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Abstract 
The recent advent of high-throughput single-cell molecular profiling is revolutionizing biology and 
medicine by unveiling the diversity of cell types and states contributing to development and 
disease. The identification and characterization of cellular heterogeneity is typically achieved 
through unsupervised clustering, which crucially relies on a similarity metric.  
 
We here propose the use of Optimal Transport (OT) as a cell-cell similarity metric for single-cell 
omics data. OT defines distances to compare, in a geometrically faithful way, high-dimensional 
data represented as probability distributions. It is thus expected to better capture complex 
relationships between features and produce a performance improvement over state-of-the-art 
metrics. To speed up computations and cope with the high-dimensionality of single-cell data, we 
consider the entropic regularization of the classical OT distance. We then extensively benchmark 
OT against state-of-the-art metrics over thirteen independent datasets, including simulated, 
scRNA-seq, scATAC-seq and single-cell DNA methylation data. First, we test the ability of the 
metrics to detect the similarity between cells belonging to the same groups (e.g. cell types, cell 
lines of origin). Then, we apply unsupervised clustering and test the quality of the resulting 
clusters. 
 
In our in-depth evaluation, OT is found to improve cell-cell similarity inference and cell clustering 
in all simulated and real scRNA-seq data, while its performances are comparable with Pearson 
correlation in scATAC-seq and single-cell DNA methylation data. All our analyses are 
reproducible through the OT-scOmics Jupyter notebook available at 
https://github.com/ComputationalSystemsBiology/OT-scOmics. 

Introduction 
Allowing the measurement of gene expression in thousands of cells in a single experiment, single-
cell RNA sequencing (scRNA-seq) has unveiled the diversity of the cells constituting human 
tissues [1]. The possibility to assess cellular heterogeneity at a previously inaccessible resolution 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.19.436159doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.436159
http://creativecommons.org/licenses/by-nc/4.0/


has profoundly impacted our understanding of development, of the immune system functioning, 
and of many diseases [2–4]. While scRNA-seq is now mature, the single-cell technological 
development has shifted to the measurement of other omics, e.g. DNA methylation, proteome, 
and chromatin accessibility [5,6].   
 
A common goal in single-cell data analysis is the identification of the cell types and cell states 
present in a sample [7]. This is typically achieved in a data-driven fashion through unsupervised 
clustering [8,9]. Cells with similar transcriptional profiles are assembled into clusters, which are 
then annotated based on markers [8]. As a consequence, the quality of such clustering plays a 
critical role in the derived biological discovery. While numerous clustering algorithms have been 
proposed, they all rely on a similarity metric for categorizing individual cells. Popular metrics 
include the Euclidean and Manhattan distances, Cosine similarity and Pearson correlation [10–
13]. 
 
Optimal Transport (OT) emerged in the last decade as a promising mathematical toolkit to analyze 
and compare high dimensional data using different variants of the Wasserstein distance [14,15]. 
Recently, applications of OT to biology have been proposed [16–20]. Some works use OT to 
compare cells in the context of trajectory inference [16] and alignment of unpaired (i.e. 
independently profiled) scRNA-seq and scATAC-seq data [17,18]. Others apply OT to compare 
genes in scRNA-seq data and perform supervised classification, such as malignant vs. normal 
samples [19]. Finally, we recently developed a fixed point method which combines the two 
approaches and performs joint optimal transport over both genes and cells [20].  
 
Here, we propose the use of OT as a cell-cell similarity metric for single-cell data. Classical OT, 
as applied in Bellazzi et al. [19], requires solving a costly linear optimization problem. We here 
use OT with entropic regularization [21], allowing to break the curse of dimensionality and 
efficiently compute the OT distance on a Graphics Processing Unit (GPU) for large numbers of 
cells [22]. We further extensively benchmark OT against state-of-the-art metrics. We apply the 
different metrics to single-cell data with known groups (e.g. cell types, cell lines of origin) and we 
evaluate their ability to detect the similarity between cells belonging to the same group. We then 
apply different unsupervised clustering algorithms to the computed distance matrices and test the 
quality of the resulting clusters. Of note, all the tests are performed in three conditions: (i) 
simulated scRNA-seq data, where the effect of the number of cells and of the size and overlap of 
the clusters can be tested in-depth; (ii) real scRNA-seq data, profiled from cell lines and colorectal 
tissue; and (iii) other omics data, including scATAC-seq and single-cell DNA methylation. 
 
