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Abstract
Correlative light and electron microscopy (CLEM) combines two imaging modalities, balancing out the limits
of one technique with the other. In recent years, Focused Ion Beam Scanning Electron Microscopy (FIB-SEM)
has emerged as a flexible method that enables semi-automated volume acquisition at the ultrastructural
level. We present a toolset for adherent cultured cells that enables tracking and finding cell regions previously
identified in light microscopy, in the FIB-SEM along with automatic acquisition of high-resolution volume
datasets. We detect a grid pattern in both modalities (LM and EM), which identifies common reference
points. The novel combination of these techniques enables complete automation of the workflow. This
includes setting the coincidence point of both ion and electron beams, automated evaluation of the image
quality and constantly tracking the sample position with the microscope’s field of view reducing or even
eliminating operator supervision. We show the ability to target the regions of interest in EM within 5 µm
accuracy, while iterating between different targets and implementing unattended data acquisition. Our results
demonstrate that executing high throughput volume acquisition in electron microscopy is possible.

Introduction
Electron microscopy (EM) of cultured cells provides unique access to detailed subcellular architectures
at nanometer scale. Sampling strategies are essential to ensure an accurate morphometric evaluation of
subcellular phenotypes. In cases where cells are homogeneous, random sampling guarantees optimal selection
of the overall population1,2,3. However, different paradigms are necessary to measure sub-cellular morphologies
on heterogeneous cell cultures4,5. Increasing imaging throughput is one way to address heterogeneity but
EM rarely achieves sufficient regimes. Correlative light and electron microscopy (CLEM) is an efficient
solution to overcome such heterogeneity in EM. It capitalizes on the power of light microscopy (LM) to
screen large samples for choosing cell sub-populations of interest. By applying a selection process on the light
microscopy level, analysis can be focused towards specific individual cells, even if the phenotype of interest
is extremely rare. Thus, various targeting strategies have been developed since the very first CLEM was
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performed on cultured cells6,7. Individual areas of interest inside the sample can be tagged by means of laser
etched frames8 or cells can be seeded onto dedicated substrates that incorporate a coordinate system9,10. In
both cases, object correlation is established using landmarks created with artificial fiducial markers that are
easily identifiable in both LM and EM. Over the years, various solutions have been developed to imprint such
fiducials, such as gold or ink printing11,12, laser or scalpel etching9,13 or carbon evaporation14.

Nowadays, commercial CLEM dishes or coverslips are routinely used for correlating fluorescence imaging
of fixed or living cells with transmission EM (TEM)15,16. Typical sample preparation for EM, i.e. by chemical
fixation or high pressure freezing, includes a resin embedding step. Upon removal of the coverslip from the
resin block, the region of interest (ROI) is located using the topology of the coordinate system that marks
the block surface. For TEM imaging, the block is then trimmed so the sections containing a ROI can fit onto
an EM grid. Regardless of the initial dimensions of the substrate, selecting the ROI usually entails the loss of
surrounding areas, preventing the analysis of multiple cells if they were distributed across the full surface of
the culture dish or coverslip.

In recent years, volume scanning electron microscopy (SEM) modalities have been used for CLEM on
cultured cells. Besides offering access to large volumes, both serial block face SEM (SBEM)17 and array
tomography18,19 also require block trimming before imaging and therefore suffer from the same limitations as
TEM when utilized for CLEM. Focused ion beam SEM (FIB-SEM)20 however can accommodate the imaging
of large specimens without the need for trimming. In particular, multiple cultured cells grown on a Petri
dish or coverslip can be imaged in a CLEM workflow, even when scattered across the full surface of the
substrate21. Despite this capability, CLEM has been performed one cell at a time and for a limited number
of cells21,22,23,24, because up to now, FIB-SEM microscopes lack automation procedures to acquire multiple
sites without interruption.

In this paper, we introduce CLEMSite, a software prototype which automates serial FIB-SEM imaging of
cells selected previously by fluorescence microscopy. We show that the automation is not only possible, but
it also significantly reduces the number of required manual interventions during EM imaging. In addition
to the automation process, we also describe the system of landmark correlations used to find targeted cells
spread over the surface sample. Our software was tested in two types of CLEM experiments, each experiment
type repeated twice. In the first type of experiment, for each session we selected around 25 cells from the
same dish, each cell belonging to a different phenotype. In the second experiment, the same amount of cells
was selected randomly, this time with only one phenotype present in the dish. We collected a significant
number of EM images from multiple cells, which allowed us to conduct morphometric analysis on different
phenotypes.

Results
Presentation
By following the logical workflow of a CLEM experiment, CLEMSite was designed modularly (Fig. 1a).
The first module, CLEMSite-LM, is a stand-alone application to process sets of images acquired by light
and fluorescence microscopy. CLEMSite-LM primarily extracts stage coordinates of target cells and their
associated landmarks. The second module, CLEMSite-EM, is divided into 3 components that assist with
automation: Navigator to find and precisely navigate to the targets, Multisite to trigger a FIB-SEM run on
each position, resulting in a stack of serial images of the corresponding ROI, and Run Checker to supervise
operations during each acquisition. To control the FIB-SEM microscope, CLEMSite-EM interfaces commercial
software (SmartSEM and ZEISS Atlas 5 from Carl Zeiss Microscopy GmbH ).

Correlation strategy
The correlation strategy applies transformations to translate cell positions (microscope stage coordinates)
from LM into cell positions of the FIB-SEM (Fig.1b). At the light microscope, cells of interest can be selected
either by manually screening or by using more assisted pipelines, such as the ones described in the application
examples below. In our experiments, the Golgi apparatus morphology was used to select cells by means of an
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Figure 1. Schematic representation of the correlative light and electron microscopy software CLEMSite.
(a) Overview of the different elements of CLEMSite, CLEMSite-LM and CLEMSite-EM. CLEMSite-EM is divided

into 3 modules: the Navigator, which allows to store and move to different positions in the SEM, then Multisite,
which drives the FIB-SEM acquisitions and the Run Checker, which controls and reports on the FIB-SEM runs.
(b) Workflow for the automated acquisition of multiple correlated datasets. Light microscopy is performed, finding
LM targets and recording their corresponding landmarks using CLEMSite-LM Inside the FIB-SEM, EM targets are
predicted using the Navigator and acquired using Multisite and Run Checker. The acquired data is finally analysed to
characterize different phenotypes.
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automated phenotypic screen. At each position where a cell of interest is identified for downstream CLEM
analysis, a light microscopy acquisition job is programmed to collect a set of images. The first set comprises
one fluorescence image at low magnification (using a 10x objective) (Fig.2a), and one reflected light image
of the same field of view revealing the grid pattern (Fig.2b). The target area, which can be a cell or more
precisely a subcellular region (e.g. the center of mass of the Golgi apparatus, Fig.2a) is placed at the image
center. With a target centered, the stage coordinates are recorded for subsequent use in the correlation.

All images are then loaded to CLEMSite-LM. The first step of the software is to automatically extract
landmarks that will be used as references to register the stage coordinates coming from LM and EM images.
The grid pattern imprinted on the bottom of the culture dish is a convenient coordinate system for registration.
As the screened cells are typically distributed across the whole surface of the CLEM dish, a map of local
landmarks is built from multiple sparse images of the grid.

