bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436082; this version posted March 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1	
2	KOONTZ ET AL.: POPULATION DIVISIONS IN THE PRIMULA CUSICKIANA
3	SPECIES COMPLEX
4	
5	
6	
7	
8	Pronounced Genetic Separation Among Varieties of the Primula cusickiana Species
9	Complex, a Great Basin Endemic
10	
11	
12	Austin Koontz, ^{1,4} William D. Pearse, ² and Paul Wolf ³
13	
14	¹ Department of Biology, Utah State University, Logan, Utah, 84322, USA;
15	austin.koontz@usu.edu
16	
17	² Department of Life Sciences, Imperial College London, Silwood Park Campus,
18	Buckhurst Rd., Ascot, Berkshire SL5 7PY, UK
19	
20	³ Department of Biological Sciences, University of Alabama in Huntsville, Huntsville,
21	Alabama, 35899, USA
22	
23	⁴ Author for correspondence

24	<i>Abstract</i> —Distinguishing between unique species and populations with
25	strong genetic structure is a common challenge in population genetics, especially in
26	fragmented habitats where allopatric speciation may be widespread and distinct
27	groups may be morphologically similar. Such is often the case with species
28	complexes across sky island environments. In these scenarios, biogeography may
29	help to explain the relations between species complex members, and RADseq
30	methods are commonly used to compare closely related species across thousands of
31	genetic loci. Here we use RADseq to clarify the relations between geographically
32	distinct but morphologically similar varieties of the Primula cusickiana species
33	complex, and to contextualize past findings of strong genetic structure among
34	populations within varieties. Our genomic analyses demonstrate pronounced
35	separation between isolated populations of this Great Basin endemic, indicating that
36	the current varietal classification of complex members is inaccurate and
37	emphasizing their conservation importance. We discuss how these results
38	correspond to recent biogeographical models used to describe the distribution of
39	other sky island taxa in western North America. Our findings also fit into a wider
40	trend observed for alpine <i>Primula</i> species complexes, and we consider how
41	heterostylous breeding systems may be contributing to frequent diversification via
42	allopatric speciation in this genus.
43	<i>Keywords</i> — allopatry, biogeography, cryptic speciation, Great Basin,
44	heterostyly, populations, <i>Primula</i> , RADseq, sky island

47 A canonical driver of biological diversification is allopatry, whereby geographic 48 barriers lead to population isolation and, eventually, speciation. Sky islands are places 49 where sharp changes in elevation lead to pronounced ecological differences over 50 relatively short distances, providing the types of barriers required for allopatric speciation 51 to take place. Historically, climatic fluctuations have determined the presence and 52 distribution of sky island environments for mountain ranges across the world, and this in 53 turn is reflected by the genetic patterns seen in montane species today (Hewitt 2000). 54 However, in this biogeographic context, distinguishing between closely related species 55 and genetically structured populations may prove challenging (Huang 2020), especially if 56 similar niches across mountain ranges maintain phenotypic similarities (e.g. Yang et al. 57 2019). Additionally, in the short-term, genetic patterns will be influenced by particular 58 aspects of a species' biology, such as dispersal and breeding systems, which may 59 facilitate or hinder reproductive isolation between genetically distinct entities. Here, we 60 examine the genomic relations between the sky island populations of members of the 61 Primula cusickiana species complex, a group of plants endemic to the Great Basin region 62 of the western United States.

The *P. cusickiana* species complex is a group of herbaceous, perennial plants that fall within the Parryi section of *Primula*. The morphological differences between the four complex varieties—*maguirei*, *cusickiana*, *nevadensis*, and *domensis* (see Fig. 1)—are subtle: *maguirei* (Williams 1936) and *cusickiana* (Gray 1888) are entirely glabrous, and distinguished from one another by relative calyx length, while in *nevadensis* (Holmgren 1967) and *domensis* (Kass and Welsh 1985), plants are pubescent and have slightly different corolla tube lengths (Holmgren and Kelso 2001; Holmgren et al. 2005). Despite these subtle differences, varieties *cusickiana*, *nevadensis*, and *maguirei* were originally classified as separate species, based on ecological traits and distinct geographic ranges. The discovery and publication of *P. domensis* in 1985, along with the continued collection of the other varieties, began to cast doubt on the species distinction for each complex member. A 2001 review determined that the morphological differences were insufficient for species classification, and subsumed each species to the level of variety (Holmgren and Kelso 2001).

77 At the time of this shift, no genetic data was available to justify classification at 78 the variety level. However, a 1997 analysis of variety *maguirei* used allozyme marker 79 genes to uncover a significant degree of genetic structure between the relatively 80 proximate (~10 km) populations (Wolf and Sinclair 1997) within this one taxon. A later 81 analysis of the same populations using amplified fragment length polymorphism (AFLP) loci confirmed this finding, and found similar levels of polymorphism between the upper 82 83 and lower canyon groups, suggesting this genetic structure is not the result of a past 84 bottleneck event (Bjerregaard and Wolf 2004). A further analysis of AFLP and 85 chloroplast DNA from the *Primula* section Parryi showed *maguirei* and the other *P*. 86 *cusickiana* complex members as being monophyletic, but relationships within the 87 complex were incongruent, with only weak support of a clade containing *nevadensis* and 88 *domensis* being sister to a clade made up of *maguirei* and *cusickiana* (Kelso et al. 2009). 89 To better resolve the relationships between varieties, the authors suggested an analysis 90 utilizing more populations from across the range of this species complex. Restriction-site 91 associated sequencing (RADseq) technologies available today, with their ability to 92 generate reads over many sequence regions of closely related individuals, are well-suited

93 to provide the data required for such an analysis.

94 In addition to clarifying the genetic relations between geographically distinct 95 varieties, a more detailed analysis of the *P. cusickiana* species complex can meaningfully 96 contribute to ongoing conservation efforts. Variety *maguirei* was listed as Threatened in 97 1985, due to its unique habitat in Logan Canyon and threats of habitat loss due to 98 development (Fish and Wildlife Service 1985). Given the strong genetic structure 99 between *maguirei*'s populations, either population may be more closely related to 100 populations of a different complex variety than the neighboring Logan Canyon 101 population—a finding which would have significant implications for the protection of 102 this variety. More broadly, an understanding of the genomic relations at the species 103 complex level will determine whether the varietal classification properly reflects the 104 extent of genomic divergence of each complex member, and thus the extent of unique 105 evolutionary history. This understanding can direct management of the narrow-range 106 endemics included in this species complex—such as *maguirei*, but also *nevadensis* and 107 *domensis*—and also inform the identification of potential evolutionary significant units 108 (Coates et al. 2018).

We sought to clarify the relatedness of *P. cusickiana* complex members by using a RADseq approach to genotype all four varieties located at distinct populations scattered throughout the Great Basin. In addition to contextualizing the genetic structure between the upper and lower Logan Canyon *maguirei* populations, this analysis provides insights into the biogeographic history of this species complex, and could have important conservation implications for this rare endemic plant.

115

116

MATERIALS AND METHODS

117 *Sampling*—All *P. cusickiana* species complex samples were gathered in the 118 field, along with samples of *P. parryi* (Gray 1888), which was used as an outgroup in 119 genetic analyses. Populations and their respective flowering times were determined 120 using herbarium specimens, and collection sites were selected to maximize the 121 geographic distribution of each variety. At each population location, an individual 122 plant was removed as completely as possible as a voucher specimen. For DNA 123 samples, two leaves from each of ten plants were removed and placed in labeled 124 paper envelopes, which were stored on silica crystals to keep samples dry. Vouchers 125 were deposited at the Intermountain Herbarium (UTC); P. cusickiana var. nevadensis 126 voucher specimens collected from Mt. Washington were additionally deposited at 127 the Great Basin National Park herbarium. Because past research has shown variable relations between P. capillaris 128 129 (Holmgren and Holmgren 1974) and the *P. cusickiana* species complex (Kelso et al. 130 2009), we also tried to collect *P. capillaris* in the field. However, we were unable to 131 locate any *P. capillaris* individuals in the Ruby Mountains: at one location suggested by past herbaria data, a population of *P. parryi* was found instead. To compensate, two *P.* 132 133 capillaris samples were sourced from herbaria (see Appendix I). 134 Leaf tissue from 89 samples—87 silica-dried field collections representing all 135 samples sites, and two herbarium specimens of *P. capillaris*—were placed into 136 QIGAEN Collection Microtubes (catalog number 19560) and sent to University of 137 Wisconsin-Madison Biotechnology Center, for DNA extraction, library prep, and

138 DNA sequencing (described below). Seven replicate samples were also included to

assess the quality of sequencing results, and were distributed across all four *P. cusickiana* varieties, as well as *P. parryi*.

DNA Extraction—DNA was extracted using the QIAGEN Dneasy mericon 96
QIAcube HT Kit. DNA was quantified using the Quant-iT[™] PicoGreenR[©] dsDNA kit
(Life Technologies, Grand Island, New York).

144 Library Prep and Sequencing—Libraries were prepared following Elshire et al. 145 2011. ApekI (New England Biolabs, Ipswich, Massachusetts) was used to digest 100 ng 146 of DNA. Following digestion, Illumina adapter barcodes were ligated onto DNA 147 fragments using T4 ligase (New England Biolabs, Ipswich, Massachusetts). Size 148 selection was run on a PippinHT (Sage Science, Inc., Beverly, Massachusetts) to subset 149 samples down to 300–450 bp fragments, after which samples were purified using a 150 SPRI bead cleanup. To generate quantities required for sequencing, adapter-ligated 151 samples were pooled and then amplified, and a post-amplification SPRI bead cleanup 152 step was run to remove adapter dimers. Final library qualities were assessed using the 153 Agilent 2100 Bioanalyzer and High Sensitivity Chip (Agilent Technologies, Inc., Santa Clara, California), and concentrations were determined using the Qubit[©] dsDNA HS 154 155 Assay Kit (Life Technologies, Grand Island, New York). Libraries were sequenced on an 156 Illumina NovaSeq 6000 2x150. 157 Data Processing—Raw FASTQ data files were demultiplexed and processed

using steps 1—7 of the *ipyrad* software, version 0.9.31 (Eaton and Overcast 2020).

