
versus between correlations), indicating stronger generalization across scenarios in the 
Physics Network compared to the VTC fROI (F1,12 = 6.29, p = 0.027). Thus, the Physics 
Network (and not VTC) holds information about physical stability that generalizes from 
scenarios with only inanimate objects to scenarios in which people are in physically 
unstable situations, but not to scenarios in which people are in peril from animals.  

  
  

 
Figure 2: (A) Functionally defined regions of interest implicated in intuitive physical inference (the Physics 
Network) were defined in each participant individually by intersecting the activation from a localizer task 
with anatomical constraint parcels in the frontal and parietal lobes shown in yellow (see Methods). Patterns 
of activity across voxels in these fROIs were extracted separately in each participant for each combination 
of even and odd runs, unstable and stable conditions, and scenario (Physical-Objects, Physical-People, 
and Animals-People). Following standard practice20, correlations between even and odd runs in the pattern 
of response across voxels were computed both within stability conditions (rw1 = stable even to stable odd, 
and rw2 = unstable even to unstable odd), and between stability  conditions (rb1 = stable even to unstable 
odd, and rb2 = unstable even to stable odd), for each of the three scenario types. (B) Bar plot showing 
average pattern correlations within and between conditions with paired t-tests done after Fisher 
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transformation, for each scenario type. (C) is similar to (A) but the within and between stability pattern 
correlations were computed across scenario types (rw1 and rw2 indicate pattern correlations computed within 
stable or within unstable conditions across scenario, and rb1 and rb2 indicate pattern correlations computed 
between stable and unstable conditions across scenario). (D) is same as in (B) but for pattern correlations 
computed across scenarios. Note that the across-scenario correlations in (D) are overall higher than within 
scenario correlations in (C) because the data was not split into odd and even runs for the across-scenario 
case. Grey circles and the corresponding connecting lines denote individual subject’s data. Error bars 
indicate standard error of mean across subjects. ** and * indicate statistically significant effect at p <= 0.005 
and p <= 0.05 respectively, and n.s. indicates no statistically significant effect. 
 
 
 

Eye Movement and Attention Controls. Could these findings in the Physics Network 
simply be due to differential eye movements across different experimental conditions 
(despite the instructions to fixate), or differential attention? To explore these possibilities, 
we quantified eye movements collected in the scanner during the main experiment in a 
subset of participants (n = 6) for each of the six stimulus conditions by extracting the 
average x and y co-ordinates of eye position, as well as the number, duration and 
amplitude of eye movements. None of these quantities showed a significant difference 
between stable and unstable conditions in any of the scenarios except for saccade 
amplitude in the ‘Physical-People’ scenario (p = 0.028, Supplementary Table 1). 
Moreover, we found no significant interaction of stability with scenario type for any of the 
eye movement quantities using separate ANOVAs (p > 0.1). Second, analysis of 
subjective ratings by a separate set of subjects (see Methods) of ‘interestingness’ of our 
stimuli (which we used as a proxy for how attention-grabbing the stimuli were) revealed 
significantly higher ratings for unstable over stable conditions in all three scenarios (p < 
0.001 for a paired t-test on average ratings across subjects; Supplementary Table 1, last 
column). However, we found no interaction between stability and scenario type in the 
ANOVA (p = 0.23), implying that the difference in ratings between stability conditions did 
not vary between physical and animate scenarios. Thus, the distinctive and generalizable 
representation of physical stability we found in the Physics Network are unlikely to be due 
to differential eye movements or attention. 
 
Analysis of Subregions of the Physics fROIs. The Physics Network considered here 
include regions in both the parietal and frontal lobes in both hemispheres. Evidence that 
the scenario-invariant representation of physical stability reported above is not restricted 
to a subset of these regions comes from separate analyses of the left parietal, left frontal, 
right parietal, and right frontal fROIs in each participant. An ANOVA analyzing the 
generalization of stability information (between versus within condition pattern 
correlations across Physical-Objects and Physical-People; F1,12 = 6.11, p = 0.03 for the 
main effect) did not find a significant interaction of stability information with either 
hemisphere (left vs. right; F1,12 = 2.75, p = 0.12) or lobe (parietal vs. frontal; F1,12 = 0.24, 
p = 0.63; Supplementary Table 2).  
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Other visual regions do not have a generalizable representation of physical 
stability 
 