All the performed analyses are reproducible using the OT-scOmics Jupyter notebook provided on 
GitHub (https://github.com/ComputationalSystemsBiology/OT-scOmics). Users can also employ 
OT-scOmics to test the various metrics on new single-cell data and to evaluate the performances 
of other/new metrics.  
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Methods 

scRNA-seq data simulation  
scRNA-seq data with 5,000 genes and three underlying clusters have been simulated using the 
R Bioconductor package Splatter [23]. Splatter simulates scRNA-seq data using the Splat model, 
built around a gamma-Poisson distribution. Different parameters can be tuned in the Splatter 
simulation. Details on the parameters used to run Splatter are available in Supplementary Text.  
 
Using simulated scRNA-seq data, we can assess in-depth the influence of different factors on the 
quality of the inferred cell-cell similarities. We simulated five scRNA-seq datasets (Table 1) 
obtained by varying three main factors:  
i) The number of cells constituting the scRNA-seq dataset (batchCells parameter in Splatter). 
Datasets with 500, 1,000 and 10,000 cells are simulated. Of note, we thereby also test whether 
the different metrics can be computed for large numbers of cells.  
ii) The overlap of the clusters (de.prob parameter in Splatter). Overlapping and well-separated 
clusters are simulated varying de.prob between 0.4 and 0.7, respectively.  
iii) The equal or unbalanced size of the clusters (group.prob parameter in Splatter). We set the 
probabilities of the clusters either equal (⅓, ⅓, ⅓) or unbalanced (0.75, 0.25, 0.05). The 
unbalanced case reflects the more realistic scenario of a tissue composed of a mixture of 
prevalent and rare cell types or states.    

Single-cell omics data acquisition and preprocessing 
Several publicly available single-cell omics datasets have been employed (Table 1). Only public 
datasets providing ground-truth labels for all the profiled cells were considered. The labels are 
intended to associate each cell to a specific group (e.g. cell type, cell line of origin). Of note, labels 
are only used to evaluate the quality of our results, as all the performed benchmarking is 
unsupervised. 
 
For scRNA-seq data four datasets have been considered. First, the scRNA-seq data (called “Liu 
scRNA”) present in the scCAT-seq joint profiling of Liu et al. [24] containing 206 cells profiled from 
three cancer cell lines (HCT116, HeLa-S3, K562). Next, a bigger dataset composed of 561 cells 
profiled from seven cell lines (A549, GM12878, H1437, HCT116, IMR90, H1, K562) from Li et al. 
[25] (called “Li cell lines”). Finally, two colorectal cancer (CRC) datasets, corresponding to primary 
CRC tumors and matched normal mucosa have been also taken into account. The first (called “Li 
Tumor”) contains 364 cells clustered into seven cell types: B cells, endothelial cells, epithelial 
cells, fibroblasts, macrophages, mast cells and T cells. The second (called “Li NM”) is composed 
of 266 cells clustered according to the same seven cell types. 
 