159 Single nucleotide polymorphisms (SNPs) recognized by *ipyrad* were used as the basis for

160 variation between individuals for downstream analyses, and libraries were assembled *de*

161 *novo*. All *ipyrad* and STRUCTURE parameter files, as well as R scripts used for analysis

162 and data visualization, can be found on GitHub (github.com/akoontz11/Primula/) and in 163 the Supplementary Materials (SupplementalMaterials1.zip). Raw, demultiplexed 164 sequencing data can be accessed on the NCBI Sequence Read Archive (SRA; accession 165 number PRJNA705310). 166 COMPLEX-WIDE GENOMIC SURVEY—For our complex-wide genomic survey, we 167 ran *ipyrad* twice: we used the results from our initial run to confirm sequencing 168 consistency for replicate samples, and to identify samples with low coverage. For 169 both runs, demultiplexed sequences were paired and merged, and low quality bases, 170 adapters, and primers were filtered prior to SNP calling. Default values were used 171 for the *ipyrad* parameters in these steps, as well as for the clustering threshold 172 (clust threshold; 0.85) and minimum sequencing depth (mindepth statistical; 6) 173 parameters. 174 For our initial run, we specified a minimum number of samples per locus 175 (min_samples_locus) parameter of 10, in order to obtain loci shared between two to three 176 sample locations for any variety. Using the results from this run, we used the Python 177 script vcf2Jaccard.py to compare samples with replicates by calculating the mean Jaccard 178 similarity coefficients between all samples. We found that all replicates matched highly 179 with their corresponding samples (Fig. S1). 180 After merging replicates and removing low coverage (generally, less than 30

loci in the final assembly) samples from the dataset, 82 of our 87 original samples
remained for our complex-wide analysis. We reran *ipyrad* (steps 1-7) using these 82
samples to select for loci specific to this subset. We used a min_samples_locus
parameter of 32 for this second run, to match the ratio of minimum samples per

185 locus used in our initial run; *ipyrad* default values were used otherwise. Because

186 very low numbers of loci were retrieved for both herbarium specimens of *P*.

187 *capillaris* (possibly due to the age of these specimens), we were unable to include

188 *capillaris* in downstream clustering analyses.

VARIETY SPECIFIC CLUSTERING—In addition to our complex-wide survey, we were interested in exploring population structure within variety *maguirei* which could not be resolved using genetic loci shared across all species complex members. To do so, we ran *ipyrad* on just the 18 *maguirei* samples used in our complex-wide survey. Because five samples from each of the upper Logan canyon sampling sites

194 were included in our *ipyrad* assembly, we specified a min_samples_locus parameter

195 of 5; *ipyrad* default parameter values were used otherwise.

196

Population Analyses

197 STRUCTURE—To visualize relations between complex members across their 198 geographic range, and to determine the number of identifiable genetic clusters 199 within the complex, we used the program STRUCTURE version 2.3 (Pritchard et al. 200 2000). STRUCTURE uses Bayesian clustering analysis to probabilistically assign 201 individuals to one or more of K source populations, where the loci within each 202 population are assumed to be in Hardy-Weinberg proportions and linkage 203 equilibrium. For all STRUCTURE runs, we used a burnin length of 50,000, and 204 100,000 MCMC reps after burnin. For our complex-wide survey, we ran STRUCTURE 205 for K values of 2—16, with 50 replicates per K value. For our *maguirei*-only 206 analyses, we ran STRUCTURE for K values of 2—6, with 50 replicates per K value. 207 We used the CLUMPAK server (Kopelman et al. 2015) to summarize results across

208 replicates for each K value, and to build STRUCTURE plots.

209	For all of our STRUCTURE analyses, we ran the Evanno et al. (2005) method
210	(which identifies the greatest ΔK value) and the method described in the STRUCTURE
211	manual (Pritchard et al. 2000, which identifies the K value with the greatest likelihood) to
212	determine an "optimal" K value. Given the difficulties in inferring an unambiguous
213	number of genetic clusters from any given set of populations (Novembre 2016; Pritchard
214	et al. 2000), we also examined STRUCTURE outputs within a range of K values, to
215	determine which value of source populations best illustrated divisions within the species
216	complex.
217	DISCRIMINANT ANALYSIS OF PRINCIPAL COMPONENTS—In addition to STRUCTURE,
218	we analyzed the results of our complex-wide survey using Discriminant Analysis of
219	Principal Components (DAPC; Jombart et al. 2010) in the package adegenet in R version
220	3.6.3 (R Core Team, 2020). DAPC is a statistical technique designed to accommodate the
221	size of genomic data sets and capable of differentiating within-group variation from
222	between-group variation. SNP data is first transformed using a principal components
223	analysis (PCA), and then k-means clustering is run to generate models and likelihoods
224	corresponding to each number of population clusters. The best-fitting model, and so the
225	best-supported number of populations, is assessed using the models' Bayesian
226	Information Criterion (BIC) scores. We chose to utilize DAPC in addition to
227	STRUCTURE to visualize population clusters in a PCA format, and to determine
228	whether the supported number of populations was congruent between methods, indicating
229	a more robust determination of the number of species contained within the complex
230	(Carstens et al. 2013).

231	F_{ST} ESTIMATES—Because we wanted to measure the extent of genetic variance
232	within the groups analyzed, we used the VCFtools software (Danecek et al. 2011) to
233	generate weighted F_{ST} estimates (Weir and Cockerham 1984). We generated an F_{ST}
234	estimate for our complex-wide analysis (across all populations of all P. cusickiana
235	varieties) as well as for the samples included in our variety <i>maguirei</i> -only analysis.
236	Results
237	<i>Complex-Wide Genomic Survey</i> —We retrieved, on average, 2.04 x 10 ⁶ reads
238	per sample, and our complex-wide <i>ipyrad</i> run identified 1,277 loci that were used in
239	our subsequent STRUCTURE analysis. Using the Evanno et al. (2005) method
240	yielded an optimal K value of K = 5; using the method described in the STRUCTURE
241	manual (Pritchard et al. 2000) identified the K value with the greatest likelihood as
242	K = 14. Based on our visualization of the STRUCTURE results for values ranging
243	from K = $2-16$ (Figs. S2 - S4), we determined K = 7 to be the most biologically
244	relevant K value (Fig. 2). At this level of source populations, varieties domensis and
245	maguirei are clearly delineated, variety nevadensis shows distinctions between its
246	two populations, and variety <i>cusickiana</i> is split into three groups composed of
247	populations from the Snake River Plain in Idaho (SRP), Nevada (Jarbidge), and
248	Oregon (Owyhee). Since higher K values emphasize the divisions seen at this level,
249	and further subdivide isolated populations of varieties <i>cusickiana</i> and <i>nevadensis</i> , K
250	= 7 is a conservative estimate which reflects the strong divisions within this
251	complex while allowing for further distinctions between unique populations to be
252	made in light of more evidence in the future.
252	Own DADC an alwais new aload that the ansate at any newtod serve have a fair to us

253 Our DAPC analysis revealed that the greatest supported number of clusters

254 (i.e. the value with the lowest BIC score) was eleven (data not shown)—a value 255 incongruent with our STRUCTURE results, suggesting that boundaries within this 256 complex are elaborate. However, at this level of genetic clusters, several groups 257 were quite small (consisting of only one or two samples), and groupings were 258 incoherent within the spatial distribution of populations. To provide a clearer 259 comparison to our STRUCTURE results, and to examine relations strictly within the 260 species complex, we removed *P. parryi* outgroup samples from our dataset (because 261 these were separate from all species complex samples in preliminary analyses) and 262 ran our DAPC with a specification of six clusters (Fig. 3). At this level of clustering, 263 the population of *nevadensis* in the Snake Range of Great Basin National Park 264 (GRBA) is shown as a unique cluster, while the *nevadensis* population further south 265 in the Grant Range groups with the *cusickiana* population sampled from Oregon 266 (Owyhee). Variety *domensis* is a unique cluster which groups closely to both of 267 these. Thus, while neither our STRUCTURE analysis nor our DAPC point to an 268 unambiguous number of "true" genetic clusters, both suggest that the current 269 varietal classification is inexact. The extreme level of divergence between the sky 270 island populations in this species complex is reflected not only in our clustering 271 analyses, but also in our relatively large F_{ST} estimate across all complex populations, 272 which was 0.72. Figure 4 illustrates proportions of sample membership to clusters 273 based on our STRUCTURE analysis at K=7 for all populations in their geographic 274 context across the Great Basin.

