-scores for the tumor samples. 405 

We used hierarchically clustered heatmaps with Euclidean distance as the distance metric to 406 

visualize the tissue-specificity of amino acid usage. To identify differential amino acid usage 407 

between tumor and NAT samples, we performed the Wilcoxon rank-sum test for frequencies 408 

of individual amino acids using paired tumor and NAT samples and used an FDR-adjusted p-409 
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value of 0.05 as the threshold for significance. Similarly, a hierarchically clustered heatmap 410 

was used to display amino acid de-regulation patterns across cancer types. 411 

 412 

Calculation of ECPAgene and ECPAcell 413 

We calculated two indices of amino acid usage, ECPAgene, and ECPAcell, representing the 414 

average biosynthetic energy cost per amino acid of a gene and a cell, respectively, as 415 

described previously [27]. Briefly, the biosynthetic costs of amino acids are based on the 416 

amount of high-energy phosphate bond equivalents required for amino acid biosynthesis in 417 

yeast and are normalized by amino acid decay rates (the biosynthetic costs of amino acids are 418 

highly correlated between different species). We then calculated ECPAgene and ECPAcell by 419 

multiplying the biosynthetic energy costs with the relative amino acid frequency of a gene or 420 

a cell (sample). 421 

 422 

Quantification of amino acid usage convergence for TCGA samples 423 

To quantify the similarity of NAT or tumor samples in the TCGA cohort in terms of their 424 

amino acid usage patterns, we applied the Pearson’s distance metric to the amino acid 425 

frequency profiles, derived as described above. We also employed the Spearman rank 426 

correlation coefficient as an alternative metric and obtained the same results. Specifically, to 427 

capture the convergent pattern of amino acid usage across cancer types, we defined, for a 428 

sample s�  of cancer type �, the amino acid usage convergence index as:  429 

1 �  
∑ ���,��

�
�	


�
��� � �� 

where ���,��
 is the Pearson’s distance between sample s�  from cancer type � and sample ��  430 

not from cancer type �. 431 

 432 

Calculation of ΔECPAcell contribution index 433 

To estimate the contribution of individual genes to the alteration of ECPAcell in a specific 434 

biological process, we considered both how different the ECPA of a gene is from the baseline 435 

ECPAcell, as well as how much its expression level has changed. Formally, we defined the 436 

ΔECPAcell contribution index of a gene �� as:  437 

�������
� ������������� � ���

 

where ���
 is an importance score that describes the extent of deregulation of �� . In 438 

tumorigenesis, we employed the log2 fold-change of average expression level between tumor 439 
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and NAT samples as the importance score. In tissue development, we employed a different 440 

importance score that was not based on binary comparison as in tumorigenesis since the 441 

nature of the dataset is time-course measurements. Specifically, we applied an R package 442 

designed for transcriptomic time courses, maSigPro [48], to build a polynomial regression 443 

model (degree = 3) for each gene using its expression level as the response variable and the 444 

log-transformed post-conception days as the independent variable. Such models yielded the 445 

goodness-of-fit (R2) values that were then signed by the corresponding Spearman correlation 446 

coefficients and were finally used as the importance score. 447 

 448 

Pathway analysis of ΔECPAcell contribution in mammalian tissue development  449 

We employed an information-theoretic framework [31] to reveal gene modules or regulatory 450 

pathways that were enriched in genes with a significant contribution to the increase of 451 

ECPAcell during tissue development. First, we focused on down-regulated genes with lower-452 

than-baseline ECPAgene and up-regulated genes with higher-than-baseline ECPAgene, both of 453 

which could contribute to the increase of developmental ECPAcell. Second, we distinguished 454 

these two groups of genes by signing the index of down-regulated genes as negative, 455 

followed by rank-transforming all retained genes, and dividing the genes into equal bins. 456 