In the previous section, we showed that the Physics Network in the fronto-parietal 
cortices, but not VTC, has a representation of physical stability that generalizes across 
scenario. Is this abstract representation also found in other visual regions? We 
functionally defined two other visual regions:  V1 and LOC (see Methods) and performed 
multi-voxel pattern correlation analyses as before. In both regions, we found significant 
decoding of stability only in Physical-Objects scenario but no cross-decoding of stability 
across physical scenarios (Table 1). In addition, the interaction of this cross-decoding 
effect with fROI was significant in separate ANOVAs contrasting the Physics Network with 
V1 (F1,12 = 6.31, p = 0.027), and LOC (F1,12 = 5.63, p = 0.035). Thus, a generalizable 
representation of physical stability is apparently a distinctive property of the Physics 
Network in the parietal and frontal lobes and is not a widespread property of visual cortex.  
 
 

 
Table 1: Multi-voxel pattern correlation analysis in all ROIs. Each cell shows the average Fisher transformed 
correlation within and between conditions, along with the p-value for a paired t-test comparing the two sets 
of values. Each column includes the results from one fROI. The top three rows contain results for the 
analyses within scenario type and the bottom three rows show results for the pattern correlation analysis 
across scenarios. Significantly higher correlations for within than between conditions are highlighted in bold. 
The row depicting the crucial cross-decoding result with significant generalization only in the Physics 
Network ROI is highlighted with a darker bounding box. 
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Higher Mean Responses to Physically Unstable than Stable Scenes in Physics fROI 
 

Previous studies have proposed that human intuitive physical reasoning, including 
inferences about physical stability, can be explained by a model that performs 
probabilistic simulations of the future states of the physical world8,11. Do the candidate 
physics regions in our brain perform this forward simulation of what will happen next? 
Some evidence for this idea comes from the higher response of these regions during 
physical prediction than color-judgement tasks used in our localizer and in the original 
fMRI study that used this task15. However, neural activity in that contrast could simply 
reflect the process of building a mental model of the physical scene (including object 
properties and relationships), not predicting or simulating what would happen next. Here 
we reasoned that if the candidate physics regions are engaged automatically in simulating 
what will happen next, they should show a higher mean response when viewing physically 
unstable scenes (because there is more to simulate) than stable scenes (where nothing 
is predicted to happen).  

 
 
 

 
Figure 3: Bar plot showing the average activation (GLM beta estimates) in the physics fROI for both stable 
and unstable conditions in each of the three scenario types (Physical-Objects, Physical-People, Animals-
People). Grey circles and the corresponding connecting lines indicate individual subject’s data. Error bars 
indicate standard error of mean across subjects. * indicates significant effect at p < 0.05 and n.s. indicates 
no statistically significant effect.  

 
 
 
 We tested this prediction by comparing the average fMRI response for unstable 
and stable conditions in each of the three scenario types, in the Physics Network (defined 
in the same way as in the previous analysis). As predicted, the physically unstable 
condition showed a significantly greater response compared to the physically stable 
condition in both ‘Physical-Objects’ (p = 0.02 for a paired t-test on average response 
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across subjects) and ‘Physical-People’ scenarios (p = 0.04 for a paired t-test on average 
response across subjects; Figure 3 & Table 2 left column), but not the ‘Animals-People’ 
scenario (p = 0.66 for a paired t-test on average response across subjects; Figure 3 & 
Table 2). As before, we also checked whether this trend is largely driven by voxels in one 
of the hemispheres (right/left) or one of the lobes (parietal/frontal) by performing an 
ANOVA. We found a significant interaction between stability (unstable versus stable) and 
lobe (F1,12 = 8.28, p = 0.014) but not hemisphere (F1,12 = 3.04, p = 0.11) for the ‘Physical-
Objects’ scenarios, and the same pattern for the ‘Physical-People’ scenario (stability x 
lobe: F1,12 = 8.53, p = 0.013; stability x hemisphere: F1,12 = 0.34, p = 0.57). Post-hoc 
analysis revealed that this interaction effect was largely driven by the univariate difference 
in the parietal but not frontal lobe (Supplementary Table 3). 
 