275 *Variety Specific Clustering*—In our complex-wide analysis, all *maguirei* samples
276 grouped as a single cluster, distinct from all other populations of all other varieties,

277	indicating that neither Logan Canyon population is more closely related to any
278	populations of another variety. Even at values of K = 16, the upper and lower Logan
279	Canyon populations of <i>maguirei</i> were not resolved from one another.
280	However, reducing our sample set to only <i>maguirei</i> samples allowed us to retain loci
281	informative to this variety but unshared with other complex member populations.
282	Our maguirei-only ipyrad run generated an assembly with 68,492 loci, indicating a
283	large number of loci specific to <i>maguirei</i> and not shared with the wider species
284	complex. To speed up processing times, we ran STRUCTURE on a 17,988 loci subset
285	of <i>maguirei-</i> specific markers. Using the CLUMPAK server, we found optimal K values
286	of K = 4 (using the Evanno method) and K = 3 (using the likelihood method
287	described in the STRUCTURE manual). Figure 5 shows the STRUCTURE plot at $K = 3$,
288	which resolves similar groupings of maguirei populations supported in Bjerregaard
289	and Wolf (2004), and the distinctions between upper and lower canyon populations.
290	We also estimated an $F_{\mbox{\scriptsize ST}}$ value of 0.33 among these three populations, which is
291	comparable to previous estimates in Bjerregaard and Wolf (2004).
292	DISCUSSION
293	Analysis of RADseq data from Primula cusickiana complex members
294	demonstrates that the disjunct geographical distribution of populations across the Great
295	Basin is reflected by pronounced genomic divergences. While the results of our
296	clustering analyses coincide with the current varietal classifications, there are notable
297	exceptions. Distinctions between isolated populations within varieties, as well as
298	similarities between neighboring populations of different varieties, can be observed in our
299	STRUCTURE plots for low K values (i.e. ranging from 2-6; see FIGS. S2-S4). For

300 instance, we found Mt. Washington *nevadensis* populations to be admixed, with segments 301 coming from *domensis* to the east and (to a lesser extent) Grant Range *nevadensis* 302 populations to the south. This is in accordance with analysis of AFLP and chloroplast 303 DNA from the *Primula* section Parryi, which found these two varieties to be extremely 304 close (Kelso et al. 2009). 305 Our results also suggest a more nuanced understanding of variety cusickiana. 306 Populations of this variety are split into distinct genomic clusters in our analysis, with 307 Jarbidge (Nevada) and Owyhee (Oregon) populations appearing unique from each other 308 and the remaining Snake River Plain (SRP) populations in Idaho. That these distinctions 309 are seen in both our STRUCTURE and DAPC analyses imply the robustness of this 310 result. Given the relatively wide distribution of this variety (growing in moist soils at 311 lower elevations than other complex members), our findings of genomic divergence 312 between its populations is noteworthy, and support past evidence of phenotypic 313 differences in different portions of its range. For instance, past morphological research of 314 Idaho *cusickiana* populations has suggested dividing this taxa into three unique species 315 (Mansfield 1993), with Owyhee populations being classified as *P. wilcoxiana*. 316 The separation between populations within variety *cusickiana*, as well as our 317 support of past findings of significant genetic distances between the proximate 318 populations of variety *maguirei*, underscore our discovery of profound genomic 319 divergences between all members of this species complex, despite their distribution over 320 a relatively small geographic area. This trend is reflected not only in our clustering 321 analyses, but also in our weighted F_{ST} estimate of 0.72 across complex populations—a 322 high value compared to similar estimates for other plant taxa (for instance, the mean F_{ST}

for plant taxa in a meta-analysis by Leinonen et al. 2008 was calculated to be 0.24). Our results therefore support the historical designation of species for these complex members, rather than variety. Below, we consider how two phenomena—biogeographical trends in the Great Basin, and reproductive traits specific to *Primula*—may contribute to the significant divergence of these populations into distinct genomic groups.

328 Great Basin Sky Island Biogeography—Members of the P. cusickiana 329 complex are found at relatively high elevations throughout the Great Basin. Many of 330 these are sky island locations associated with strong ecological shifts as habitat 331 transitions from lower sagebrush steppe to cooler, more forested regions 332 dominated by pinyon and juniper. Now separated by arid basins due to climatic 333 warming in the Holocene, these sky islands are understood to be the fragmented 334 remnants of a continuous region of cool, moist habitat which once extended across 335 the Great Basin (Thompson and Mead 1982). This has led to their characterization 336 as refugia for various taxa—particularly mammals (Brown 1971; Badgley et al. 337 2014), but also butterflies (Boggs and Murphy 1997) and plants (Harper et al. 1978; 338 Nowak et al. 1994; Charlet 2007). Additionally, in conjunction with climatic niche 339 preferences, complex varieties *maguirei*, *domensis*, and *nevadensis* are found on the 340 cliffs and crevices of exclusively limestone substrates. While it's unclear whether 341 these habitats are tied to mineral or pH constraints, or simply reflect preferences for 342 moisture-retentive substrates, edaphic heterogeneity is known to contribute to 343 plant speciation and biodiversity, both globally (Hulshof and Spasojevic 2020) and 344 within the Great Basin (e.g. de Queiroz et al. 2012). Therefore, allopatry across 345 relatively similar climatic and edaphic niches seems to contribute to the genomic

346 divergences in *P. cusickiana*'s populations—a trend observed in other sections of
347 Primulaceae, as well (Boucher et al. 2016).

348 However, it has also been noted that many species distribution patterns 349 among Great Basin mountaintops do not follow a strictly island biogeographical 350 model (Lawlor 1998), in that neither island surface area nor proximity to 351 "mainland" source populations (typically identified as the western Sierra Nevadas 352 or eastern Rocky Mountains) is predictive of species abundance (Fleishman et al. 353 2001). And in some taxa, there is evidence for regular, modern dispersal between 354 Great Basin ranges (Floyd et al. 2005). An alternative scenario is that this complex 355 has followed what has been described as an "expanding-contracting archipelago" 356 (ECA) model, in response to Quaternary glacial cycles (DeChaine and Martin 2005a). 357 The ECA model has been used to describe the divergence between Rocky Mountain 358 sky island plant taxa (Dechaine and Martin 2005b; Hodel et al. 2021), and provides a 359 framework for explaining the genetic structure observed between isolated montane 360 populations on a broad spatial scale. In this model, populations are assumed to 361 become fragmented as they contract up-slope during warmer interglacials; during 362 glacial periods, populations expand down-slope as moist, cool habitat becomes 363 widespread, leading to hybrid zones and possible admixture. Given the degree of 364 fragmentation between *P. cusickiana*'s populations in today's climate (which 365 resembles past interglacial periods), and the admixture between the relatively 366 proximate populations of varieties *domensis* and *nevadensis* revealed in our analysis, 367 this model offers a viable explanation for the trends observed in this species 368 complex. In addition to these biogeographic patterns, the evolution of *P. cusickiana*'s

369 disjunct populations is simultaneously influenced on a finer spatial scale by aspects370 particular to this species' biology.

371	Speciation and Heterostyly in Primula —Recent research has shown several
372	different alpine Primula species complexes to contain previously undescribed
373	cryptic species, in China (Huang et al. 2019; Ren et al. 2020) and in Europe (Schorr
374	et al. 2013; Theodoridis et al. 2019). Our findings on the <i>P. cusickiana</i> species
375	complex resonate with these trends, and raise the question of what unique traits
376	Primula possesses which might cause such frequent diversification via allopatric
377	speciation. The authors of a study examining the <i>P. merrilliana</i> species complex in
378	China (He et al. 2021) argue that heterostyly—a widespread breeding system in
379	angiosperms to promote outcrossing—may be a driving force leading to speciation.
380	In heterostyly, "pin" and "thrum" floral morphologies prevent self-fertilization via
381	insect pollination (Darwin 1897), and are associated with a sporophytic-
382	incompatibility system which follows a Mendelian pattern of inheritance (Li et al.
383	2016). In <i>P. merrilliana</i> , the efficacy and prevalence of heterostyly and self-
384	incompatibility varies across populations, which has possibly led to the divergence
385	between distylous and homostylous populations and, ultimately, speciation.
386	While the presence of heterostyly has been observed in <i>nevadensis</i>
387	(Holmgren 1967) and in populations of <i>cusickiana</i> and <i>domensis</i> (pers. obs.), the
388	extent of distyly in a population has only been well documented in <i>maguirei</i> , who's
389	upper and lower canyon populations have a pin:thrum morphology ratio of about
390	1:1 (Davidson et al. 2014). This implies that in scenarios of legitimate xenogamy, in
391	which morphs of one type only mate with morphs of the opposite type, only half of

392	the total population is available as a potential mate for any distylous individual.
393	While this reduction in effective population size would seem to increase the
394	strength of genetic drift, and possibly the fixation of deleterious alleles, these
395	negative effects are potentially counterbalanced by the genetic advantages of
396	outcrossing. This net benefit of heterostyly is supported by findings in de Vos et al.
397	(2014), in which phylogenetic techniques were used to demonstrate that the
398	presence of heterostyly in <i>Primula</i> leads to greater diversification via decreased
399	extinction, in the long-term, compared to non-heterostylous clades of Primulaceae.
400	Simultaneously, the loss of heterostyly and subsequent self-compatibility may lead
401	to rapid speciation in the short-term. Observation of distylous morph ratios in other
402	<i>P. cusickiana</i> varieties and populations, and changes in these ratios between
403	proximate populations, would help to determine if these dynamics are driving the
404	divergences we see at the species complex level.

405 *Conclusion*—The results of our genomic survey of *Primula cusickiana* fit into 406 a wider trend demonstrating abundant allopatric speciation despite little niche 407 divergence in other alpine *Primula* species complexes. Our findings support the 408 historical classification of each of these complex members as unique species, rather 409 than the varietal classification taken in Holmgren and Kelso (2001). Furthermore, 410 these results warrant a more detailed understanding of the isolated and genetically 411 unique populations in this complex (such as *cusickiana* populations in Nevada and 412 Oregon), and of the admixture observed in the populations of variety *nevadensis*. 413 Similarly, updated morphological comparisons between varieties, as well as 414 observations into the levels of heterostyly in disjunct populations, would offer a

415	clearer understanding of the mechanisms of speciation occurring within this
416	complex. Finally, the endemic species with narrow niches included in this study,
417	such as <i>P. cusickiana</i> var. <i>maguirei</i> , but also <i>nevadensis, domensis,</i> and the sister
418	species <i>P. capillaris</i> , warrant concern of extinction, and more work needs to be done
419	to better understand the breeding limitations faced by each of these taxa and what
420	can be done to ensure their survival in an increasingly arid Great Basin.
421	ACKNOWLEDGMENTS
422	his research was supported by funds provided by the Margaret Williams
423	Research Grant offered by the Native Nevada Plant Society, the Lawrence Piette
424	Graduate Scholarship offered by the USU College of Science, the Dr. Ivan J. Palmblad
425	Graduate Research Award offered by the USU Department of Biology, and the
426	Graduate Research Award offered by the USU Ecology Center. WDP and the Pearse
427	Lab are funded by NSF EF-1802605, NSF ABI-1759965, and UKRI-NERC
428	NE/V009710/1.
429	The authors would like to thank Dr. Carol Rowe for her help with the genetic
430	analyses, her Python script used to calculate Jaccard similarities from SNP data, and her
431	Python script for creating the map. Thanks also to Dr. Barbara Ertter and especially Dr.
432	Don Mansfield at the College of Idaho, for their assistance in collecting variety
433	cusickiana. Trish Winn and Jennifer Lewihnsohn in the United States Forest Service
434	provided the collection permit for variety maguirei from the Uinta-Wasatch-Cache
435	National Forest; Todd Stefanic and Gretchen Baker with the National Park Service
436	coordinated collection from Craters of the Moon National Monument and Great Basin
437	National Park, respectively. Michael Piep, Elizabeth Makings, and Jerry Tiehm allowed