Other single-cell omics are also included in our analysis: methylation and scATAC-seq data. For 
scATAC-seq data we considered: i) the dataset included into the scCAT-seq joint profiling of Liu 
et al. [24] (called “Liu scATACseq”) composed of 206 cells extracted from three cancer cell lines 
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(HCT116, HeLa-S3, K562); ii) the leukemia scATAC-seq data from Corces et al. [26] (called 
“Leukemia scATAC”), containing 391 cells and composed of monocytes and lymphoid-primed 
multipotent progenitors (LMPP) isolated from a healthy human donor, together with leukemia stem 
cells (SU070_LSC, SU353_LSC) and blast cells (SU070_Leuk, SU353_Blast), isolated from two 
patients with acute myeloid leukemia. To represent single-cell DNA methylation we considered 
two neuronal snmC-seq datasets from Luo et al. [27]. The first (called “scMethylation mouse”) is 
composed of 3,377 cells extracted from mouse frontal cortical neurons clustered into 16 neuronal 
subtypes. The second (called “scMethylation human”) is composed of 2,740 cells, extracted from 
human frontal cortical neurons, and clustered into 21 neuronal subtypes. 
 
A summary of the considered datasets is available in Table 1. The downloaded datasets had 
already undergone standard preliminary preprocessing and, following standard practices [7], we 
log-transformed the scRNA-seq counts and selected the 10,000 most varying features. 

Baseline metrics 
We consider a single-cell omics dataset as a matrix 𝑋, whose columns correspond to cells, and 
whose rows correspond to features (e.g. peaks, genes). Given two cells indexed by 𝑙 and 𝑚 as 
columns of 𝑋, different metrics are classically used to infer the similarity between their omic 
profiles 𝑥 = 𝑋[	, 𝑙] = (𝑥!. . . 𝑥") and 𝑦 = 𝑋[	,𝑚] = (𝑦!. . . 𝑦"). We here focus on four state-of-the-art 
metrics, called in the following baseline metrics, and defined as: 
i) Euclidean distance (L2): ||𝑥	 − 	𝑦||	$: = (∑ (𝑥% − 𝑦%)$"

%&! )!/$ 
ii) Manhattan distance (L1): ||𝑥 − 𝑦||!: = ∑ |𝑥% − 𝑦%|"

%&!  
iii) Cosine similarity: 𝑐𝑜𝑠(𝑥, 𝑦) ∶= 	 (⋅*

||(||×||*||
,  where || ⋅ || is the euclidean norm 

iv) Pearson correlation: 𝑐𝑜𝑟𝑟(𝑥, 𝑦) ∶= 	𝑐𝑜𝑠(𝑥 − �̄�, 𝑦 − �̄�), where �̄� and �̄� are the mean of the values 
of𝑥and 𝑦, respectively. 
 
For cosine similarity and Pearson correlation we used the distance-like formulation 1	 − 	𝑐𝑜𝑠(𝑥, 𝑦) 
and 1 − 𝑐𝑜𝑟𝑟(𝑥, 𝑦). Of note, these are not strictly speaking distances, in particular they do not 
respect the triangular inequality. The baseline metrics have been computed using functions from 
the Python package SciPy (scipy.spatial.distance) : euclidean, cityblock, cosine, 
correlation. 
 
Baseline metrics have been computed on the input data, after the data preprocessing detailed in 
the section above. Alternative optional normalizations of the data have been also considered 
(Figure 1), but they resulted to be less performant (Supplementary Table 2). 

Optimal Transport distance 
Optimal Transport (OT), as defined by [28,29], aims at finding a coupling between two probability 
distributions that minimizes transportation cost. The classical OT distance, also known as the 
Wasserstein distance, between two distributions 𝑎 = 	 (𝑎!. . . 	𝑎") and 𝑏 = 	 (𝑏!. . . 	𝑏") is defined as 
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the minimal cost of transportation to morph 𝑎 into 𝑏. Given 𝑎 and 𝑏 discrete histograms, their OT 
distance is thus defined as: 
 
𝑊-(𝑎, 𝑏) 	= 	 𝑚𝑖𝑛

.∈0!"×$	
< 𝑃, 𝐶 >	= 	 𝑚𝑖𝑛

.∈0!"×$	
∑ 𝑃%1𝐶%1%,1 ,            (1) 

with 𝑃 ∈ 𝑅3"×4such that ∑ 𝑃%11 = 𝑎% and ∑ 𝑃%1% = 𝑏1 
 
where 𝑃is the coupling. According to 𝑃, the mass in the histogram 𝑎 is thus moved from one bin 
to another one in order to transform 𝑎 into 𝑏. 𝐶is called ground cost and it encodes the penalty for 
moving a unit of mass from one bin to another one. Hence 𝐶 should be chosen in such a way that 
similar bins 𝑖 and 𝑗 have a low cost 𝐶%1. 
 