According to our hypothesis, it is the automatic simulation occurring in the Physics 
Network that leads to the higher response for unstable than stable conditions. As such 
we predicted that we would not see this same effect in VTC and other visual regions (V1 
and LOC) that are not engaged in physical simulation. Indeed, as shown in Table 2, we 
did not. Furthermore, we found a significant interaction of stability with region (physics 
fROI vs. visual fROI) for the ‘Physical-Objects’ (F1,12 = 13.04, p = 0.0035 for V1; F1,12 = 
8.27, p = 0.014 for VTC) and the ‘Physical-People’ scenarios (F1,12 = 11.14, p = 0.0059 
for V1; F1,12 = 7.83, p = 0.016 for LOC). 
 

Thus, physically unstable scenes evoke stronger responses than stable scenes in 
the fronto-parietal Physics Network, but not elsewhere, consistent with the hypothesis 
that these regions are engaged in running forward simulations of what will happen next.    

 
 

 

 
Table 2: Average beta values for unstable and stable conditions in each of the scenarios. Columns 
represent different fROIs. Each cell shows average GLM estimated beta values for unstable and stable 
conditions along with the p-value for a paired t-test comparing the two sets of values. Scenarios showing 
significantly higher response to unstable scenes compared to stable scenes are highlighted in bold in each 
column.  
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Higher responses to Any Instability in Visual Motion Area MT. Finally, we predicted that 
visual motion area MT might show higher responses for all three forms of instability, 
whether physical (with objects or people), or animate. Our rationale was that because MT 
is implicated in motion processing in general, any forward simulation involving motion, 
whether physical or animate, could activate this region. Indeed, that is exactly what we 
saw. As shown in Tables 1 & 2 (last column), we found significantly higher responses in 
MT for unstable/perilous than stable/safe scenes for all three types of scenarios without 
any significant stability information in the pattern activations. This increased response to 
conditions with predicted motion is reminiscent of previous reports showing greater 
response in MT for static images with implied motion21. The critical difference, however, 
is that whereas the earlier study reported higher responses in MT for static images 
depicting motion events happening at the moment the photograph was taken (implied 
motion) the current study shows activation of MT for motion that is only predicted (in the 
Physical-Objects and Physical-People scenarios). 

 
Discussion 
 

Here we report that fronto-parietal cortical regions previously implicated in intuitive 
physical inference contain abstract information about physical stability, but 
representations in the ventral visual object recognition pathway, and those in feedforward 
convolutional neural networks trained on object recognition, do not. These results indicate 
that representations in systems that are highly effective at invariant object recognition do 
not automatically support the general ability to distinguish physically stable from unstable 
scenes. Instead, this ability in humans is supported by a different system in the dorsal 
visual pathway that has been previously implicated in intuitive physical inference. This 
Physics Network (but not the ventral pathway) further shows a higher univariate response 
to unstable than stable scenes, as predicted if it performs forward simulations of what will 
happen next. Control analyses confirmed that neither pattern nor univariate information 
about physical stability in the Physics Network can be accounted for by low-level visual 
features, differential eye movements or attention. Taken together, these results suggest 
that the human brain represents the physical world not via simple pattern classification 
but instead by building a model of the physical world that supports prediction via forward 
simulation. 

 
Our study builds upon earlier work that has implicated regions in the parietal and 

frontal lobes in intuitive physical inference. Across multiple studies, similar fronto-parietal 
regions have been shown to a) respond more during physics-based tasks compared to 
color-based or social prediction tasks15, b) represent physical concepts in verbal stimul22, 
and c) contain scenario-invariant representations of object mass16. Intriguingly, the 
regions activated during physical inference overlap with regions shown previously to be 
engaged during visually-guided action23 and tool use24–26, perhaps because these tasks 
also require a representation of the physical world. Indeed physical simulation has been 
proposed as a crucial component in models for human-like robotic action planning27–29 
and flexible tool use30; plausibly the same brain mechanisms could have arisen or 
adapted to support all of these computations.  Note however that these same regions 
also overlap with the “multiple demand” system15, and are unlikely to be selectively 
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engaged in only physical inference. In the present study, we strengthen evidence that 
these regions are engaged in intuitive physical inference by showing that they carry a 
new kind of physical information: the dynamic physical stability of objects and people in 
a scene. Interestingly, this information is present when participants simply view images 
of physical scenes, even though they are not asked to judge stability. 