Since the bars constituting the grid are relatively thick at 40 micrometers wide, the center of their
intersections is used as a fiducial marker. In CLEMSite-LM, these centers are identified by a line detection
algorithm, which is applied on the reflected light images to find the lines present at the grid bar edges. At
the grid bar crossings, the detected grid bar edges intersect in 4 points, the centroid of which is used to mark
the center of each grid bar crossings (Fig. 2b, and Supplementary Fig. 1). This center point is saved in
stage coordinates as a landmark. Since each grid square is already imprinted with a unique combination of
alphanumeric characters, each calculated center point is labelled using this existing identifier. Identification
of the corresponding alphanumeric set of characters in reflected light images is performed by a VGG16 based
convolutional neural network (CNN)25 (Fig.2b). The CNN was trained with a combination of synthetic and
manually annotated light microscopy images.

The last step in CLEMSite-LM, is to obtain a second collection containing the centroid stage coordinates
of the target structures (e.g. the Golgi apparatus, Fig. 2a). In our experiments, since our target cells are
centered on the image, stage coordinates are extracted directly from the image metadata.

After sample preparation for EM, removal of the coverslip and coating with a thin layer of gold, samples
are transferred to the FIB-SEM chamber, where they are left to equilibrate for one day before starting the
experiment. The next day, the examined sample is positioned for optimal visualization of the grid (see
Methods, Correlation in Electron Microscopy). At the beginning, CLEMSite-EM requires an image from a
random initial position of the sample surface to be used as a calibration step. The Navigator module prompts
the user to indicate which grid square (identified by the alphanumeric identifier) is in the SEM image and in
which orientation. The landmarks are then detected by the same line detector used by CLEMSite-LM. As a
fail-safe, landmarks can also be manually identified by clicking over them.

Based on the manufacturer’s known grid layout and four landmarks, the software creates a linear model
that represents a simple quadratic lattice to predict the position of all landmarks in stage coordinates. This
preliminary model-based prediction of landmark positions has a targeting accuracy of approximately 5±20
µm (measured as RMSE, root mean square error) which is insufficient for precise localization of the cell and
therefore requires additional refinements. This involves obtaining more landmarks along the surface sample.
Thus, at each predicted landmark, an SEM image is automatically taken and a convolutional neural network
(U-net26) is used to compute the probability of each image pixel to belong to a grid bar edge (Fig. 2c). The
line detector is applied again to the resulting grid bar edges to give the center point. This process is repeated
throughout the sample surface to find and associate each individual landmark identified previously in light
microscopy images.

When enough landmarks are collected, an affine 2D transformation is computed to register the landmarks
from LM and EM. The transformation is applied to all LM stage coordinates of target cells to predict their
position in SEM stage coordinates at the surface of the resin block (Fig.2d). When all 4 experiments are
taken into consideration, this global transformation reduced the error in target accuracy down to 13 ± 6 µm.
If the grid pattern is sharp and the block surface does not present any defects such as cracks, scratches or
dust, grid edges are detected perfectly and the center point of the landmark can be calculated with higher
accuracy (Supplementary Fig. 2). In our case, we had two of such experiments, reaaching a global targeting
accuracy (RMSE) of 8 ± 5 µm.

To further increase the targeting accuracy, a local transformation delineates the third and final targeting
refinement. It is calculated before each FIB-SEM acquisition, using only the landmarks in close proximity
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Figure 2. Coordinate system mapping and automatic detection for the correlation strategy.
When a cell of interest is selected, for example to target the Golgi apparatus center of mass (a, white cross), the

low magnification fluorescence (a, left image) and reflected light images (b, left image) are stored, and later loaded
into CLEMSite-LM. This module extracts the stage coordinates in micrometers from each image metadata to build a
list of targets (LM targets list) corresponding to the fluorescence , and another list of landmarks corresponding to the
reflected light images (LM landmarks list) (b, middle image including inset). In the reflected light images, where the
grid bars cross (red lines, band inset), the corresponding detected edges are converted to lines and mark 4 points (b,
red dots), that are used to determine the center point (yellow dot). By convention the top left corner (yellow arrow) is
named by associating its unique center point (yellow dot) with the alphanumeric identifier imprinted onto the glass
dish bottom, which is automatically detected (b, right image). In the FIB-SEM, an image is taken by the Navigator
module (c, left image), and the grid bar crossings are detected (c, middle image) to calculate the center point (c, right
image and yellow dot), this process continues at each predicted landmark to give a list of landmarks (EM landmarks
list). (d) A transformation is computed to register together the LM list and EM landmarks list, which is then applied
to the LM targets list to predict the EM targets list across the sample at the FIB-SEM. (e) FM (top left) and SEM
(top right) images were superimposed manually using the cell contours. For this the FM images were flipped, rotated
and scaled (bottom left). The position of the LM target (white cross) is then compared with the predicted target in
the SEM (black cross). A final targeting accuracy of 5 ± 3 µm (RMSD over n=10) was estimated by overlaying the
SEM and LM images (bottom right). Scale bars: (a) 200 µm, 25 µm, 25 µm; (b) 200 µm, 100 µm, inset: 50 µm, 100
µm; (c) all 100 µm; (e) 50 µm, 100 µm, 100 µm, 25 µm.

to the target (a total of 8 landmarks falling in a radius of 1200 µm). By applying this local refinement, we
obtained a final targeting accuracy of 8 ± 4 µm for all the experiments (average of n = 10 cells per experiment
over N = 4 experiments), or of 5 ± 3 µm with the pristine blocks (average of n = 10 cells per experiment over
N = 2 experiments). These results were validated by registering manually the fluorescence image and the
SEM view of the sample surface in the predicted position (Fig. 2e, Supplementary Table 1).

Thus, with our experiments, we exemplify how it is possible to perform an automated detection and
registration of landmarks from both LM and SEM imaging modalities, which can lead to a final correlation
with an accuracy of targeting close to 5 µm. Besides, the correlation can be performed over relatively large
sampling areas: in the experiments a surface region of approximately 8 × 8 mm2 was completely mapped.

Automation of FIB-SEM imaging of multiple cells
Once the correlations between cell positions in light and electron microscopy have been determined, the
Multisite module of CLEMSite-EM executes the FIB steps of our automation workflow. These are automated
localization of the coincidence point (Fig. 3a); milling of the trench to expose the imaging surface and
the automated detection of this trench to ensure a well-positioned imaging field of view (FOV) (Fig. 3b);
automated detection of image features in this imaging surface for the initial autofocus and autostigmation
(AFAS) (Fig. 3c); and finally the stack acquisition (Fig. 3d). These four steps are executed sequentially for
all targets (Fig. 3e).

The sample is positioned at the target coordinates of the first cell, and the Multisite module performs
the coincidence point alignment of both the electron and ion beams (Fig. 3a and Supplementary Fig. 3a).
To preserve the target, the sample is drifted 50 µm in x. The working distance is checked by autofocus
and adjusted by the z-movement of the stage. A square fiducial area (20x20 µm2) is then created at the
surface of the block by FIB sputtering at high current (7 nA). This square is then imaged by FIB and SEM
sequentially (using the SE detector). The offset (in the y direction) between the center of the sputtered
square (i.e. the focus point of the ion beam) and the center of the e-beam image is then utilized to calculate
the z-offset by applying a trigonometric relation (Supplementary Fig. 3). A further refinement is achieved by
cross-correlating images of the sputtered mark captured using the FIB (imaging current, 50 pA) and SEM
modes. The measured difference in micrometers is then applied to the SEM beam shift to correct the FOV
position.