438	for Primula specimens to be sampled from the Intermountain Herbarium, Arizona State						
439	Vascular Plant Herbarium, and University of Nevada, Reno Herbarium, respectively.						
440	Thanks also to Kris Valles at the Intermountain Herbarium. Dr. Leila Shultz assisted with						
441	identification of the Owyhee cusickiana population. The authors would also like to thank						
442	Jean Howerton, Buddy Smith, and Noel and Pat Holmgren. Finally, all collections were						
443	made on the ancestral lands of the Western Shoshone, Eastern Shoshone, Shoshone-						
444	Bannock, Southern Paiute, Goshute, and Nez Perce Native American tribes.						
445	Author Contributions						
446	AK determined sample locations, performed the majority of sample collection, and ran						
447	genetic analyses. WDP contributed to study design and assisted with genetic analyses and						
448	manuscript writing. PW guided study design and assisted with genetic analyses, sample						
449	collection, and manuscript writing.						
450							
451	LITERATURE CITED						
452	Badgley, C., Smiley, T. M., & Finarelli, J. A. (2014). Great Basin mammal diversity in						
453	relation to landscape history. Journal of Mammalogy, 95(6), 1090-1106.						
454	Bjerregaard, L., & Wolf, P. G. (2008). Strong genetic differentiation among neighboring						
455	populations of a locally endemic primrose. Western North American Naturalist,						
456	68(1), 66–75.						
457	Boggs, C. L., & Murphy, D. D. (1997). Community composition in mountain						
458	ecosystems: climatic determinants of montane butterfly distributions. Global						
459	Ecology and Biogeography Letters, 6(1), 39–48.						

460	Boucher, F. C., Zimmermann,	N. E., &	Conti, E.	(2016). A	llopatric s	speciation	with little
-----	-----------------------------	----------	-----------	-----------	-------------	------------	-------------

- 461 niche divergence is common among alpine Primulaceae. *Journal of*
- 462 *Biogeography*, *43*(3), 591–602.
- Brown, J. H. (1971). Mammals on mountaintops: nonequilibrium insular biogeography.

464 *The American Naturalist*, 105(945), 467–478.

- 465 Carstens, B. C., Pelletier, T. A., Reid, N. M., & Satler, J. D. (2013). How to fail at species
 466 delimitation. *Molecular Ecology*, 22(17), 4369–4383.
- 467 Charlet, D. A. (2007). Distribution patterns of Great Basin conifers: Implications of
- 468 extinction and immigration. *Aliso: A Journal of Systematic and Floristic Botany*,
 469 24(1), 31–61.
- 470 Coates, D. J., Byrne, M., & Moritz, C. (2018). Genetic diversity and conservation units:
- 471 Dealing with the species-population continuum in the age of genomics. *Frontiers*472 *in Ecology and Evolution*, *6*, 165.
- 473 Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A.,
- 474 Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R.,
- 475 & 1000 Genomes Project Analysis Group. (2011). The variant call format and
 476 VCFtools. *Bioinformatics*, 27(15), 2156–2158.
- 477 Darwin, C. (1877). *The Different Forms of Flowers on Plants of the Same Species*. John
 478 Murray, London.
- 479 Davidson, J. B., Durham, S. L., & Wolf, P. G. (2014). Breeding system of the threatened
- 480 endemic *Primula cusickiana* var. *maguirei* (Primulaceae). *Plant Species Biology*,
 481 29(3).
- 482

483	de Oueiroz	. T. F.	, Baughman,	C	Baughman.	O.,	Gara. N	1 &	Williams.	N. ((2012).
100	at Quenol	,	, Daagiiiiaii,	<i>–</i> .,	Daaginnan	~ .,	Oura, II.	, ~	, , , , , , , , , , , , , , , , , , , 	· · · ·	<u>, / -</u>

- 484 Species distribution modeling for conservation of rare, edaphic endemic plants in
- 485 White River Valley, Nevada. *Natural Areas Journal*, *32*(2), 149–158.
- de Vos, J. M., Hughes, C. E., Schneeweiss, G. M., Moore, B. R., & Conti, E. (2014).
- 487 Heterostyly accelerates diversification via reduced extinction in primroses.
 488 *Proceedings of the Royal Society B*, 281(1784).
- 489 DeChaine, E. G., & Martin, A. P. (2005a). Historical biogeography of two alpine
- 490 butterflies in the Rocky Mountains: broad-scale concordance and local-scale
 491 discordance. *Journal of Biogeography*, *32*(11), 1943–1956.
- 492 Dechaine, E. G., & Martin, A. P. (2005b). Marked genetic divergence among sky island
- 493 populations of *Sedum lanceolatum* (Crassulaceae) in the Rocky Mountains.
 494 *American Journal of Botany*, 92(3), 477–486.
- Eaton, D. A. R., & Overcast, I. (2020). ipyrad: interactive assembly and analysis of
 RADseq datasets. *Bioinformatics*, *36*(8), 2592–2594.
- 497 Elshire, R. J., Glaubitz, J. C., Sun, Q., Pol, J. A., Kawamoto, K., Buckler, E. S., &
- Sharon, E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach
 for high diversity species. *PloS One*, 6(e19379).
- 500 Fish and Wildlife Service, Department of the Interior. (1985). Endangered and
- 501 Threatened Wildlife and Plants; Final Rule to Determine Primula Maguirei
 502 (Maguire Primrose) To Be a Threatened Species (Vol. 50, pp. 49–52).
- 503 Fleishman, E., Austin, G. T., & Murphy, D. D. (2001). Biogeography of Great Basin
- 504 butterflies: revisiting patterns, paradigms, and climate change scenarios.
- 505 *Biological Journal of the Linnean Society*, 74(4), 501–515.

506	Floyd, C. H., Van Vuren, D. H., & May, B. (2005). Marmots on great basin
507	mountaintops: using genetics to test a biogeographic paradigm. Ecology, 86(8),
508	2145–2153.
509	Gray, A. (1888). Synoptical Flora of North America. Ivison, Blakeman, Taylor & Co.
510	Harper, K. T., Freeman, C. D., Ostler, K. W., & Klikoff, L. G. (1978). The flora of Great
511	Basin mountain ranges: diversity sources and dispersal ecology. Great Basin
512	Naturalist Memoirs, 2, 81–103.
513	He, X., Cao, JJ., Zhang, W., Li, YQ., Zhang, C., Li, XH., Xia, GH., & Shao, JW.
514	(2021). Integrative taxonomy of herbaceous plants with narrow fragmented
515	distributions: a case study on Primula merrilliana species complex. Journal of
516	Systematics and Evolution
517	Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in
518	divergence and speciation. Biological Journal of the Linnean Society, 58(3), 247-
519	276.
520	Hodel, R. G. J., Massatti, R., Bishop, S. G. D., & Knowles, L. L. (2021). Testing which
521	axes of species differentiation underlie covariance of phylogeographic similarity
522	among montane sedge species. Evolution
523	Holmgren, N. H. (1967). A new species of primrose from Nevada. Madroño, 19(1), 27-
524	29.
525	Holmgren, N. H., & Holmgren, A. H. (1974). Three new species from the Great Basin.
526	Brittonia, 26(3), 309–315.
527	Holmgren, N. H., Holmgren, P. K., & Cronquist, A. (2005). Intermountain flora:
528	vascular plants of the Intermountain West, USA. Volume two, Part B: Subclass

- 529 *Dilleniidae*. New York Botanical Garden.
- 530 Holmgren, N. H., & Kelso, S. (2001). Primula cusickiana (Primulaceae) and its varieties.
- 531 *Brittonia*, *53*(1), 154–156.
- Huang, J. (2020). Is population subdivision different from speciation? From