We propose the use of the OT distance to capture cell-cell similarity in different single-cell omics data. For 
simplicity, let us consider a scRNA-seq dataset (𝑋); the same concepts apply to other single-cell 
omics. Given a pair of cells 𝑙 and 𝑚, as done for baseline metrics, we consider their expression 
profiles, corresponding to the vectors 𝑥 = 𝑋[	, 𝑙] = (𝑥!. . . 𝑥") and 𝑦 = 𝑋[	,𝑚] = (𝑦!. . . 𝑦"). Given 
that Eq (1) is defined only for histograms, we transform 𝑥and 𝑦 into two histograms 𝑎 = (

|(|%
 and 

𝑏 = *
|*|%

. In the following, we refer to such a transformation as per-cell normalization. After 

transformation, we can apply Eq (1) and compute the OT distance 𝑊-(𝑎, 𝑏), between 𝑎 and 𝑏	, 
which corresponds to evaluating the minimal cost required to transform the gene expression 
histogram (𝑎) of the first cell into the gene expression histogram (𝑏) of the second cell. Based on 
Eq. (1), OT computes the distance between a pair of cells (𝑎, 𝑏) by taking into account the joint 
gene expression activity present in the two cells. For this reason, it is expected to better capture 
the similarity between a pair of cells having activated similar transcriptional programs. 
 
As discussed above, the OT distance is parametrized by the ground cost 𝐶. The choice of the 
ground cost plays a central role in the final performances of OT and, in our case, there is no 
straightforward choice. Hence, for all couples of genes 𝑖 and 𝑗 in the single-cell matrix 𝑋, we 
define: 
 
𝐶%1 = 𝑑(𝑋[𝑖, ], 𝑋[𝑗, ]),                 (2) 
 
where 𝑑 corresponds to a metric among Euclidean and Manhattan distance, Cosine similarity and 
Pearson correlation. Intuitively, 𝐶%1 thus reflects the cost of moving a unit of gene expression from 
gene 𝑖 to gene 𝑗.  
 
Given that the number of features (e.g. genes, peaks) of single-cell data is in the order of tens of 
thousands, the classical Optimal Transport problem would be computationally intractable. Indeed, 
solving Eq. (1) relies on costly linear programming methods [14]. Hence, we considered the 
entropic regularization of the classical OT distance, also called Sinkhorn divergence [21,30]. The 
entropic-regularized OT distance between two distributions 𝑎 and 𝑏 is defined as:  
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𝑊-,5(𝑎, 𝑏): = 	 𝑚𝑖𝑛
.∈0	!"×$

	< 𝐶, 𝑃 > 	+	𝜀 ∑ 𝑃%,1(𝑙𝑜𝑔 𝑃%,1 	− 	1)%,1 	,          (3) 

with 𝑃 ∈ 𝑅3"×4 such that ∑ 𝑃%11 = 𝑎% and ∑ 𝑃%1% = 𝑏1 
 
The first term of Eq. (3) corresponds exactly to Eq. (1) with 𝑃 coupling and 𝐶 ground cost. The 
additional term corresponds to the entropic regularization. Therefore, if the regularization 
parameter 𝜀 is set to zero, Eq (3) corresponds exactly to Eq (1) and classical OT is obtained. 
Increasing values of 𝜀 correspond to a more diffused coupling and a faster execution of the 
algorithm. The parameter 𝜀 thus plays a central role in the final performances of Sinkhorn 
divergence and should be carefully chosen. The advantage of the formulation at Eq (3) is that 
𝑊-,5can be efficiently computed on a GPU, thereby coping with the high dimensionality of single-
cell data. Not only is entropy pivotal to scale the algorithm, but it is also important to break the 
curse of dimensionality which makes classical OT distance extremely hard to estimate from high-
dimensional single-cell data. This phenomenon, analyzed theoretically in [30] is supported by our 
analysis (Supplementary Table 1). 
 