Following the automated coincidence point alignment, the software proceeds with estimating the position
of the target cell using the local transformation based on the closest landmarks as described above. After
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Figure 3.Automation of FIB-SEM workflow for multiple targets
(a) Automated Coincidence Point routine is illustrated schematically. When not tuned, the two beams are usually

pointing at different positions of the sample surface (green plane, blue point for FIB center, red point for SEM center).
The orange plane below, shows the case where the ideal position (yellow point) is achieved with respect to both FIB
and SEM beams. In the software routine, a square is sputtered with the ion beam on the sample surface. The offset
between the two beams is calculated based on the difference between the center of the sputtered mark in the SEM
and FIB images (dy, distance between red and blue positions in the green plane). The z height (dz) of the stage is
then corrected, and a further refinement using the SEM beam shift is performed by calculating the translation of the
square mark between FIB (50 pA image) and SEM images. (b) Milling & Trench Detection: (1) After finding the
coincidence point, a trench is milled to expose a cross-section at the region of interest. (2) The trench is detected
to accurately position the field of view. First, a three level thresholding is applied to the image, followed by the
detection of the biggest connected component that fits a trapezoid shape. From the final binary shape, boundaries of
the trapezoid are found (3): the top corners (red circles), the trapezoid top center (blue circle) and the trapezoid
center (light blue circle). (c) Image features detection: The image of the cross-section surface is analyzed and scored
for the best focus positions to perform autofocus and autostigmatism. Features inside the image are found by using
Harris corner detection and a variance map. The initial features (red points) highlight the high contrast and complex
areas of the imaging surface which usually cluster on cellular structures. Features are clustered and their centroids
(green dots) are then filtered and prioritized to detect the first 6 ones suitable for AFAS (blue points). (d) Acquired
data: Images are acquired at 200 nm intervals (in z) throughout the Golgi apparatus region. The resulting stack is
used for 3D render and quantifications. (e) Multi-site Images: Result of an experiment, where multiple targets had
been acquired automatically across the full surface of the sample. Scale bars: (a) all 50 µm; (b) all 25 µm; (c) 5 µm;
(d) slices all 2 µm, model 5 µm; (e) 500 µm, 50 µm.

moving back to the estimated position, the software automatically triggers ZEISS Atlas 5 to mill a trench,
which exposes a cross-section orthogonal to the surface of the block. When the milling is finished, an SEM
image is taken with the ESB detector and the trapezoid shape of the trench is detected using thresholding
and shape recognition (Fig. 3b, Supplementary Fig. 3b).

The center of this shape is used as a reference to position the FOV to be imaged during volume acquisition.
The FOV is magnified from a 305 µm by 305 µm to a 36.4 µm by 36.4 µm surface area and an image of
the cross-section taken (Fig. 3c). A feature detector (Harris Corner detector29) is applied to this image
to identify salient points with high contrast and complex pixel neighborhoods. Such point features usually
cluster around complex cellular structures, therefore they can be clustered using k-means. The k-means
centroids are additionally filtered and prioritized by higher variance, high entropy and for their proximity to
the center of the image. The first element in the filtered list can thus be stored for the subsequent application
of autofocus and autostigmation procedures (AFAS) (Supplementary Fig. 3c). In the absence of a cell on the
cross-section, the AFAS function is automatically targeted to the edge between the cross-section and the
surface of the block. An image stack is then acquired (Fig. 3d) at a given regime (z resolution) as defined in
the initial setup of the experiment. Note that whilst every cell of one run can be acquired with the same
recipe (as defined in ZEISS Atlas 5 : sample preparation, total volume to be acquired, slice thickness and
FIB currents applied at each step), CLEMSite-EM also offers individual definition of recipes, allowing a per
cell adaptation of the shape or volume (Supplementary Fig. 4a).

The Run Checker module of CLEMSite-EM (Supplementary Fig.4b) supervises each stack acquisition
and corrects the position of the FOV if an image drift occurs in the y-direction. The drift is computed
by using ASIFT30 point feature correspondences, which are optimally filtered using RANSAC31. When a
drift is detected, the next image is corrected accordingly by adjusting the SEM beam shift. Run Checker
also continuously monitors the run for the periodic autofocus and stigmatism. For each image acquired, a
Vollath’s autocorrelation and a Laplacian metric32 are used to measure respectively the quality of focus and
stigmatism. When these values differ more than 25% between two consecutive slices, in addition to a warning
UI message, an e-mail is automatically sent to the user, who can then decide to interfere and correct the drift
manually.

After completion of one volume acquisition, CLEMSite-EM restores the original microscope conditions,
drives the stage to the next target cell (using the Navigator module) and starts a new FIB-SEM run (Multisite
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module). This process is repeated until all targets are acquired (Fig. 3e). When the Gallium source is no
longer producing a coherent ion beam, the FIB interrupts the current run. Upon reheating of the Gallium
source, the run is then manually resumed to proceed with the next cells. For a typical FIB-SEM acquisition
recipe at our microscope (as outlined below in case study 1), 15 to 20 consecutive cells can be acquired
before it becomes necessary to reheat. CLEMSite, thus provides a unique solution for automated targeted 3D
acquisition of multiple cells previously identified by light microscopy.

Applications
We illustrate CLEMSite’s capabilities with two applications. In the first, the Golgi apparatus morphology
of HeLa cells is perturbed with siRNA knockdowns by adapting a previously described solid phase reverse
transfection protocol35, where several siRNA knockdowns can be performed in a single experiment. This
approach represents an efficient screening tool to identify specific genes involved in Golgi apparatus morphology.

In the second application, we illustrate a follow up of this screen, where morphological perturbations
of the Golgi apparatus are further evaluated by focusing on one of the siRNA treatments, i.e. knocking
down the COPB1 gene expression. This treatment was chosen based on its prominent phenotype. Variable
transfection efficiency leads to a heterogeneous distribution of the phenotypes. We address this heterogeneity
with our CLEM approach in which the target cells are selected according to their phenotype as visible by
fluorescence microscopy. Using such a phenotype-enriched selection of cells enables us to collect sufficient
data for a morphometric evaluation at the EM level.

Case study 1: Integrated multiple knockdown CLEM screen

Organelle morphologies can be observed by fluorescence light microscopy and used as a proxy to identify
which genes are involved in various cellular functions. Previous experiments showed how the Golgi apparatus
organization can be studied by tagging GalNAcT2, a resident enzyme of the Golgi apparatus, with a fluorescent
protein33,34. For efficiently screening the effects of different knockdowns, we have adapted an integrated
experimental approach based on solid phase reverse transfection35. By depositing drops of siRNA transfection
mix, multiple treatments are distributed as an array at the surface of one single gridded culture dish. With
such a layout, up to 32 spots can be deposited (Fig. 4a).

After a 72 hours incubation period, the cells on each siRNA spot are automatically imaged by confocal
fluorescence microscopy. For this, four fields of view in each treatment spot are imaged with a 10x objective.
The position of these fields is generated systematically using a matrix pattern. The resulting fluorescence
images are then processed in CellProfiler36, where the nuclei (DAPI channel) and a total of four features
associated to the Golgi apparatus (GFP channel) from individual cells are extracted. Upon perturbation
of the secretory pathway, the Golgi apparatus morphology can display a variety of phenotypes37 which we
classified into four typical appearance categories: fragmented, diffuse, tubular and condensed (Supplementary
Fig. 5a). We designed the four features to score each one of such morphologies individually (fragmentation,
diffuseness, tubularity and condensation) to measure the impact of each siRNA treatment (Supplementary
Fig. 5b). Thus, a high score on one of the features serves as an indicator of the presence of the phenotype.