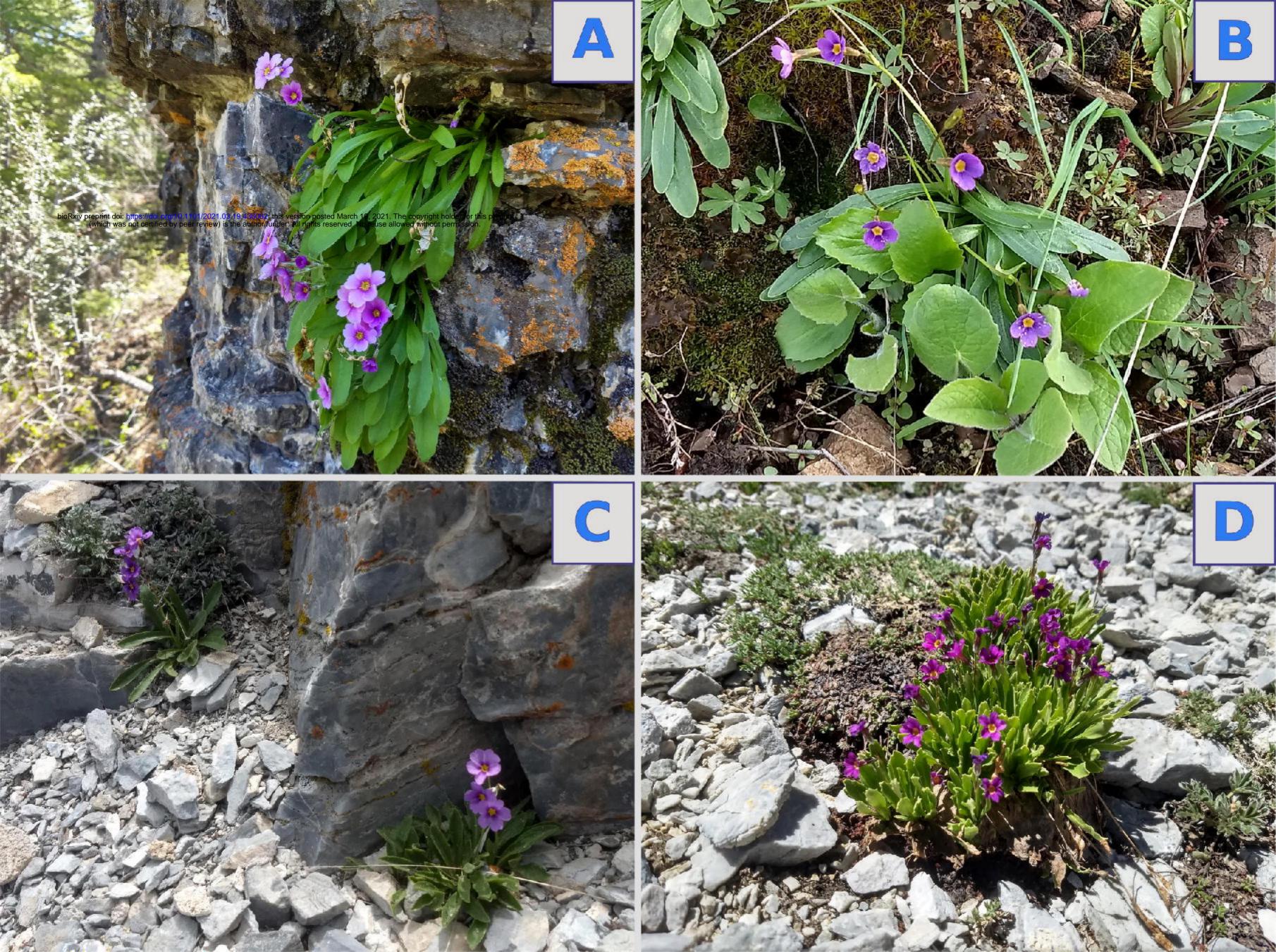
533 phylogeography to species delimitation. *Ecology and Evolution*, *36*, 303.

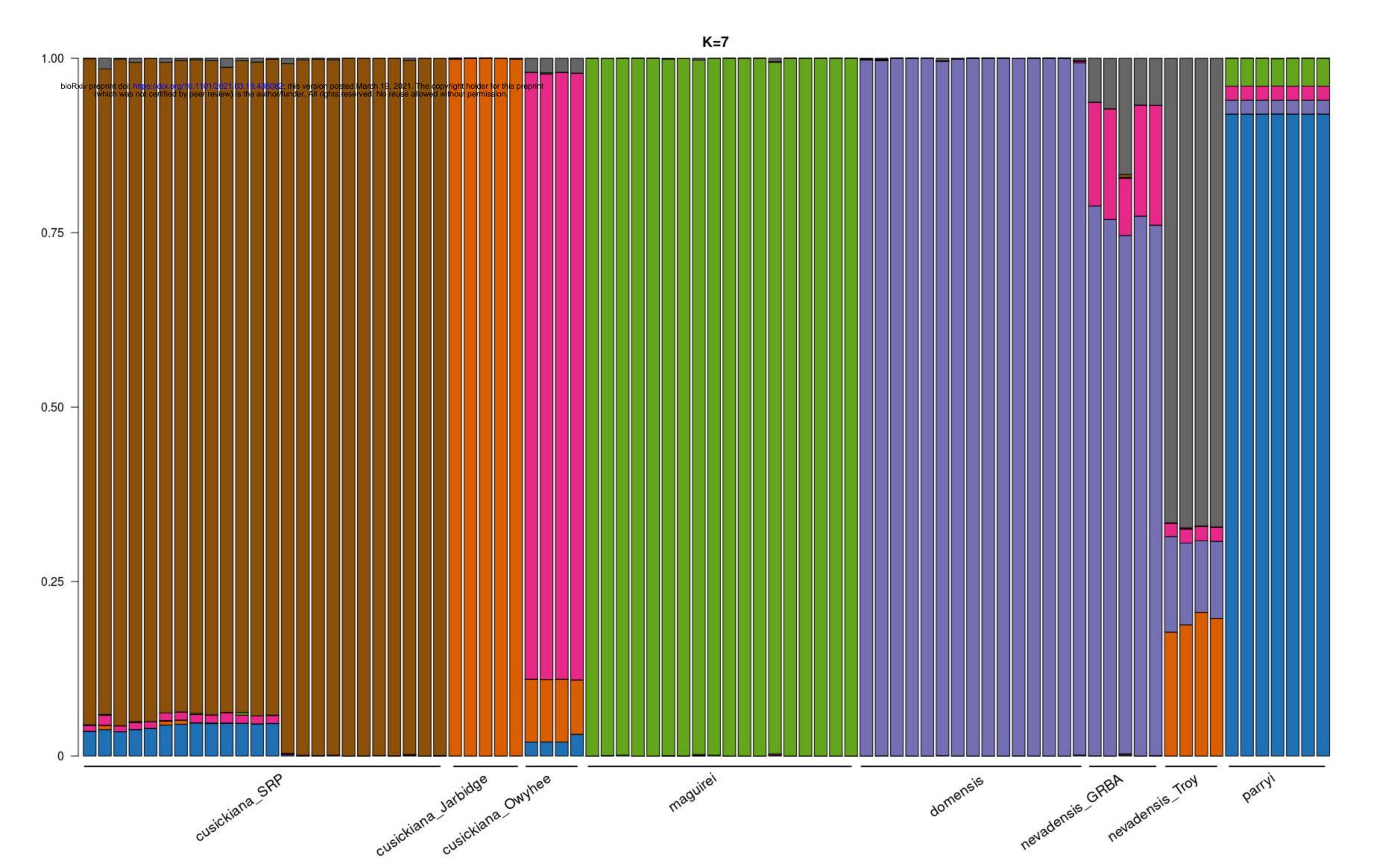
- Huang, Y.-F., Dong, L.-N., & Xu, W.-B. (2019). Lysimachia fanii, a new species of
- 535 Primulaceae from limestone area of Guangxi, China. *PhytoKeys*, *130*, 75–84.
- Hulshof, C. M., & Spasojevic, M. J. (2020). The edaphic control of plant diversity.
- 537 *Global Ecology and Biogeography*, 29(10), 1634–1650.
- Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal
- 539 components: a new method for the analysis of genetically structured populations.
 540 *BMC Genetics*, *11*, 94.
- 541 Kass, R., & Welsh, S. (1985). New Species of *Primula* (Primulaceae) from Utah. *The*542 *Great Basin Naturalist*, 45(3), 548–550.
- 543 Kelso, S., Beardsley, P. M., & Weitemier, K. (2009). Phylogeny and Biogeography of
- 544 *Primula* sect. *Parryi* (Primulaceae). *International Journal of Plant Sciences*,
 545 *170*(1), 93–106.
- Lawlor, T. E. (1998). Biogeography of Great Basin mammals: paradigm lost? *Journal of Mammalogy*, 79(4), 1111–1130.
- Leinonen, T., O'Hara, R. B., Cano, J. M., & Merilä, J. (2008). Comparative studies of
- 549 quantitative trait and neutral marker divergence: a meta-analysis. *Journal of*
- 550 *Evolutionary Biology*, 21(1), 1–17.
- Li, J., Cocker, J. M., Wright, J., Webster, M. A., McMullan, M., Dyer, S., Swarbreck, D.,

552	Caccamo, M., van Oosterhout, C., & Gilmartin, P. M. (2016). Genetic
553	architecture and evolution of the S locus supergene in Primula vulgaris. Nature
554	Plants, 2(12), 16188.
555	Mansfield, D. (1993). The status of "Primula wilcoxiana" and the Primula cusickiana
556	complex in Southwestern Idaho. Bureau of Land Management, U.S. Department
557	of the Interior.
558	Novembre, J. (2016). Pritchard, Stephens, and Donnelly on Population Structure.
559	Genetics, 204(2), 391–393.
560	Nowak, C. L., Nowak, R. S., Tausch, R. J., & Wigand, P. E. (1994). Tree and shrub
561	dynamics in northwestern Great Basin woodland and shrub steppe during the
562	Late-Pleistocene and Holocene. American Journal of Botany, 81(3), 265–277.
563	Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure
564	using multilocus genotype data. Genetics.
565	R Core Team (2020). R: A language and environment for statistical computing.
566	R Foundation for Statistical Computing, Vienna, Austria.
567	Ren, G., Mateo, R. G., Conti, E., & Salamin, N. (2020). Population genetic structure and
568	demographic history of Primula fasciculata in Southwest China. Frontiers in
569	Plant Science, 11, 986.
570	Schorr, G., Pearman, P. B., Guisan, A., & Kadereit, J. W. (2013). Combining
571	palaeodistribution modelling and phylogeographical approaches for identifying
572	glacial refugia in alpine Primula. Journal of Biogeography, 40(10), 1947–1960.
573	Theodoridis, S., Nogués Bravo, D., & Conti, E. (2019). The role of cryptic diversity and
574	its environmental correlates in global conservation status assessments: Insights

from the threatened bird's eye primrose (<i>Primula farinosa</i> L.).	. Diversity and
--	-----------------

