Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

RNase III-mediated processing of a trans-acting bacterial sRNA and its cis-encoded antagonist

View ORCID ProfileSarah L. Svensson, View ORCID ProfileCynthia M. Sharma
doi: https://doi.org/10.1101/2021.03.19.434396
Sarah L. Svensson
1Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sarah L. Svensson
Cynthia M. Sharma
1Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Cynthia M. Sharma
  • For correspondence: cynthia.sharma@uni-wuerzburg.de
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

ABSTRACT

Bacterial small RNAs (sRNAs) are important post-transcriptional regulators in stress responses and virulence. They can be derived from an expanding list of genomic contexts, such as processing from parental transcripts by RNase E. The role of RNase III in sRNA biogenesis is less well understood despite its well-known roles in rRNA processing, RNA decay, and cleavage of sRNA-mRNA duplexes. Here, we show that RNase III processes a pair of cis-encoded sRNAs (CJnc190 and CJnc180) of the foodborne pathogen Campylobacter jejuni. While CJnc180 processing by RNase III requires CJnc190, In contrast, RNase III processes CJnc190 independent of CJnc180 via cleavage of an intramolecular duplex. We also show that CJnc190 directly represses translation of the colonization factor PtmG by targeting a G-rich ribosome binding site, and uncover that CJnc180 is a cis-acting antagonist of CJnc190, indirectly affecting ptmG regulation. Our study highlights a role for RNase III in sRNA biogenesis and adds cis-encoded RNAs to the expanding diversity of transcripts that antagonize bacterial sRNAs.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted November 15, 2021.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
RNase III-mediated processing of a trans-acting bacterial sRNA and its cis-encoded antagonist
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
RNase III-mediated processing of a trans-acting bacterial sRNA and its cis-encoded antagonist
Sarah L. Svensson, Cynthia M. Sharma
bioRxiv 2021.03.19.434396; doi: https://doi.org/10.1101/2021.03.19.434396
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
RNase III-mediated processing of a trans-acting bacterial sRNA and its cis-encoded antagonist
Sarah L. Svensson, Cynthia M. Sharma
bioRxiv 2021.03.19.434396; doi: https://doi.org/10.1101/2021.03.19.434396

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Microbiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3518)
  • Biochemistry (7373)
  • Bioengineering (5355)
  • Bioinformatics (20349)
  • Biophysics (10058)
  • Cancer Biology (7788)
  • Cell Biology (11360)
  • Clinical Trials (138)
  • Developmental Biology (6456)
  • Ecology (9995)
  • Epidemiology (2065)
  • Evolutionary Biology (13369)
  • Genetics (9378)
  • Genomics (12624)
  • Immunology (7733)
  • Microbiology (19122)
  • Molecular Biology (7482)
  • Neuroscience (41191)
  • Paleontology (301)
  • Pathology (1236)
  • Pharmacology and Toxicology (2145)
  • Physiology (3188)
  • Plant Biology (6885)
  • Scientific Communication and Education (1277)
  • Synthetic Biology (1901)
  • Systems Biology (5332)
  • Zoology (1091)