For this proof of concept experiment, the expression of 14 genes was challenged (Supplementary table 2).
The most striking effects were observed when perturbing the expression of subunits of the COP1 complex,
associated with non-clathrin coated vesicles (Fig. 4b,c). For the 3 subunits tested (COPB1, COPB2 and
COPG1), a significant number of cells started to display a diffuse GalNAcT2-GFP signal, as visible by
fluorescence microscopy after 72 h of treatment (Fig.4b,c). Under these experimental conditions, the other
gene knock downs did not display noticeable phenotypes (Supplementary Fig. 5b), likely because the sample
size was not big enough to detect subtle variations in the Golgi morphology.

Applying our automated CLEM workflow, we selected 2 to 3 cells per condition for further ultrastructural
analysis by FIB-SEM. A total of 34 cells were automatically targeted (plus 2 control cells acquired manually)
and acquired across 3 runs. For treatments with siRNA perturbing the expression of subunits of the COP1
complex, the cells were chosen from the pool that displayed the highest diffuseness score (Fig.4b, cells
highlighted as triangles on the plot), a pool that was clearly distinguishable from the control condition.
For other genes, even though the image analysis did not reveal any outstanding sub-population, we picked
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Figure 4: Automated screen of 14 siRNAs after 72h solid phase transfection knockdown.
(a) Transmitted light image of one Petri dish with the 32 siRNA spots (left), where each siRNAs transfection mix

is placed in the culture dish following a definite arrangement, see Supplementary Table 2 for further details (right).
(b) Morphological features of the Golgi apparatus scoring tubularity, diffuseness, fragmentation and condensation for
COPB1, COPB2, COPG1 in comparison to control. Values of each feature are normalized with respect to the mean of
the control, n = 2985. During the light microscopy workflow, cells transfected with COP siRNAs display a phenotype
that can be identified because of their high value in diffuseness. As an example, we selected one cell of each COP
related siRNA (black triangles), to display in (c) the final result of the correlative experiment. (c) Selected correlated
cells control, COPB1, COPB2 and COPG1 (top to bottom): overview merged fluorescent, reflected light image and
image of the siRNA spot (left), fluorescent image of selected cell (second from the left), cross-section through selected
cell in the region of the Golgi apparatus acquired automatically with the FIB-SEM (two images on the right). Scale
bars: (c) left to right, 100 µm, 10 µm, 1 µm, 1 µm.

randomly between the cells displaying the highest scores associated to the expected phenotype, as hypothesized
from previous experiments (Supplementary Fig. 5b, selected cells highlighted as triangles).

At the EM level, 5 out of the 6 cells treated with COPB siRNAs with a diffuse phenotype, displayed total
disruption of the Golgi stack, which would normally display 3 to 4 closely associated cisternae. Instead, the
region with enriched GalNAcT2-GFP fluorescence signal was filled with numerous vesicles (50 to 300 nm
in diameter), suggesting comprehensive disassembly of the Golgi stacks upon knocking down the COPB1,
COPB2 or COPG1 genes (as observed in the COPB1 of Fig.4c). For the remaining cell, a mixture of Golgi
stacks and vesicles was observed.

The selected cells from the other siRNA treatments (Supplementary table 2) were also imaged by FIB-SEM
in order to detect any subtle perturbations of the Golgi morphology at the ultrastructural level. For each
condition tested though, Golgi apparatus was visible and stereological analysis38 of stack composition or
stack volume did not reveal any differences with respect to the control (Supplementary Fig. 5c).

Altogether, this experiment shows that our software can be utilized to screen for cellular and subcellular
phenotypes in a large-scale CLEM experiment. When used in an integrated experiment with different siRNA
treatments, CLEMSite enables automated and fast screening for protein knockdown effects on the fine
ultrastructure of the Golgi apparatus.

Case Study 2: Screening for phenotypes

Specific gene knockdowns lead to perturbed phenotypes of the Golgi apparatus. As shown in the previous
experiment, a striking phenotypic change occurs when cells are treated with siRNAs targeting subunits of the
COP1 complex. Integrated screens with several treatments provide a reduced surface area where cells are
exposed to siRNA. This in turn limits the number of phenotypic cells accessible for each condition. Therefore,
we performed a secondary experiment, where the entire cell population of a culture dish was exposed to
the treatment. We focused on a COPB1 siRNA treatment by liquid phase transfection and evaluated after
48 hours of incubation. Even though a larger number of cells displayed a diffuse phenotype under these
conditions, the observed phenotypic diversity justified the use of CLEM to perform an ultrastructural analysis
on the most perturbed cells.

As described above, a measure of cytoplasm fluorescence intensity levels was used as a score to select the
diffuse phenotype. By defining a threshold on this score, all cells with a high value of cytoplasmic diffusion
were selected and then the diffusion phenotype validated manually for each cell using a customized Jupyter
notebook (see methods). Using adaptive feedback microscopy39, the identified target cells were automatically
re-imaged on the LM, acquiring the image sets necessary for the correlation (reflected light and confocal
fluorescence at 10x magnification, see “Correlation Strategy”). Higher magnification z-stacks of the cell
and Golgi apparatus were also acquired with the 40x objective (zoom factor x4) to document the spatial
distribution of the organelles. The 3D information acquired here was valuable, for example in order to be
registered to the 3D FIB-SEM volumes23 .

In the next step, the set of LM images was processed as described previously, to establish a list of LM
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Figure 5: Automated screen on COPB1 cells in light and electron microscopy 48 hours after liquid
phase transfection knockdown:

(a) Overview of 25 selected cells in a screen for COPB1 knockdown. Light microscopy images (GFP GalNAc-T2
Golgi apparatus and DAPI for the nucleus, top) and the corresponding electron microscopy images (bottom). (b) Top:
Selected control cell (treated with XWNeg9 siRNA) in light microscopy (left), electron microscopy (middle) and a
reconstructed model from the FIB-SEM stack (right). Bottom: Selected COPB1 cell (treated with COPB1 siRNA)
in light microscopy (left), electron microscopy (middle) and a reconstructed model (right). (c) Detailed electron
microscopy images of the Golgi apparatus region in a control cell (left) and four different variations of a disturbed
Golgi apparatus in different selected cells of the COPB1 knockdown. Scale bars: (a) LM - 10 µm, EM - 5 µm, (b) left
to right - 10 µm, 2 µm, 5 µm, (c) 1 µm.
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landmarks and a precise list of target cell locations. The cells were prepared for electron microscopy and
transferred to the FIB-SEM where CLEMSite autonomously acquired image stacks at each target location.
In the example shown in Fig.5, the LM screen resulted in the selection of 90 cells. It is important to keep
this initial number high in order to compensate for the loss of targets when progressing downstream in the
workflow. The first selection removes the cells that are too close to each other (less than 150 µm) or that
are on regions damaged during sample preparation (resin defects, scratches at the surface of the block) (see
methods “Correlation in electron microscopy”). Following this filtering step, a final selection of 35 cells was
acquired as FIB-SEM stacks, 25 of which were of sufficient quality for analyzing the fine morphology of the
Golgi apparatus. Altogether, 25 cell volumes were acquired and analyzed (Fig. 5a) over an automated run
that lasted 8 days, including one stop for manual reheating of the gallium source. Note that these cells were
distributed across a 40 mm2 surface area with a maximum distance of 8.2 mm between cells. Our program
fully automatically and efficiently performs correlations between fluorescence microscopy and FIB-SEM data.
As an example, the rendered segmentation of the FIB-SEM volume perfectly recapitulates the cell morphology
seen in FM (Fig. 5b), demonstrating the accuracy of the correlation. The resolution of the FIB-SEM images
is sufficient to analyze ultrastructural details of numerous cells. In our case (COPB1 knockdown) we could
reveal how the Golgi complex transitions from a stacked organization to an accumulation of vesicles (Fig.5c).