 
More importantly, our work speaks not only to which brain regions are implicated in 

intuitive physical inference, but what kinds of computations these inferences entail in both 
minds and machines. In particular, it is a matter of active current debate in AI whether 
features extracted by feedforward computations in networks trained on visual object 
classification will suffice for physical inference, or whether richer internal models that 
support forward simulation are required. Some work has shown that CNNs can learn from 
extensive labeled datasets to infer the stability of block towers5,6  and predict future 
outcomes5–7. But these CNNs have so far been tested only on specific tasks and stimuli, 
and we show here that they do not generalize across scenarios for the task of determining 
physical stability. Instead, it has been proposed that a general ability to predict what will 
happen next in physical scenarios will require a more structured representation of the 
physical world that will support forward simulation.8,9 A parallel debate is raging in 
cognitive science5,6,8,10,17,31–34,35, between those who argue that because human physical 
inferences occur rapidly10 and pre-attentively10 they are computed by something like a 
pattern recognition process, versus those who argue that human and primate physical 
inference behavior is best accounted for by mental simulation8,9,11,12,36. Three lines of 
evidence from the present study support the simulation view. First, we find generalizable 
representations of physical stability in the brain that we do not find in CNNs. Second, 
these abstract representations of stability are not found in the ventral visual pathway, 
which is thought to conduct pattern classification and is well modeled by CNNs, but rather 
in the dorsal pathway, previously implicated in intuitive physical inference. Third, we find 
a higher univariate response in this Physics Network for unstable scenes, where there is 
more to simulate, than the stable scenes, where nothing is predicted to happen next. 

 
We therefore hypothesize that visual information represented in the ventral visual 

cortex is used by the Physics Network for efficient inference of physical properties, and 
this representation is in turn used for forward simulation of what will happen next. This 
idea has been recently proposed as an integrated computational model that uses visual 
representations from a deep-learning-based inverse graphics model to initialize 
simulations in a physics-engine-based generative model of object dynamics, which then 
can be used to perceive, predict, reason about and plan with physical objects37–39. This 
class of models with flexible, object-centric representations and the ability to learn from 
realistic visual inputs40,41 should be able to make predictions of physical stability on the 
realistic stimuli used in our experiment and also form the basis for neurally-mappable 
encoding models of the candidate physics regions. The question of how such a model is 
instantiated, if at all, in the brain remains unanswered and provides a fertile avenue for 
future exploration. 
 

Many questions remain. First, physical stability is just one of many aspects of 
physical scene understanding. Future investigations can explore whether the Physics 
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Network also represents other physical properties of objects (like friction and elasticity), 
relational attributes (like support, containment, attachment), and physical forces and 
events. Second, if indeed the Physics Network is conducting forward simulations, when 
exactly does it run and how detailed are its simulations? According to one hypothesis, our 
mental physics engine compresses the rich details in our visual world into a relatively 
small number of individual objects and associated events in order to efficiently generate 
a reasonable approximation of the scene at the spatial and temporal scales relevant to 
human perception and action9. These abstractions may also enable us to run simulations 
faster than real-time with compressed timescales (like hippocampal replay42), enabling 
us to make rapid and accurate predictions of the consequences of multiple actions under 
consideration, including our ability to make fast and automatic physical inference10,17. 
Third, is the same neural machinery underlying simulation of the external physical world 
also recruited when we consider the consequences of our own actions? Answering this 
question would help elucidate how action planning and tool use are related to the neural 
system for physical inference, given that much of the Physics Network lies adjacent to or 
overlaps with brain regions engaged in action planning and tool use24–26,43,44. 
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Materials and methods: 
 
Participants:  
13 subjects (ages 21-34; 6 female) participated in the experiment. All participants were 
right-handed and had normal or corrected-to-normal vision. Before participating in the 
experiment, all subjects gave informed consent to the experimental protocol approved by 
the Massachusetts Institute of Technology (MIT) Committee on the Use of Humans as 
Experimental Subjects. The study was conducted in compliance with all the relevant 
ethical guidelines and regulations for work with human participants.   
 