Third, we used the iPAGE algorithm that calculated the mutual information between the gene 457 

ranks and the pathway memberships (the number of genes belonging to a pathway in each bin) 458 

for every Gene Ontology term. A random-permutation test was used to estimate the 459 

significance of these mutual information (MI) values so that significantly informative 460 

pathways were identified with high MI values and low p values. Finally, the hypergeometric 461 

test was used to determine whether a specific pathway was over- or under-represented in each 462 

bin. For visualization, heatmaps of pathways by bins were drawn using log-transformed p 463 

values. 464 

 465 

Calculation of developmental reversal index of tumor samples 466 

To assess the level of developmental reversal for tumor samples of TCGA LIHC, KIRC, and 467 

KIRP cohorts, we asked how greatly the shift of a tumor transcriptome from a mega NAT 468 

reference (averaging gene expressions over all NAT samples of a certain cancer type) had 469 

reversed the shift of the transcriptome along the developmental trajectory of a corresponding 470 

tissue. Formally, we defined, for a sample �� , the developmental reversal index as: 471 

��log��"��
####$ % ��&�
########$��, '$� 
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where % is element-wise division, � is the Spearman correlation coefficient, "��
 is a vector of 472 

(  gene expressions for sample �� , �  is a matrix of genes g
, g�, … , g�  by NAT samples 473 

s
 , s� , … , s� of a certain cancer type with entries as expression level, &�
########$ is a normalization 474 

vector of constant &�
 , and '$  is a vector of signed goodness-of-fit values of genes 475 

g
, g�, … , g� derived from the developmental RNA-seq data of a matched tissue type. We 476 

examined the association of this index with patients’ overall survival times in TCGA LIHC, 477 

KIRC, and KIRP cohorts using log-rank tests, where patients were split into two equal groups 478 

based on the median value of developmental reversal index. 479 

 480 

Evaluation of the utility of ECPAcell as a diagnostic biomarker 481 

To quantify the performance of ECPAcell in differentiating tumors from related normal 482 

samples, we used the AUROC metric to compare it with those of all detectable individual 483 

genes (TPM ≥ 1 in ≥50% of samples in the cohort). To determine the optimal threshold of 484 

ECPAcell or gene expression level for tumor-normal separation, we chose the value that 485 

maximizes Youden’s J statistic, which equals to (sensitivity + specificity – 1). If multiple 486 

optimal cutoffs existed for a biomarker whose average level was higher in NAT than in 487 

tumors, the one with the highest value was picked and vice versa.  488 
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 654 

Figure legends 655 

Figure 1  Pan-cancer convergence of transcriptome-based amino acid usage 656 

A. Schematic diagram showing the computation of amino acid usage frequency based on the 657 

gene expression profile derived from an RNA-seq sample. t-SNE projection of the GTEx (B), 658 

developing mammalian tissue (C), and TCGA tumor samples (D) based on their amino acid 659 

frequency profiles. Samples are color-coded based on tissue or cancer types. Marker shapes 660 

correspond to species. Developmental stages were classified into three categories and 661 

indicated by marker size. All t-SNE projections were generated using sklearn TSNE, with 662 

perplexity as 30, learning rate as 200, and the number of iterations as 1,000. Comparison of 663 

amino acid usage convergence index between tumor samples and either matched down-664 

sampled normal samples (E) or adjacent normal samples (F) across multiple cancer types. 665 

Box plots show the quartiles, and the whiskers indicate quartile ± 1.5 × interquartile range. A 666 

two-sided Mann-Whitney U-test was used to calculate the p-value. *p < 0.05, **p < 0.01, 667 

***p < 0.001. 668 

 669 

Figure 2  Amino acid usage preference in tumor evolution as quantified by ECPAcell 670 

A. Correlation between the biosynthetic energy cost of an amino acid and the net number of 671 

cancer types with significantly increased usage across 20 amino acids. The net number is 672 
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defined as the number of cancer types with significantly increased usage of the amino acid 673 

minus the number with significantly decreased usage. The colored region around the 674 

regression lines indicates a 95% confidence interval. B. Schematic diagram showing the 675 

computation of ECPAgene and ECPAcell based on the gene expression profile derived from 676 