Discussion
Performing CLEM on cultured cells, with cells selected for their phenotype during the LM step, is an efficient
way to achieve ultrastructural analysis on subpopulations. Because this selection is performed prior to the
EM sample preparation, these CLEM workflows are commonly performed one cell at a time. Because of
an unprecedented efficacy to interrogate the cell ultrastructure in 3D, volume SEM imaging17 is gaining
popularity in the life sciences. Volume SEM has been used in CLEM experiments to capture phenotypic cells
in culture20,21,23,40. In most cases, volume SEM and CLEM were combined to capture the 3D ultrastructure
at the highest spatial resolution possible (isotropic for FIB-SEM). Yet, the resulting low imaging throughput,
in combination with individual cell picking, previously rendered volume SEM impractical for ultrastructural
screens. Only in rare cases several cells were analyzed in a single experiment21. Consequently, volume CLEM
is rarely used for screening large populations of cells.

Using the novel workflow relying on the software we developed, it was shown that correlative imaging using
FIB-SEM can acquire multiple targets within a single experiment (up to 30 over one week of acquisition) with
full automation. Detection of local landmarks imprinted in the culture substrate enables automated correlation
and targeting with higher accuracy than previously achieved. The detection algorithm we developed could be
extrapolated to other customized dishes or commercial substrates for cell culture in SEM samples41. Another
advantage of local landmarks for the correlation is that they mitigate the impact of sample surface defects or
optical aberration across long distances. Thanks to the utilization of a FIB-SEM, nearly the whole sample
surface is accessible, enabling the correlation of multiple cells. Especially in the case of highly distributed
and distant rare events42 the respective targets are still within reach. We demonstrate the workflow on
commercial dishes with a usable surface on the order of 40 mm2, but much larger surface areas are possible.
In fact, the limitation is dictated mainly by the dimensions and travel range of the microscope stage. With
such potential, the other main feature of our software is the ability to trigger an autonomous acquisition in
multiple sites in one microscopy session. This fully automated triggering has not previously been achieved on
biological samples. This is made possible through the automation of key steps of the imaging pipeline, i.e. 1)
setting the coincidence point of both ion and electron beams, 2) automated evaluation of the image quality
and, 3) constant tracking of the sample position within the field of view of the microscope. In summary, all
interactions with the microscope that are usually supervised by a human operator during acquisition, be it
several hours or days, are automated.

One essential paradigm shift for increasing the acquisition throughput is the decision to decrease the
resolution in the z-dimension, thus prioritizing the speed of acquisition and ultimately the total number of cells
acquired in one run. For many of the morphological features used, low z resolution has been proven efficient
to score phenotypic variability at the subcellular level2. Here, images in one volume are acquired every 200
nm, a step size much larger than typically used for isotropic voxel acquisition (e.g. 4-8 nm resolutions). The
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resulting gain in speed is significant, leading to only 6 hours necessary to acquire one full cell (including the
creation of the trench). This is in stark contrast to isotropic acquisitions that can take from days to weeks
per adherent cultured cells43,44. Extrapolating acquisition time to a screen of about 30 cells, our workflow
can deliver results in 10 days compared to isovoxel acquisition regimes that would require more than 6
months of machine time. Therefore, CLEMSite is intended to be a screening tool for performing quantitative
assessments of morphological variations. It is efficient to reveal rare phenotypes at the ultrastructural level,
and increases the number of observations. Other acquisition regimes of FIB-SEM can be considered if higher
resolutions are required, at the cost of a (much) lower throughput24,44.

Capitalizing on the software’s ability to screen across the full surface of the dish, we demonstrate that
multiple siRNA treatments can be performed in a single integrated CLEM experiment (by spotting siRNA
onto the culture substrate). Provided that other treatment reagents can be bound to the culture substrate we
anticipate that the same approach can be expanded to screening the effects of various drugs on subcellular
morphologies. While we focus on enhancing existing hardware with targeting and automation abilities in this
work, the next challenge is to efficiently analyze the resulting large amount of data generated. So far, we are
using the powerful tools brought by stereology. We think that following the same principles, especially when
designing the sampling strategies38,45, the manual assessment of subcellular morphologies will be replaced by
applying state of the art computer vision, such as AI based semantic segmentation followed by morphometric
analysis. Once these tools are readily available, CLEMSite will be endowed with even more power to support
molecular cell biologists in morpho-functional studies.
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Methods
Cell culture
HeLa cells stably expressing GalNAc-T2-GFP 31 were maintained in Dulbecco’s Modified Eagle’s Medium
(DMEM Dulbeccos Modifed Eagles Medium, Sigma Aldrich) culture medium containing 10% fetal calf serum
(Gibco Life Technologies), 100 Units/ml penicillin (Gibco Life Technologies) and 100 µg/ml streptomycin
(Gibco Life Technologies) and 2 mM L-Glutamine (Sigma Aldrich), incubated at 37 °C and 5% CO2. Cell
selection was applied using 500 µg/ml Geneticin (G-418 sulfate, Gibco Life Technologies) for every passage
of the cells. Cells were incubated on gridded MatTek dishes (P35G-2-14-C-GRID, MatTek corporation) with
siRNA spots and incubated for 72 h in DMEM medium without phenol red.

siRNAs
siRNAs targeting Golgi apparatus37 morphology in this study were obtained from Ambion/ThermoFisher as
Silencer Select reagents, please see Supplementary Table 2, for siRNA IDs and sequences.

siRNA pre-screen and solid-phase reverse transfection
From an initial genome-wide screen for proteins affecting the secretory pathway37, 143 siRNAs had an effect
on the morphology of the Golgi apparatus. From them, 79 of the strongest phenotypes were selected. These
were used in a pre-screen in order to find the most promising candidates for further CLEM experiments.
96-well plates (glass-bottom) were coated with siRNA transfection mixtures35. Afterwards, HeLa Kyoto
cells stably expressing GalNAc-T2-GFP (3400 cells/well) were seeded using an automated cell seeding device

14/23

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.03.19.436113doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.436113
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Multidrop / ThermoFisher). Cells were imaged on a ScanR microscope (Olympus, UPlanSApo 20x 0.7 Ph2,
DAPI, GFP and transmitted light). The plates contained control siRNAs for which the phenotype is well
characterized on a light microscopy level: siRNA targeting COPB1, AURKB and KIF11 and, non-silencing
negative control siRNA (XWNEG9). The 14 siRNAs showing the most prominent phenotypes were chosen for
further CLEM experiments. Candidate selection was based on morphology of the Golgi apparatus, as visible
from the fluorescent signal given by the GalNAc-T2-GFP. From collected images, morphological features
were computed as explained below (Light Microscopy prescan and CellProfiler feature extraction). Selected
siRNAs were spotted onto a gridded MatTek dish (P35G-2-14-C-GRID) using a contact spotter (ChipWriter
Pro- Bio-Rad Laboratories) resulting in a layout of 4 x 8 spots 40. The mixture either contained oregon-green
488 gelatine (Thermo Fisher Scientific) or Alexa-494 gelatine (labeled with molecular probes protein labeling
kit, Thermo Fisher Scientific) to make the spot boundaries visible. The array contained a total of 6 controls,
as follows: 3 spots of negative control siRNA (XWNEG9), 2 spots of siRNA against AURKB and KIF11
(transfection control) and 1 spot of siRNA against COPB1. The other spots contained siRNA that target
genes showing a Golgi phenotype after RNAi knockdown. 70000 cells per ml were seeded onto the spotted
MatTek dishes and fixed with a light fixation (0.5% glutaraldehyde, 4% formaldehyde in 0.1 M PHEM) after
72 h of siRNA treatment. The observed transfection efficiency for a successful experiment is not uniform and
oscillates between 40 to 70% within the spots.