An issue with Eq (3) for 𝜀 > 0is that, given two cells having the same expression distribution (𝑎 =
𝑏), 𝑊-,5(𝑎, 𝑏) > 0. We thus used the debiased Sinkhorn divergence [31] in order to ensure a 
distance equal to zero for identical cells. 
 
𝑊L -,5: = 𝑊-,5(𝑎, 𝑏) 	−		 (𝑊-,5(𝑎, 𝑎) 	+	𝑊-,5(𝑏, 𝑏))/2           (4) 
 
For sake of simplicity in the rest of the paper, we will use the term OT distance to refer to the 
debiased Sinkhorn divergence. 
 
As discussed above, the OT distance depends on two main parameters: the regularization 
parameter 𝜀and the ground cost 𝐶. For every dataset, we performed a grid search varying 𝜀 
among 0.1, 0.05, 0.01, and the ground cost among Euclidean, Manhattan, Cosine and Pearson 
correlation. As shown in Supplementary Table 1, for all datasets, the best performances were 
obtained for the regularization parameter 𝜀 set at 0.1. In contrast, the best performing ground cost 
𝐶varied depending on the analyzed data. In scRNA-seq simulated data and in single-cell DNA 
methylation data, Pearson correlation achieved the best performances, while on scRNA-seq and 
scATAC-seq data, cosine similarity performed the best. The performances presented in the 
Results section thus correspond to this choice of 𝜖and 𝐶. The computation of the OT distance has 
been implemented using the Python package PyTorch and run on a GPU. 

Performance evaluation 
For all single-cell datasets, simulated and real, ground-truth labels are available. For the real 
single-cell omics, the ground-truth labels correspond to cell types, defined through clustering in 
the original publication, or to the cell lines from which the cells have been extracted.  
 
We first use the C-index and Silhouette score to evaluate to which extent the various metrics 
detect the similarity between cells associated with the same label, as well as the difference 
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between cells with different labels (Figure 1). The C-index [32] is an internal clustering evaluation 
index. Given a cell-to-cell distance matrix, the C-index measures if the closest pairwise distances 
correspond to cells belonging to the same cluster. It is defined as: 
 

𝐶 =
𝑆 − 𝑆4%"

𝑆46( − 𝑆4%"
, 

 
where 𝑛 is the number of intra-cluster pairwise distances, 𝑆4%"is the sum of the 𝑛 smallest 
distances if all pairs of cells are considered, 𝑆46( is the sum of the 𝑛 largest distances out of all 
pairs and 𝑆 is the sum of distances over all pairs of cells form the same cluster.  
Of note, the C-index is always in the interval [0, 1] and it should be minimum in the case of a 
perfect clustering. To make the results easily readable, we consider 1 − 𝐶, so that the best 
performances are obtained by maximizing the score. Concerning the implementation, we used 
our own Python implementation of the C-index.  
 
As a complementary evaluation, we further considered the Silhouette score, defined as:  
 

𝑆(𝑥) =
𝐸(𝑥) − 𝑒(𝑥)

𝑚𝑎𝑥(𝐸(𝑥), 𝑒(𝑥))
, 

 
where 𝐸(𝑥) is the average distance between the cell 𝑥 and the other cells of the same cluster and 
𝑒(𝑥) is the average distance between 𝑥 and cells in the closest different cluster. The distance 
used to compute 𝐸(𝑥) and 𝑒(𝑥) varies among the benchmarked metrics (OT, Euclidean, 
Manhattan, Cosine similarity and Pearson correlation). The global Silhouette score is then 
obtained by averaging 𝑆(𝑥)over all cells. We used the Silhouette score implementation of the 
Python package scikit-learn (sklearn) [33]. 
 