RNA-seq data. C. ECPAcell of tumor samples and matched normal tissue samples across 677 

TCGA cancer types. A paired two-sided Wilcoxon signed-rank test was used to calculate the 678 

p values. D. Bar plots showing ECPAgene values of significantly down- and up-regulated 679 

proteins in several cancer proteomics datasets. Error bars denote 95% confidence intervals. A 680 

two-sided Mann–Whitney U-test was used to calculate the p values. E. Correlation between 681 

ECPAcell and amino acid usage convergence index across samples in nine cancer types. The 682 

colored regions around the regression lines indicate 95% confidence intervals. *p < 0.05, **p 683 

< 0.01, ***p < 0.001. 684 

 685 

Figure 3  The increasing trend of ECPAcell throughout mammalian organogenesis 686 

Trend lines of ECPAcell during the development of the liver (A), and the kidney (B) across 687 

five mammalian species. Developmental stages of non-mouse species correspond to the 688 

mouse stages shown in brackets. Error bars denote 95% confidence intervals. The trend line 689 

of ECPAcell along the developmental trajectory of the mouse liver across three independent 690 

datasets (C-E). Error bars denote 95% confidence intervals. Heatmaps showing enrichment 691 

patterns of gene modules that contribute to ΔECPAcell during the development of the human 692 

liver (F) and the human kidney (G). The red stripes embedded in the black background on 693 

top of each heatmap designate the range of ΔECPAcell contribution index within every bin. 694 

 695 

Figure 4  A proposed model unifying developmental reversal, amino acid usage 696 

convergence, and ECPAcell decline of cancer samples 697 

Stacked bar plots showing the proportion of genes that positively or negatively contribute to 698 

ΔECPAcell in either tumorigenesis or development for LIHC-liver (A), KIRC-kidney (B), and 699 

KIRP-kidney (C). Scatter plots showing, for genes with negative ΔECPAcell contribution 700 

index in tumorigenesis and positive ΔECPAcell contribution index in tissue development, 701 

scaled ΔECPAcell contribution index in tumorigenesis versus scaled ΔECPAcell contribution 702 

index in tissue development for LIHC-liver (D), KIRC-kidney (E), and KIRP-kidney (F). 703 

Colored regions around the regression lines indicate 95% confidence intervals. Kaplan-Meier 704 

plots show the overall survival for patients with LIHC (G), KIRC (H), or KIRP (I) stratified 705 

by developmental reversal index into two equal groups, respectively. The p values were 706 
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calculated from two-sided log-rank tests. Multivariate linear regression of ECPAcell with 707 

developmental reversal index and amino acid usage convergence index as dependent 708 

variables for LIHC-liver (J), KIRC-kidney (K), and KIRP-kidney (L). M. Cartoon depicting 709 

a conceptual model in which cancer evolution is accompanied by the convergence of amino 710 

acid usage and decrease of ECPAcell, which is a reversal of the tissue development process.   711 

 712 

Figure 5  The liver shows the most dramatic ECPAcell reduction in tumorigenesis 713 

Distributions of ΔECPAcell between tumor samples and paired NAT samples across multiple 714 

cancer types (A), tissue-specific genes-based ECPAcell of normal samples across multiple 715 

tissues (B), tissue-specific genes-based ECPAcell of adjacent normal samples across multiple 716 

cancer types (C), ranked by the median values. The box plots show the quartiles. The 717 

whiskers indicate quartile ± 1.5× interquartile range. The horizontal dashed line indicates the 718 

level of ΔECPAcell = 0. D. Trend lines of ECPAcell of multiple tissues across human 719 

developmental stages. Error bars denote 95% confidence interval. wpc, weeks post 720 

conception. 721 

 722 

Figure 6  ECPAcell is a robust diagnostic biomarker for liver cancer 723 

A. ECPAcell of tumor samples and matched normal tissue samples in 11 independent RNA-724 

seq datasets of liver cancer and their matched normal samples. A paired two-sided Wilcoxon 725 

signed-rank test was used to calculate the p values. B. ROC curves of ECPAcell as a 726 

diagnostic biomarker in six independent liver cancer cohorts with sample size ≥12. Dashed 727 

lines indicate the lines of identity. ROC, receiver operating characteristic; AUC, area under 728 

the ROC curve. C. Histogram showing the distribution of the average AUC across the six 729 

cohorts for tumor-normal segregation using the mRNA expression level of each of the 9,559 730 

detectable genes. The vertical dashed line corresponds to the average AUC of ECPAcell. D. 731 