Liquid phase transfection for COPB1 knockdown
Liquid transfection with the siRNA (S3371) that is associated with the gene COPB1 was used in MatTek
dishes (P35G-2-14-C-GRID) where cells were seeded at 70.000 cells/ml per dish. A standard protocol for
transfection was used combining 3.3 µl of 30 µM siRNA with 1.5 µl of Lipofectamine 2000 (Invitrogen). Cells
were examined by light microscopy 48 hours post-transfection.

Fixation before light microscopy
Cells were fixed with a mixture of 4% formaldehyde and 0.5% glutaraldehyde (EM grade EMS) in 0.1 M
PHEM Buffer (pH 6.9: 240 mM PIPES (Sigma), 100 mM Hepes (Biomol), 8 mM MgCl2 (Merck), 40 mM
EGTA (Sigma)). A Ted Pella BioWave microwave with a temperature control unit (Pelco Biowave microwave
with ColdSpot (Ted Pella Inc.)) was used to accelerate the fixation process to 14 min at 250 W. DAPI (1
µg/ml in 0,1M PHEM,Thermo Scientific) was applied to cells to stain the nucleus for a total of 10 minutes.
To quench glutaraldehyde auto-fluorescence, cells were rinsed with 150 mM glycine (Merck) in PHEM buffer.
Cells were left in the PHEM buffer for imaging.

Light Microscopy
Light microscopy prescan and feature extraction

After the MatTek dish was mounted on the light microscopy (LM) stage (Leica SP5 MSA) the four corner
spots of the siRNA array (Figure 4a) were located based on their green/red fluorescence using a 10x lens.
At each corner, we used a python script to save the stage position from the microscope. After storing
the positions of the 4 corners, the script generated a list of stage positions (2x2 sub-positions within each
siRNA spot) that were loaded as positions onto the Leica Matrix Screener software. For the prescan images
the following specifications were used: 10x objective, 680x680 pixels, zoom 6, FOV 258 µm x 258 µm, 4x
averaging, sequential scan for excitations 405 nm (DAPI-labeled nuclei), 488 nm (GalNAc-T2-GFP), 594 nm
(A594-labeled gelatine). Prior to each acquisition a software autofocus was performed on the DAPI signal. A
CellProfiler image analysis pipeline (http://cellprofiler.org/releases/, version 2.2) was configured to segment
nuclei based on the DAPI signal and then delimit cytoplasmic cell ROIs by radial dilation of each nuclear
ROI. Within each cell ROI the GalNAc-T2-GFP signal was used to compute four intensity-independent
features characterizing different typical alterations of Golgi morphology:

Diffuseness: Diffuseness was designed to characterize the fraction of GalNAc-T2-GFP signal dispersed in the
cytoplasm. Given the image with the GalNAc-T2-GFP signal, with the cytoplasm already segmented
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for each cell the diffuseness of a cell is computed as the sum of all pixel values of the cell cytoplasm
after a morphological grayscale opening, divided by the sum of all the pixel values of the cell cytoplasm.
This value is high when the signal intensity of the Golgi is homogeneously distributed over the cell body.

Fragmentation: This feature was designed to characterize the number of seemingly unconnected Golgi
structures. In some phenotypes, the Golgi apparatus is split into many pieces of variable size, with the
biggest pieces being much smaller than a typical Golgi shape that would be observed in the negative
control. Fragmentation was calculated by counting the number of separate connected components
following a top hat morphological filter and Otsu thresholding46.

Tubularity: Some phenotypes show high tubularity, also described as “enlarged”37, where the Golgi
apparatus had elongated cisternae running along the cytoplasm. Morphological grayscale openings
of the GalNAc-T2-GFP signal are computed using structural elements in the form of a line at angle
different orientations (0-180°). The difference between orientations that yielded maximum and minimum
results of the filter are saved for each pixel. After this, the total value of elongation is computed as the
sum of all values divided by the sum of the GFP intensity value for each cell.

Condensation: In other siRNA treatments, the Golgi was condensed in a smaller area, looking almost
circular at the fluorescent microscope. Condensation was measured by the form factor, which is
calculated using the formula (area∗4π)

perimeter2 , after performing a top hat filter and an Otsu thresholding
of the GFP intensity for each cell cytoplasm if the length of the outline from the thresholded signal
delineates a perfect circle, it will match with the area of the enclosing circumference, providing the
maximum value of 1.

Cell selection using a Jupyter notebook

Images from the previous step were stored in separate folders (one for each position where images were taken),
and the CellProfiler pipeline applied to them. The output values for the features detected were stored in a
comma separated value file. This file can be read by any statistical software to remove possible artefacts or
undesired effects like dividing cells or cells too dim to be properly classified. This step, known as quality
control (QC), is also useful to explore the results by analyzing the values of the controls with respect to
treatments and doing exploratory analysis of our features. The QC and subsequent cell selection based on
features was implemented in python and executed in a Jupyter Notebook47. The main packages used together
with the Jupyter environment are Numpy, Pandas48 and Bokeh49. Pandas was used to read the files from the
CellProfiler pipeline and organize in tables the information associated with each cell (features and its original
associated image). Bokeh and Holoviews enable us to provide interactive plots inside the Jupyter Notebooks
that increase usability and speed up the process of manual cell selection. Once the features calculated in
CellProfiler were loaded, cells expressing too little GalNAc-T2-GFP were rejected based on their integrated
signal. Next, mitotic cells were rejected based on the coefficient of variation (CoV) of the DAPI signal, using
the observation that, due to chromosome condensation, mitotic cells had a higher CoV than interphase cells
within the segmented DAPI region. Finally, the PowerLogLogSlope feature50, was used to remove potentially
out of focus cells. After this, images of positive controls (AURKB, KIF11 and COPB1) were shown for
qualitative assessment, and the experiment was continued if the three positive controls showed visible effects
and the negative control was under standard conditions.

After the QC, which filtered out around 20 to 30% of the cells, the selection of cells for CLEM was
displayed in a series of interactive plots. The plots include controls that allow cells to be selected individually.
If the phenotype can be differentiated from controls by one of the main features (e.g. COPB1 by diffuseness,
ACTR3 by condensation (Supplementary Fig. 5a)), cells can be selected inside a jitter plot based on their
feature values. Some phenotypes could manifest synergy in the feature space, for example those that showed
both fragmentation and tubularity. For this reason, t-SNE51 can also be used to cluster populations naturally.
In the t-SNE plot one can interactively select small clusters (as displayed in the Jupyter notebook).

After the coarse selection, small cropped preview images of each cell in the subpopulations for each gene
are displayed. The user is prompted to individually confirm that the automatically selected cells exhibit
the expected phenotype. The interface supports this through a yes/no button below each cell picture. A
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minimum of 42 cells were picked (3 per treatment in a total of 14 treatments, the transfection controls
AURKB and KIF11 were excluded) for CLEM (Fig. 4, Supplementary Fig. 5a). The stage coordinates of
the selected cells were saved and used to automatically guide the high-resolution imaging on the confocal
microscope. For the liquid phase transfection experiment (Fig. 5), where only one phenotype was studied
(COPB1), a total of 25 cells were selected, using only the property of diffuseness (Fig.5c) and selecting values
higher than the control average.