- 576 *Distributions*, 25, 1457–1471.
- 577 Thompson, R. S., & Mead, J. I. (1982). Late Quaternary environments and biogeography
 578 in the Great Basin. *Ouaternary Research*, *17*(1), 39–55.
- Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the analysis of
 population structure. *Evolution*, *38*(6), 1358–1370.
- 581 Williams, L. O. (1936). Revision of the Western Primulas. *The American Midland*582 *Naturalist*, *17*(4), 741–748.
- 583 Wolf, P. G., & Sinclair, R. B. (1997). Highly differentiated populations of the narrow
- 584 endemic plant Maguire Primrose (*Primula maguirei*). Conservation Biology,
 585 11(2), 375–381.
- 586 Yang, L., Kong, H., Huang, J.-P., & Kang, M. (2019). Different species or genetically
- divergent populations? Integrative species delimitation of the *Primulina hochiensis* complex from isolated karst habitats. *Molecular Phylogenetics and Evolution*, 132, 219–231.
- 590
- 591 APPENDIX 1. Voucher specimens. Order of data is as follows: Species, Voucher,
- 592 Herbarium. Institutional barcodes or accession numbers are included as
- 593 parenthetical values following the voucher, when available.
- Ingroup: Primula cusickiana var. cusickiana, 25330978, Intermountain
 Herbarium; Primula cusickiana var. cusickiana, 25330990, Intermountain
 Herbarium; Primula cusickiana var. cusickiana, 25331045, Intermountain
- 597 Herbarium; Primula cusickiana var. cusickiana, 25331062, Intermountain


598	Herbarium; Primula cusickiana var. cusickiana, 25331021, Intermountain
599	Herbarium; <i>Primula cusickiana</i> var. <i>cusickiana</i> , 25331015, Intermountain
600	Herbarium; <i>Primula cusickiana</i> var. <i>cusickiana</i> , 25331018, Intermountain
601	Herbarium; <i>Primula cusickiana</i> var. <i>cusickiana</i> , 25331034, Intermountain
602	Herbarium; <i>Primula cusickiana</i> var. <i>cusickiana</i> , 25331004, Intermountain
603	Herbarium; <i>Primula cusickiana</i> var. <i>cusickiana</i> , 25330994, Intermountain
604	Herbarium; <i>Primula cusickiana</i> var. <i>cusickiana</i> , 25330991, Intermountain
605	Herbarium; Primula cusickiana var. maguirei, 25331026, Intermountain Herbarium;
606	Primula cusickiana var. maguirei, 25331039, Intermountain Herbarium; Primula
607	cusickiana var. maguirei, 25331041, Intermountain Herbarium; Primula cusickiana
608	var. <i>nevadensis</i> , 25331101, Intermountain Herbarium; <i>Primula cusickiana</i> var.
609	nevadensis, 25331106, Intermountain Herbarium; Primula cusickiana var.
610	nevadensis, 25331092, Intermountain Herbarium; Primula cusickiana var. domensis,
611	25331066, Intermountain Herbarium; <i>Primula cusickiana</i> var. <i>domensis</i> , 25331070,
612	Intermountain Herbarium; Primula cusickiana var. domensis, 25331077,
613	Intermountain Herbarium; Primula cusickiana var. domensis, 25331083,
614	Intermountain Herbarium;
615	Outgroups: Primula capillaris, 770850 (ASU0020421), Arizona State
616	University Vascular Plant Herbarium; <i>Primula capillaris</i> , 3025822 (UTC00138833),
617	Intermountain Herbarium; Primula parryi, 25331110, Intermountain Herbarium;


- 618 Primula parryi, 25331112, Intermountain Herbarium
- 619
- 620 FIG. 1. Four members of the *Primula cusickiana* species complex: (A) *maguirei*,

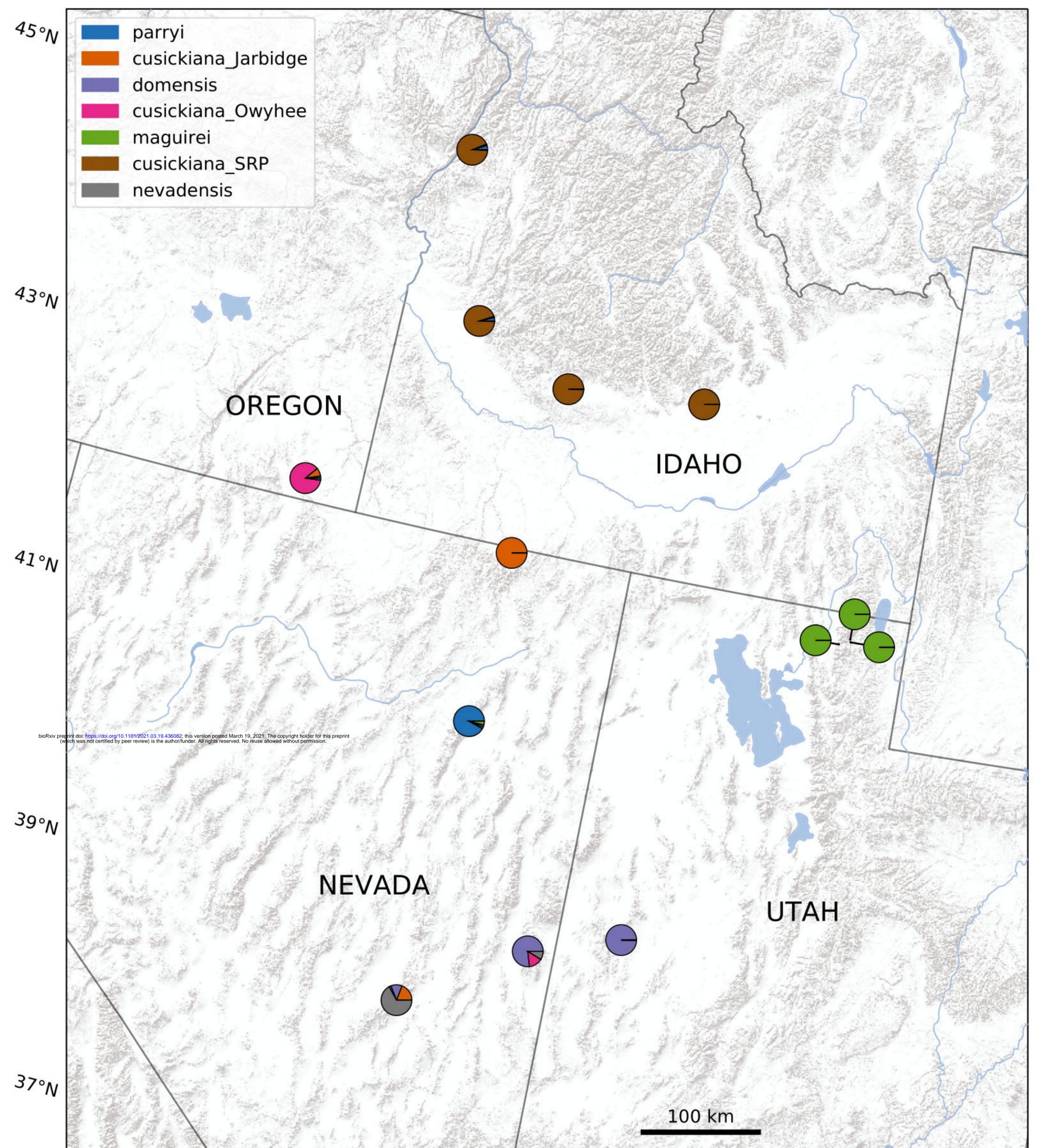
621	in Right Hand Fork of Logan Canyon; (B) <i>cusickiana,</i> near Cougar Point in Jarbidge,
622	Nevada; (C) domensis, at Notch Peak in the House Range, Utah; (D) nevadensis, on
623	Mount Washington in the Snake Range (Great Basin National Park), in Nevada.
624	FIG. 2. Sample STRUCTURE plots at K = 7. At this level of clustering, divisions
625	between isolated populations of variety <i>cusickiana</i> in Idaho (Snake River Plain, or
626	SRP), Nevada (Jarbidge), and Oregon (Owyhee) are clearly shown. Similarities
627	between populations of variety nevadensis in Great Basin National Park (GRBA) and
628	domensis are shown, while populations of nevadensis further south in the Grant
629	Range (Troy) are more distinct.
630	FIG. 3. DAPC of only <i>P. cusickiana</i> complex samples with number of genetic
631	clusters specified at 6; percentage of total variance for each PC axis shown. Similar
632	to STRUCTURE results at K = 7, this analysis shows all <i>maguirei</i> populations as
633	distinct from all other complex populations. Populations of varieties domensis and
634	nevadensis group closely with cusickiana population from Oregon
635	("cusickiana_Owyhee").
636	FIG. 4. Map of sample locations with cluster membership. Sampling locations
637	are represented by pie charts indicating percentage of population membership to
638	clusters determined at K = 7 STRUCTURE clustering threshold. With exception to
639	nevadensis, most samples fall almost entirely within a specified cluster.
640	FIG. 5. STRUCTURE plot for <i>maguirei</i> samples at a clustering threshold of K =
641	3. While maguirei clustered together in the complex-wide analysis, our maguirei-
642	only analysis was able to reveal the Logan Canyon population divisions illustrated in
643	past studies.