Stimuli:  
All images were chosen to belong to six different experimental conditions divided into 
three scenarios with two conditions each (see Figure 1B for examples): objects in stable 
or unstable conditions (‘Physical-Objects’); people in physically stable or unstable 
conditions (‘Physical-People’); and, people with animals in perilous (unstable) or relatively 
safe (stable) conditions (‘Animals-People’). All images were scaled so that the longer 

dimension measured 8 on the projector screen places ~136cm from the participant. 
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Screening using deep neural networks: We chose images from each of these six 
experimental conditions such that stability decoding accuracy was close to chance both 
within the scenario and also across scenarios on features extracted from the initial layers 
of a deep convolutional neural network. The main goal of this selection process was to 
screen images to minimize potential confounds of low-level visual features on stability 
decoding. First, we rescaled and padded each image with pixels of zero brightness to 
obtain images measuring 224 x 224 pixels. Then, we extracted features from the first 
pooling layer (‘pool_1’) of a feedforward convolutional network, VGG-16, trained on 
ImageNet object classification task. We then trained separate linear SVM classifiers with 
4-fold cross-validation for each scenario separately to distinguish between stable and 
unstable images. The classification accuracies were close to chance (= 50%) for all three 
scenarios (% accuracy: 42.9%, 53.6% and 42.9% for Physical-Objects, Physical-People 
and Animals-People scenarios respectively). We then tested each classifier on the 
remaining two scenarios to quantify cross-decoding of stability across scenarios. Here 
also, we found close to chance (= 50%) cross-decoding performance (average % 
accuracy = 51.8% for Physical-Objects vs. Physical-People, 44.6% for Physical-Objects 
vs. Animals-People, and, 41.1% for Physical-People vs. Animals-People).  
Interestingness ratings: In order to minimize the influence of differential attention or 
interest on our results, we set out to quantify how interesting or attention-grabbing our 
stimuli are. We ran a behavioral experiment on 11 subjects (9 of them had previously 
participated in the fMRI part of this study) where we asked them to rate how interesting 
they found an image to be on a scale of 1-5 (1 – least interesting and 5 – most interesting). 
As expected, subjects found unstable condition to be more interesting than stable 
condition across scenarios (Supplementary Table 1, last column). However, we found 
that this difference did not significantly interact with scenario using an ANOVA (p = 0.23).   
 
Experimental design: 
Physics ROI localizer: Each participant performed 2 runs of an ‘intuitive physics’ fMRI 
localizer task previously used to functionally define the fronto-parietal physics engine in 
the brain15,16. In this task, subjects viewed short movies (~ 6s) depicting unstable towers 
made of blue, yellow and white blocks (see Figure 1A) created using Blender 2.70 
(Blender Foundation). The tower was centered on a floor that was colored green on one 
half and red on the other half such that it would topple towards one of the halves if gravity 
were to take effect. Throughout the movie, the tower remained stationary while the 

camera panned 360 to reveal different views of the tower. Subjects viewed these movies 
and were instructed to report whether more blocks would come to rest on the red or green 
half of the floor (‘physics’ task), or whether there are more blue or yellow blocks in the 
tower (‘color’ task). 
 Each run of this localizer task consisted of 23 18s blocks: 3 fixation-only blocks, 
10 blocks each of the physics and the color task. Each 6s movie was preceded by a text 
instruction displayed on the screen for 1s which read either ‘where will it fall?’ (‘physics’ 
task) or ‘more blue or yellow? (‘color’ task) and was followed by a 2s response period with 
a blank screen. This sequence was repeated twice within a block with the same task cue 
but different movies. The subjects responded by pressing one of two buttons on a 
response box for each alternative in a task. The mapping of the buttons to the response 
was switched for the second run to rule out the effects of specific motor responses on the 
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observed neural activations. We used a physics task > color task contrast to functionally 
identify the fronto-parietal physics regions in each subject individually.   
 