Box plots showing the AUC of the top four metrics, including three genes and ECPAcell, in 732 

discriminating tumor samples from normal samples across the six cohorts. A paired two-733 

sided Wilcoxon signed-rank test was used to calculate the p values. E. Box plots showing the 734 

AUC of ECPAcell and the frequency of each amino acid in detecting tumors across the six 735 

cohorts. The box plots show the quartiles. The whiskers indicate quartile ± 1.5× interquartile 736 

range. A paired two-sided Wilcoxon signed-rank test was used to calculate the p values. F. 737 

Histogram showing the distribution of coefficients of variation (CV) of the optimal 738 

thresholds in using individual genes for tumor-normal segregation. The vertical red dashed 739 
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line indicates the CV of ECPAcell. Vertical lines in three other colors indicate the CV of three 740 

genes whose average AUCs are higher than ECPAcell. *p < 0.05, **p < 0.01, ***p < 0.001. 741 

 742 

 743 

  744 
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Supplementary materials 745 

Figure S1  t-SNE projection of samples based on gene expression 746 

t-SNE projection of the GTEx (A), TCGA (B), PCAWG (C), and MET500 (D) samples 747 

based on their gene expression profiles. 748 

 749 

Figure S2  t-SNE projection of samples based on amino acid frequency 750 

t-SNE projection of the GTEx & HPA (A), PCAWG (B), MET500 (C), down-sampled GTEx 751 

(D), down-sampled TCGA tumor (E), matched TCGA NAT (F), and matched TCGA tumor 752 

(G) samples based on their amino acid frequency. 753 

 754 

Figure S3  Re-calculation of ECPAcell in TCGA samples without highly-expressed genes 755 

A. ECPAcell of tumor samples and matched normal tissue samples across TCGA cancer types 756 

after removal of genes encoding high-abundance housekeeping or tissue-specific proteins 757 

 758 

Figure S4  Differential amino acid usage within and between tumor and NAT samples 759 

Heatmaps showing the average frequency of individual amino acids for NAT samples (A) 760 

and tumor samples (B), normalized as z-scores, across 15 cancer types. C. Heatmap showing 761 

significantly increased or decreased usage of individual amino acids between tumor and NAT 762 

samples across 15 cancer types. 763 

 764 

Figure S5  Functional enrichment of genes with a positive contribution to ΔECPAcell in 765 

non-human tissue development 766 

Heatmaps showing enrichment patterns of well-defined gene modules that contribute to 767 

ECPAcell increase during the development of the mouse liver (A) and kidney (B), the rat liver 768 

(C) and kidney (D), and the rabbit liver (E) and kidney (F). Red stripes embedded in the 769 

black background on top of each heatmap designate the range of ΔECPAcell contribution 770 

index within every bin. 771 

 772 

Figure S6  Variations of ECPAcell during tissue aging 773 

Trend lines of ECPAcell during aging of the liver and the kidney in humans (A), mice (B), and 774 

rats (C). Blue and orange dashed lines indicate the average levels of ECPAcell across age 775 

groups for the liver and the kidney, respectively. Error bars denote 95% confidence intervals. 776 

 777 
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Figure S7  Variations of ECPAcell during the development of multiple tissues in non-778 

human mammals 779 

Trend lines of ECPAcell in seven tissues across four mammals, including mice (A), rats (B), 780 

rabbits (C), and opossums (D). Error bars denote 95% confidence intervals. 781 
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Figure S3
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Figure S4
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Figure S5
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Figure S6
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Figure S7
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