High-resolution imaging light microscopy

For each of the cells selected by image analysis the following automated scan job pattern was triggered: (a)
cell coordinates were passed to the microscope and the stage was positioned such that the selected cell was
centered on the optical axis, (b) software autofocus on DAPI signal of the target cell using 40x objective,
(c) high-resolution z-stack acquisition (9 slices, 10.1 µm range) with 40x objective, 512x512 pixels, zoom 5,
FOV 77.5 µm x 77.5 µm, channels 405 nm/488 nm, (d) imaging of the spatial context of the cell including
the etched coordinate system with the 10x objective, 1024x1024 pixel, zoom 1.2, FOV 1.29 mm x 1.29
mm, channels 405 nm/488 nm/594 nm fluorescence, transmitted/reflected light. Communication with the
microscope software was implemented in python using a library of functions that communicate with the
Leica Matrix Screener software39. Two functions were used, one to move to the specific coordinate calculated
in the previous step and another executed the acquisition of the described sequence of images, previously
programmed using Leica LAS AF software (version 1.0.4, 2013).

Correlation in Light microscopy
CLEMSite is a set of software tools developed in python and C# to support automated correlative light and
electron microscopy (CLEM) (Fig. 1). The first of these tools, the CLEMSite-LM, was used to process the
light microscopy images and extract landmarks from them (Fig. 2). The user provides a folder containing at
least one image with two channels, one fluorescent with the GFP tagged organelle of interest and one showing
the patterned glass bottom grid. Both images were acquired simultaneously at low magnification with a FOV
that included a full square and patterned letter inside, usually 600 µm2. The grid pattern was acquired using
reflected light (RL), modality of the confocal microscope. Images had a pixel size of 1.7 µm/pixel with a
dimension of 1024x1024 pixels.

A script was created to rename the folder images to a more readable format and then, the set of folders
was given to the application CLEMSite-LM. This application reads the RL image and applies the algorithm
LOD (Line Orientation Detector) (Supplementary Fig. 1). LOD applied a series of preprocessing steps in
which gradients are selected positively if they follow a line. Pixel orientations were weighted with neighboring
pixels by convolution with line morphological operators for each possible angle orientation. A projection of
the image onto one axis from 0 to 180 degrees, at a resolution of 1 degree, generated a 2D map where the
main trend of a line inside the image could be detected by finding maxima using non maxima suppression.
Once the most prominent lines were found, iterative refinement steps were applied to logically discard the
lines which are not likely to belong to the grid, e.g. sets of lines not crossing orthogonally or not keeping
approximately the expected measures given by the manufacturer of the glass bottom dishes.

Points resulting from calculating line intersections on the grid were associated with their corresponding
alphanumeric identifier and used as landmarks. The LOD parameters are dependent only on resolution,
where the number of neighbors was set to (k=12) and stroke size (stroke = 15) for 1024 x 1024 images. The
parameters used for LM were between 0.06 to 0.075 for the Canny threshold, and a Laplacian filter was
applied before in the presence of regular interference patterns or local contrast enhancement (CLAHE) when
the brightness and contrast was unbalanced. The other provided parameters are the dimensions of the grid.
In our case, we used MatTek grids, where the lattice is formed by a sequence of two lines spaced 40 µm
followed by another space of 580 µm. We used as a landmark the center position of the small square formed
by the intersection between two sets of perpendicular lines spaced 40 µm.

Each LM position in a map also requires a unique identifier. For landmarks, we conveniently named them
after the two-character combination inside the nearest grid square (e.g. 4N). By convention, given a grid
square with the inner pattern straightly oriented, the top left corner landmark is assigned (Fig. 2b). To
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automatically identify the characters on each grid square we trained a U-net using a mixture of real (20%, 1115
images) and synthetic (80%) binary images (128x128) of the identifier patterns combined with augmentation.
The CNN architecture, implemented with Tensorflow, used 6 convolutions layers in a sequential manner
followed by two dense layers. The loss function used was categorical cross-entropy that converged after 70
epochs. The prediction of the network was additionally validated using previously detected neighbors and the
expected position of the landmark (e.g. 1A can be a neighbor of 1B, but not of 8B).

Detected landmarks are saved by the application in image coordinates. Since the stage coordinates of the
optical microscope (saved in the metadata of the image) refer to the center of the image, the translation from
pixel coordinates to stage coordinate can be obtained by simple addition after converting pixels to distances
using the known image pixel size. Similarly, for each targeted cell, the difference in micrometers from the
center of the image to the centroid of the object of interest was provided and converted to its respective stage
coordinates.

Electron microscopy
Electron microscopy sample processing

The entire EM processing was done using a Ted Pella Biowave Pro microwave. After samples were lightly
fixed and imaged in the confocal microscope, they were heavily fixed with 2.5% glutaraldehyde (EMS), 4%
formaldehyde (EMS) and 0.05% malachite green (Sigma) in 0.1 M PHEM (pH 6.9: 240 mM PIPES (Sigma),
100 mM Hepes (Biomol), 8 mM MgCl2 (Merck), 40 mM EGTA (Sigma)). The samples were then postfixed
with 0.8% K3Fe(CN)6 (Merck), 1% OsO4 (Serva) in 0.1 M PHEM. The samples were stained successively
with 1% tannic acid (EMS) and 1% uranyl acetate (Serva) to enhance the contrast. Samples were dehydrated
in a graded ethanol series (30%, 50%, 75%, 90%, 2x 100%) and infiltrated in a graded series of Durcupan
(25%, 50%, 75%, 90%, 2x 100%, Sigma) and polymerized in the oven at 60°C for 96 h.

Correlation in Electron Microscopy

The central disk of the MatTek dish was broken out using heat shock. The resin disk, containing the cells
along with the imprint of the coordinate system on the surface, was mounted on SEM stubs (Agar Scientific)
with a conductive carbon sticker (Plano). To reduce the amount of charging the samples were surrounded by
silver paint (Ted Pella Inc.) and coated with gold for 180 seconds at 30 mA in a sputter coater (Quorum,
Q150RS). The samples were introduced into the Crossbeam 540 (Zeiss) and positioned at 54 °. CLEMSite
is interfacing ZEISS Atlas 5 version 5.2.0.150 from Fibics Incorporated to navigate to the correct positions
and to prepare the ROI for imaging. When scanning the surface of the sample with a scanning electron
microscope (SEM), after detaching the glass from the resin, the imprinted grid pattern from the glass bottom
dish and letter combination could be clearly observed.

To optimize the visualization of the gridded pattern, samples are rotated using the FIB-SEM stage to
orient the grid at a 45°angle with respect to the SEM image (Fig. 2c). This ensures that both perpendicular
orientations of the grid are efficiently detected when recording the secondary electrons which are best suited
to visualize topological information. Cell contours could be visualized at higher accelerating voltages (5-10
kV) allowing signals to be detected from deeper regions inside the sample. However, cell visibility was sample
dependent and individual cells could only be differentiated one from another at lower cell confluency.