Stability experiment: In addition to the physics ROI localizer, each participant also 
performed 4 runs of the main experiment. In this experiment, subjects viewed a sequence 
of images while maintaining fixation on a red dot at the center of the image and performed 
a 1-back task.  
 Each run of this experiment contained 3 rest/fixation blocks and 12 20-second 
stimulus blocks (2 blocks for each of the 6 experimental conditions). Each run began with 
a fixation-only block followed by a random ordering of the blocks corresponding to the 6 
experimental conditions. This was followed by another fixation-only block and the 6 
experimental condition blocks shown in the reverse order. Each run ended with another 
fixation-only block. Each image block contained 10 trials including 2 1-back trials. In each 
trial, an image was shown for 1.8s followed by 0.2s of fixation-only interval. Subjects were 
instructed to maintain fixation (confirmed using eye-tracker for 6 out of the 13 subjects) 
and respond by pressing a button on the response box whenever the same image 
repeated one after the other in the sequence. 
 
Convolutional Neural Network (CNN) analysis:  
Activations from the fc1000 layer (fully connected layer just preceding the softmax layer) 
of a Resnet-50 model trained on ImageNet object recognition challenge were extracted 
for both stable and unstable conditions across Block Towers, Physical-Objects and 
Physical-People scenarios. A linear Support Vector Classifier (SVM) was trained to 
distinguish between stable and unstable conditions within each scenario using 4-fold 
cross-validation. To test the generalizability of the learned classifier to other scenarios, 
the SVM classifier was tested on stability detection in the remaining two scenarios. We 
replicated the results using fc8 layer activations in an ImageNet pre-trained VGG-16 
network.   
 
Data acquisition: 
All imaging was performed on a Siemens 3T MAGNETOM Tim Trio scanner with a 32-
channel head coil at the Athinoula A. Martinos Imaging Center at MIT. For each subject, 
a high-resolution T1-weighted anatomical image (MPRAGE: TR = 2.53 s; TE = 1.64, 3.44, 

5.24, 7.04 ms;  = 7; FOV = 220 mm; Matrix = 220 x 220; Slice thickness = 1 mm; 176 
slices; Acceleration factor = 3; 32 reference lines) was collected in addition to whole-brain 
functional data using a T2*-weighted echo planar imaging pulse sequence (TR = 2 s; TE 

= 30 ms;  = 90; FOV = 216 mm; Matrix = 108 x 108; Slice thickness = 2 mm; Voxel size 
= 2 x 2 mm in-plane; Slice gap = 0 mm; 69 slices). 
 
Eye movement recordings: 
Eye movement data was recorded from 6 of the 13 subjects during both the physics ROI 
localizer task and the stability experiment using the EyeLink 1000 Eye-Tracker (SR 
Research) inside the scanner. We could not collect eye movement data from other 
subjects due to technical difficulties. Eye tracking data was preprocessed and analyzed 
to confirm that eye movements could not explain differences in BOLD activity for various 
experimental conditions. For each trial in both the localizer and stability tasks, we 
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computed the average abscissa and ordinate of the eye position, the number of saccades, 
average duration and amplitude of saccades for the duration of the trial. We then 
performed t-tests to compare the average values of the aforementioned eye movement 
variables for stable and unstable conditions in each scenario across subjects.  
 
fMRI data preprocessing: 
Preprocessing was done using FreeSurfer (freesurfer.net). All other analyses were 
performed in MATLAB 2015B (The Mathworks). fMRI data preprocessing included motion 
correction, slice time correction, linear fit to detrend the time series, and spatial smoothing 
with a Gaussian kernel (FWHM = 5 mm). Before smoothing the functional data, all 
functional runs were co-registered to the subject’s T1-weighted anatomical image. All 
analyses were performed in each subject’s native volume and in some cases the results 
were plotted on the subject’s native inflated cortical surface only for better visualization 
(using FreeSurfer’s mri_vol2surf function). The general linear model included the 
experimental conditions and 6 nuisance regressors based on the motion estimates (x, y, 
and z translation; roll, pitch and yaw of rotation). 
 