644 FIG. S1. Distribution of pairwise Jaccard similarities across all samples.

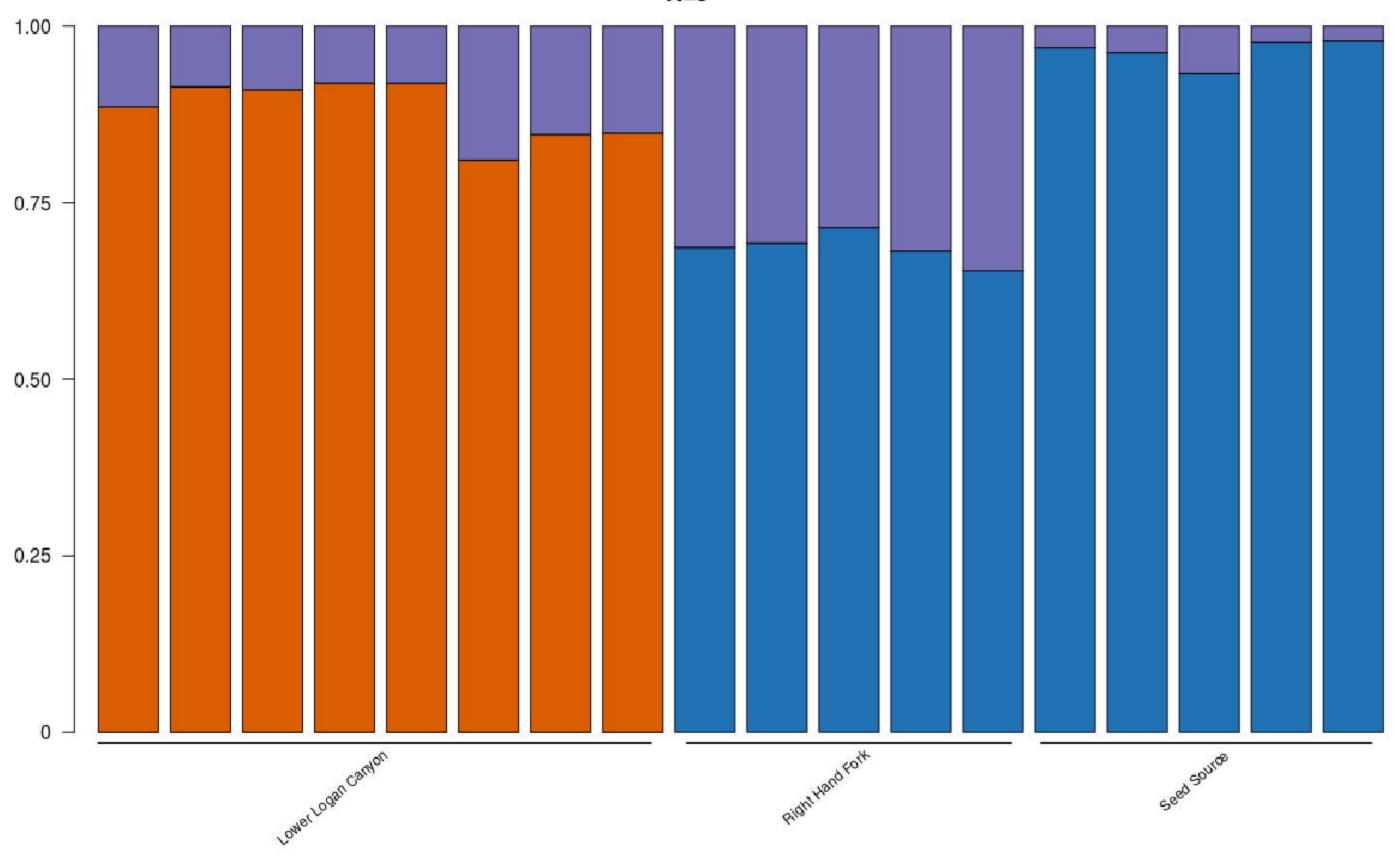
- 645 Similarity values of replicates are indicated by red vertical lines.
- 646 FIG. S2. STRUCTURE plots for all samples, K values ranging from 2 to 6.
- 647 FIG. S3. STRUCTURE plots for all samples, K values ranging from 7 to 11.
- 648 FIG. S4. STRUCTURE plots for all samples, K values ranging from 12 to 16.

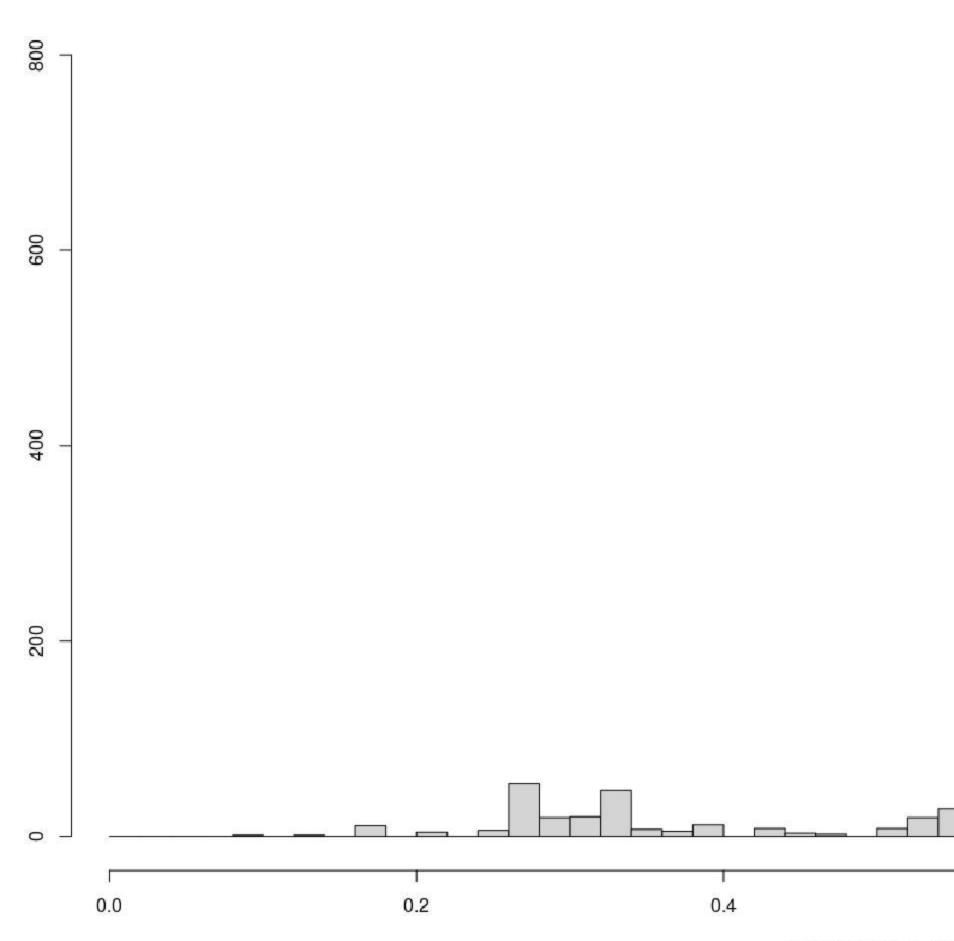
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436082; this version posted March 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

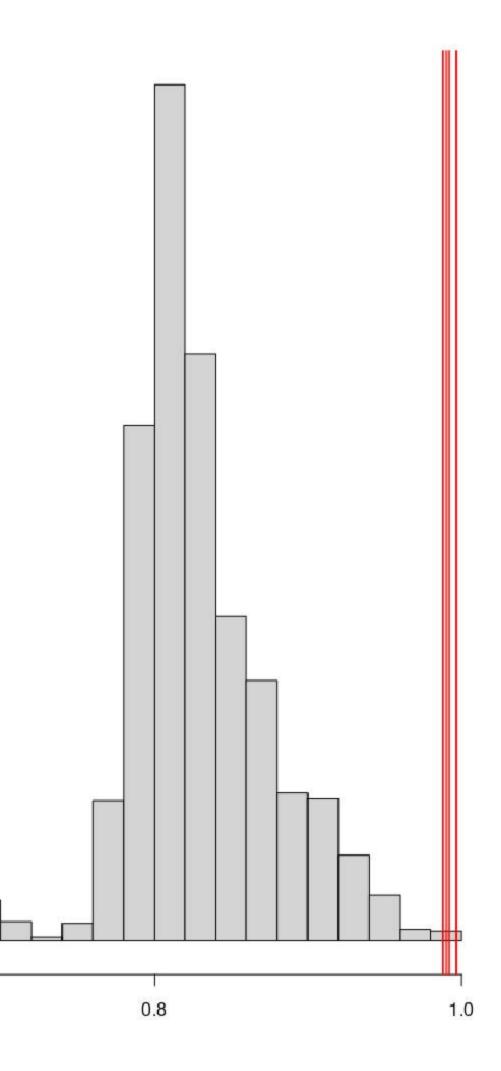
23.29% PC 2:

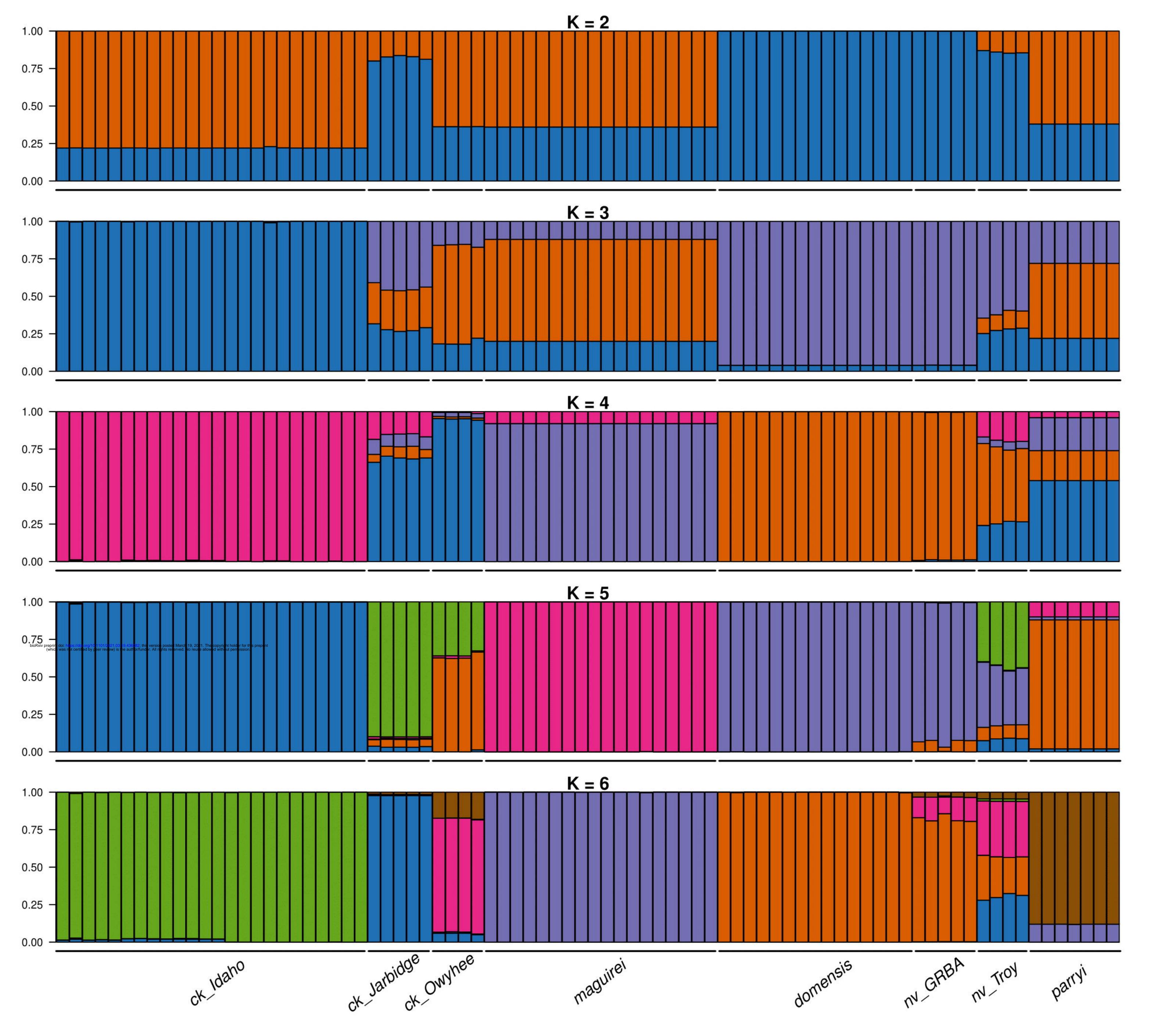


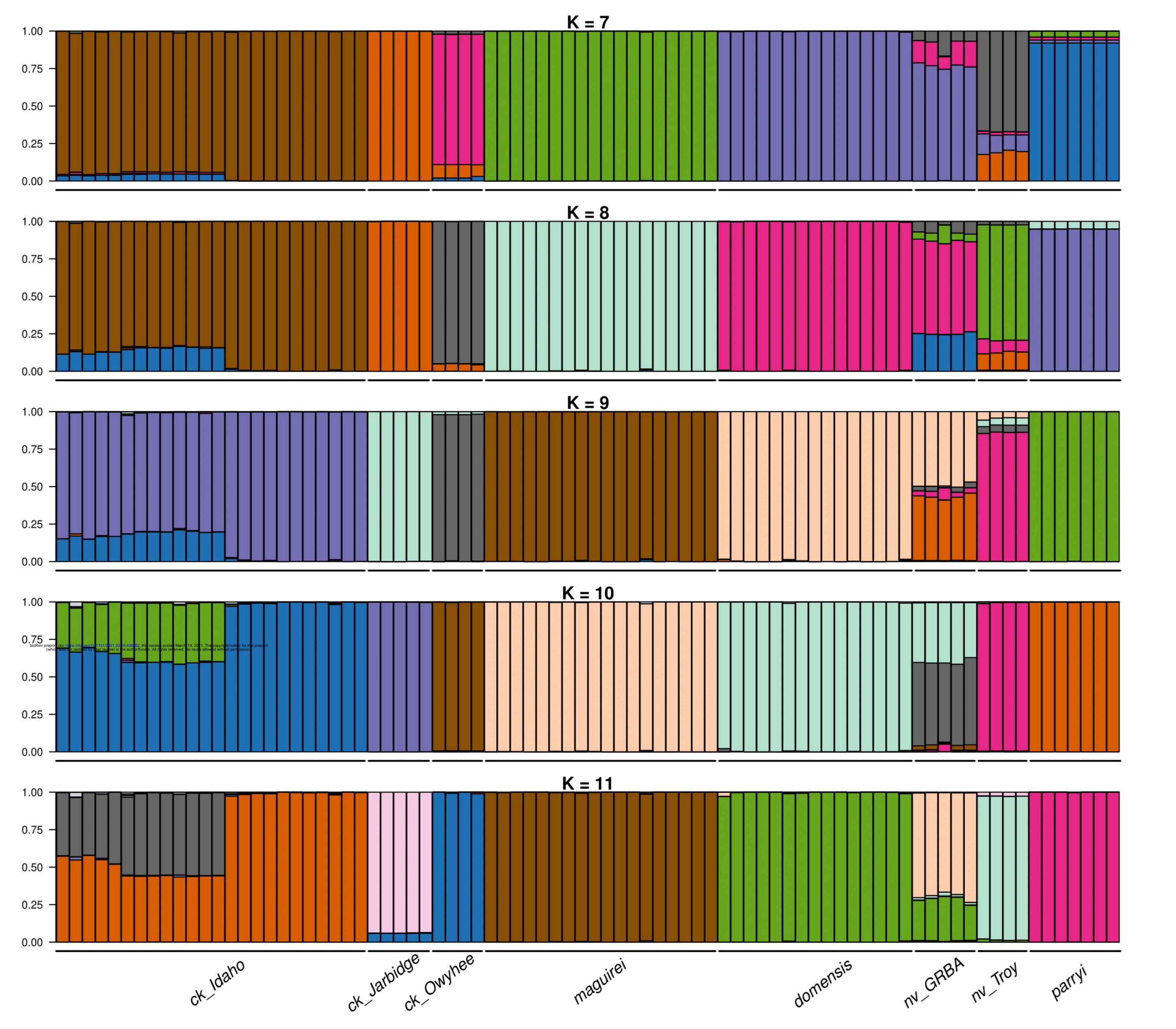
maguirei
cusickiana_SRP domensis

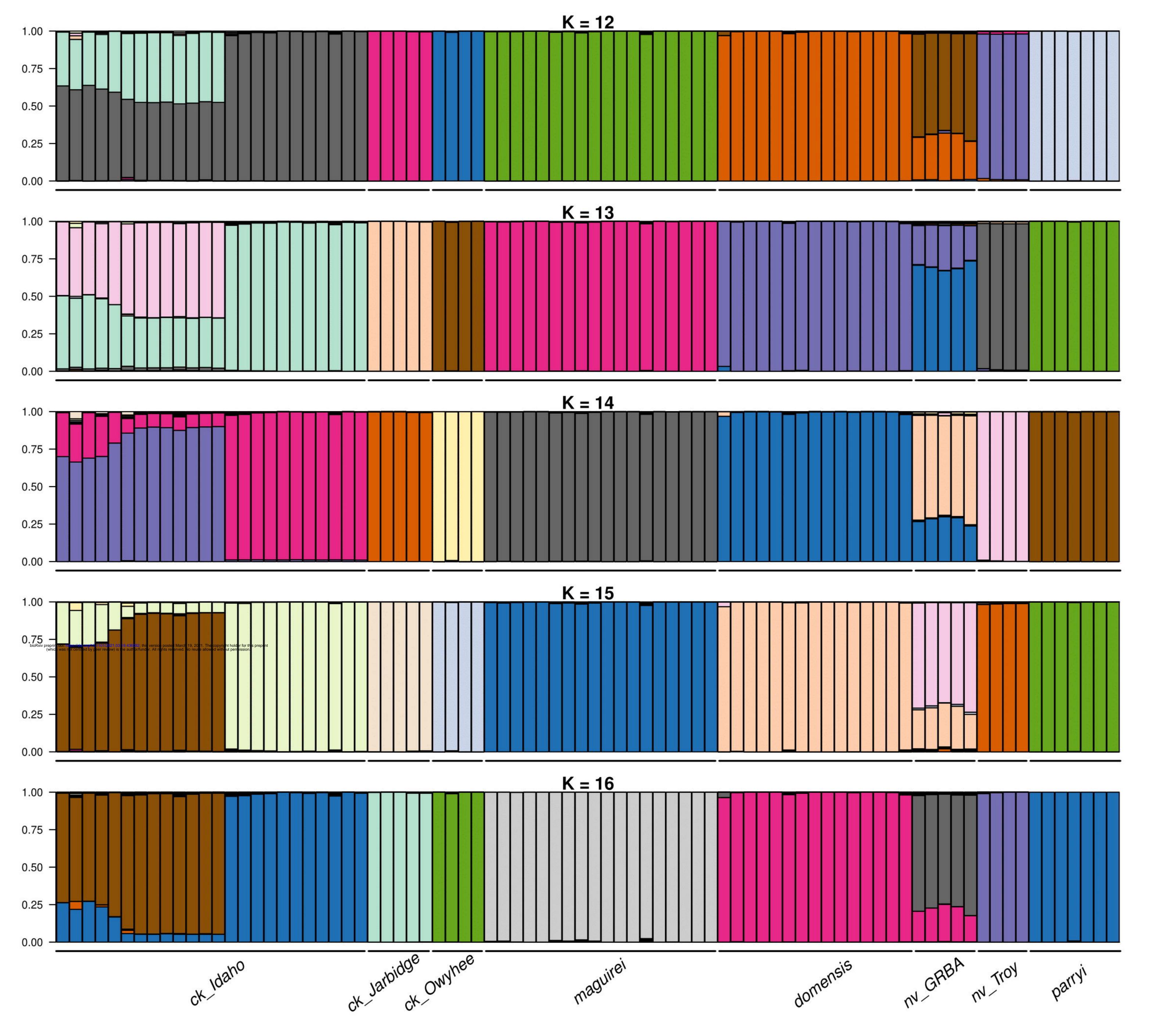

cusickiana_Owyhee nevadensis_GRBA cusickiana_Jarbidge




K=3


Complex-Wide Jaccard Similarities


bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436082; this version posted March 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.



0.6