Once all LM images were processed and the landmarks and targets stored in their respective files, we
proceeded with the FIB-SEM acquisition. Our software connected to the microscope control in a client-server
architecture, where the client streamed information and commands which were parsed, validated and then
executed by a server. The server software relied on a dynamic library in .NET provided by Fibics Incorporated
to control the microscope via ZEISS Atlas 5. When the microscope was ready, a first image of the surface
was acquired (1.5kV, 700 pA) using the secondary electron detector (SESI) and sent to our client application.
The reliability of the computational process was increased by having the user move to a grid square and
indicate the combination of visible characters in that square. After the first image was computed, landmark
references were calculated and mapped to an ideal coordinate system layout based on manufacturer measures
(MatTek dishes: 560 µm x 560 µm, line width of 40 µm for SEM), and initializing a linear system to predict
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further positions within the grid. Afterwards the stage was moved to the approximate position of each grid
square close to the regions of interest to be acquired.

When applied to SEM images, the LOD algorithm (used previously in LM) had a high failure rate (from
0.05% to 5%). In SEM images, grid lines are very often blurry or erased. Neural networks have proved to be
very resilient to noise in classification and object detection52,53,54. Based on those successes, we trained a
U-Net network26 to provide the probability mask where edges of a crossing could be found (Fig. 2c). Enough
training data to optimize the network was provided with data from the LOD and used with the errors curated
manually. Manual segmentation was performed using the corner shadows in around 100 difficult cases, when
LOD failed. We extracted a total of 600 images and augmented them to 3000 images by variations in scaling,
rotation, translation and intensity values. As preprocessing steps after augmentation, CLAHE (32x32 filter
size), gaussian blur (sigma 1, 5x5 filter size) and normalization were applied. Processed images were then used
to train a convolutional autoencoder based on U-Net, using binary cross-entropy as loss function, together
with an Adam optimizer at a fixed learning rate of 1e-4. The network computed a probability map of the
regions in the image that contained an edge belonging to a grid line. The last part of the previous LOD
algorithm was adapted to find the peaks based on the maximum probability of lines and provided results in
the form of image coordinates. Using the detection system based on CNNs the rate of failure in detection
was reduced, with an average RMSE of detection originally of 12.66 ± 18.8 um to one of 6.23 ± 6 um respect
ground truth (with n=149), a considerable improvement. The implementation of all the networks was carried
out with Keras 2.0.8 and Tensorflow 1.3.

The described detection step was done for 30% of the grid corners, with a minimum of 20 grid corners
required. The scanning of the surface sample (duration between 30-40 minutes) provided enough positions to
generate a global registration with a targeting-accuracy of 5 to 20 µm throughout a surface area of 1 cm2.
Since not all positions acquired in LM could be present in the current resin block (in several occasions the
resin block broke into two different pieces), another CNN was trained to detect positions very close to the
border or outside the sample, with a binary output (image valid or not). After the scan was finished, positions
of targeted cells were predicted using a global affine transformation, which uses all available matched points
between LM and SEM. All the information from mapping was stored in memory using a pandas dataframe
for further usage and queries. If cells were closer than 150 µm one of them was removed, because the trench
and acquisition of the first cell could interfere with the acquisition of the adjacent second cell.

The generated map between LM and SEM was used prior to each acquisition of a targeted position. First,
it was used to move to the target cell and calculate the coincidence point there. After this, any landmark in
a radius of 1200 µm close to the region of interest was imaged (usually resulting in four to eight neighboring
landmarks) and stage coordinates were obtained again. Subsequently, for each predicted position an accuracy
of 2 to 5 µm was achieved. This was precise enough to hit the organelle of interest.

In the current workflow, analyzing the images from light microscopy to extract the positions of the cells
and the glass bottom grid took approximately 2 hours. This can be done in any computer at any time
between the LM and EM session. In this step extra verification steps were added that help the researcher
to validate the current cells selected in the light microscopy images. The corresponding map of the grid in
the FIB-SEM in the resin block is acquired in approximately 3 hours. The initial setup for the first volume
acquisition takes around 30 minutes, with minimal user input (brightness and contrast of detectors). After
the first cell acquisition starts successfully, the microscope can run autonomously until the FIB-Gallium
source has reached its limits and needs to be reheated.

Automation of the Focused Ion Beam - Scanning Electron Microscopy acquisition

To align the electron-beam and the ion-beam, we used an automatic coincidence point procedure to match
both (Supplementary Fig. 3a). First a square was burned onto the surface of the sample using the FIB. The
geometrical relation between the two beams was used to move the stage to the coincidence point resulting
into both beams hitting the same spot on the sample surface (Fig.3a). After this, a trench was milled in
front of the ROI at a FIB current of 15 nA and a 20 µm depth. Polishing was performed at 3 nA. In this
way a cross-section through the ROI was exposed and the polygonal shape of the trench was detected (Fig.
3b and Supplementary Fig. 3b). The field of view was positioned on the cross-section and points with
high variance were obtained to tune the automatic focus/stigmatism functions (Fig.3c). In the last step,
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the acquisition started with a crisp focus (Supplementary Fig. 3c) and the system acquired section after
section (slice and view). For 3D data acquisition the FIB was operated at 1.5 nA with the SEM and the
FIB operating simultaneously55. The images were acquired in analytical mode (1.5 kV, 700 pA) using the
energy-selective back-scattered electron (EsB) detector at 1100 V grid voltage. The dwell time was set to 10
µs/pixel, with a line average of 1 and a 8 nm pixel size. The FOV was set to 25 µm x 15 µm (XY frontface)
and images were collected for a ROI of 25 µm x 30 µm (XY, plane parallel to the surface) at 200 nm intervals
for COP phenotypes, resulting in 8x8x200 nm voxels (XYZ)).

During the acquisition, an additional process was launched to monitor the status of the imaging (Supple-
mentary Fig. 3b). This monitoring was in charge of automatically placing the region where the autofocus and
autostigmatism (AFAS) routines had to be executed. The AFAS routines happened at periodic 45 minutes
intervals and were executed in a region of the cell where high contrast could be found. This was achieved
using a Harris corner detector29 combined with clustering: the clustering with a higher number of corners is
the candidate point for AFAS.

In addition, the imaged x-y region of interest was tracked in the y direction to prevent undesirable drifting.
Cross-correlation was employed to find the relative difference between consecutive sections. The upper layer
of the resin covered with gold was detected using changes in entropy and a drift >25% of the total y size,
was corrected at 0.5 µm increments, maintaining the region of interest in the desired field of view. After
the acquisition of one position was completed, the stage of the FIB-SEM was moved to the next ROI, and
started a new acquisition.

Stereology
All stereological measurements were performed using IMOD56. From every siRNA treatment, a minimum of
two cells typical for the individual treatment and very different from the negative control were selected by the
image analysis pipeline. The FIB-SEM images were acquired throughout the cell of interest with a spacing of
200 nm and a random starting point producing 10-20 evenly spaced sections per cell. Golgi cisternae were
defined as membranous structures devoid of ribosomes with a threefold length to breadth ratio. Golgi stack
profiles were defined as any assembly of cisternal membranes and the total area enclosed by them57. The
volume of Golgi stack, (V (Golgi stack); Supplementary Fig. 4c) was estimated using a point counting-based
Cavalieri estimator by applying a regular point lattice that yielded 100 to 200 points hits over Golgi stack
profiles per typical section stack57.

Our FIB-SEM sections were prepared orthogonal to monolayer substratum in a haphazard (random)
orientation relative to the analyzed cell, and therefore comprise vertical sections on which the surface density
of the Golgi cisternae in stack volume can be estimated by counting intersections (I) arrays of cycloid line
probes38. As cisternal membrane morphology was often indistinct, Golgi cisternae profiles were defined as a
single line bisecting the cisternal membrane profile. Mean number of cisterna was estimated using the ratio
of (intersections with Golgi cisterna; I(cist)) to (intersections with the Golgi stack profile face; I(stack face)).
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