Group-level physics parcel:    
We derived group-level physics parcels from the localizer data16 in 27 subjects using the 
Group-constrained Subject-Specific method described previously45. Briefly, individual 
subjects’ binary activation maps (p < 0.005 uncorrected) were overlaid on top of each 
other in MNI space. This overlap map was spatially smoothed with a gaussian filter 
(FWHM = 8 mm) and then thresholded so that the map contained only those voxels with 
at least 10% overlap across subjects. Then, the overlap map was divided into group-level 
parcels using a water-shed image segmentation algorithm (watershed function in 
MATLAB). Finally, we selected a subset of parcels in which at least 16 out of the 27 
(~60%) subjects show some activated voxels. This resulted in 7 group-level parcels 
spanning frontal, parietal and occipital lobes. We rejected 2 of the 7 parcels in the occipital 
cortex since they were shown to respond to both physical and social stimuli15. The 
remaining parcels correspond coarsely to previously described physics regions15,16, 
however, we believe that the new parcels are probably more stable because they are 
derived from a larger subject pool. These five parcels were then combined to get one 
group-level parcel each in left and right hemispheres. We will make the parcels publicly 
available. 
 
Functional ROI definition: 
We defined functional regions of interest (fROI) in each individual subject as the 
intersection of subject specific localizer contrast map and group-level (or anatomical) 
parcels. Specifically, we used the physics localizer to identify brain regions in each 
individual subject that responded more to the physics task compared to the color task 
(uncorrected p-value < 0.001 for the physics > color contrast). This contrast map was 
then intersected with the group-level physics parcels created from the physics localizer 
data collected in a previous study16. Thus, the individual subject fROI contained only 
those voxels that showed significantly stronger activations for the physics task compared 
to the color task and fell within the group-level physics parcel. This allowed the fROI 
locations and sizes to vary across subjects but restricted them to a common general 
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region across subjects. In addition to the physics fROI, we also defined fROIs for the 
primary visual cortex (V1), Lateral Occipital Complex (LOC) and Ventral Temporal Cortex 
(VTC) in each subject. As before, we used data from the physics localizer to identify brain 
regions that responded to visual stimuli compared to fixation (uncorrected p-value < 0.001 
for physics + color > fixation contrast). We then intersected this contrast map with masks 
derived from anatomical parcellation and considered only those significant voxels from 
the contrast map lying within the anatomical mask for further analyses.     
 
Multi-voxel pattern correlation analysis: 
Within category separability: To assess if the candidate physics fROI holds information 
about physical stability, we used the multi-voxel pattern correlation analysis20. In an fROI, 
we computed within condition pattern correlations (correlation between voxel activation 
patterns for even and odd runs, computed separately for unstable and stable conditions 
within a scenario) and between conditions pattern correlations (correlation between voxel 
activation patterns for even runs of unstable condition and odd runs of stable condition 
within a scenario, and vice-versa). We computed the within and between condition pattern 
correlations for each scenario in each hemisphere in each subject and compared the 
magnitudes of correlations using appropriate statistical tests after transforming the 
correlations using Fisher transform (atanh function in MATLAB). A significantly higher 
within condition pattern correlation compared to between condition pattern correlation 
indicates that unstable and stable conditions evoke distinctive voxel activation patterns in 
a given fROI. Note that by always comparing data across even and odd runs we avoid 
obscuring pattern information from temporal pattern drifts46. 
 
Across category similarity: To explore the generalizability of neural representation of 
physical stability in a given fROI, we computed multi-voxel pattern correlations computed 
across scenarios. Specifically, in a given fROI, we extracted activation patterns for 
unstable and stable conditions from the two scenarios under consideration (say, 
‘Physical-Objects’ and 'Physical-People’ scenarios). We then computed pattern 
correlations between unstable (or stable) conditions across scenarios (within condition), 
and pattern correlations between unstable and stable conditions across scenarios 
(between condition). In this way, we computed the four pairwise pattern correlations for 
each pair of categories within a given fROI in each hemisphere of each individual subject 
and transformed them using Fisher transformation. We compared the magnitudes of 
within and between condition correlations for each pair of categories across subjects 
using a paired t-test. 
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