To further test the quality of the inferred cell-to-cell distance matrices, we used them as inputs for 
a clustering algorithm and assessed the agreement between the inferred clusters and the ground-
truth labels (Figure 1). We only considered clustering algorithms for which applications to single-
cell data have been already proposed and directly applicable to the cell-to-cell distance matrices, 
without performing any post-processing [8]. We thus selected hierarchical clustering, with 
complete linkage, and spectral clustering [34,35], both implemented in scikit-learn. Regarding 
hierarchical clustering, we chose complete linkage in place of average linkage, used in other 
single-cell clustering works [11], because this approach provided better performances for both 
baseline and OT distances (Supplementary Table 3). Concerning spectral clustering, since it 
requires in input an affinity matrix, we converted the inferred distance matrices 𝐷 to affinity 
matrices 𝐴 = 1 − 𝐷, with 𝐷 normalized such that the maximum value is set to 1, and run the 
clustering algorithm with default parameters. Both clustering algorithms require the specification 
of the number of clusters in which the cells should be partitioned. We chose to set the number of 
clusters in an unsupervised way, by optimizing the Silhouette score [36]. For each distance matrix, 
we thus varied the number of clusters (𝑘) in the range 3-25, and chose the 𝑘 maximising the 
Silhouette score of the clustering. Thereby, we can test how frequently the number of ground-
truth labels present in the data are captured by the different metrics. Of note, the overall behaviour 
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observed when the number of clusters is optimized is in good agreement with the results obtained 
by fixing the number of clusters to the number of ground-truth labels (Supplementary Table 3). To 
evaluate the quality of the obtained clusters, we used Adjusted Rand Index (ARI) and Normalized 
Mutual Information (NMI) (Figure 1). 
 
Given 𝑈, clustering inferred from a distance matrix and 𝑉,  ground-truth labels, the ARI is defined 
as: 
 

𝐴𝑅𝐼(𝑈, 𝑉) =
𝑅𝐼(𝑈, 𝑉) − 𝐸(𝑅𝐼)
𝑚𝑎𝑥(𝑅𝐼) − 𝐸(𝑅𝐼)

, 

 
where 𝑅𝐼(𝑈, 𝑉) is the Rand index, i.e. the fraction of pairs of samples that are either in the same 
group or in different groups in both 𝑈 and 𝑉, 𝐸(𝑅𝐼)is the expected Rand index between 𝑈 and a 
random 𝑉, and 𝑚𝑎𝑥(𝑅𝐼) is the largest possible Rand index between 𝑈 and any 𝑉. 
 
To consider a complementary score, we also used the NMI, defined as: 
 

𝑁𝑀𝐼(𝑈, 𝑉) =
2	𝑀𝐼(𝑈, 𝑉)
𝐻(𝑈) + 𝐻(𝑉)

, 

 
where 𝑀𝐼(𝑈, 𝑉)is the mutual information between 𝑈 and 𝑉,i.e. 𝑀𝐼(𝑈, 𝑉) = 𝐻(𝑈) − 𝐻(𝑈|𝑉) 
and 𝐻(. )	denotes entropy. To compute ARI and NMI, we used the corresponding scikit-learn 
implementations. 

 
Results 
Debiased entropic-regularized Optimal Transport (OT) distance (see Methods), called in the 
following OT distance, is here proposed as a metric to infer cell-cell similarity across different 
single-cell omics data. The performances of the OT distance are then benchmarked with respect 
to state-of-the-art metrics, called in the following baseline metrics, namely the Euclidean and 
Manhattan distances, Cosine similarity and Pearson correlation. 
 
The benchmark is performed in three main contexts (Table 1). First, simulated scRNA-seq data 
are considered. Data composed of different numbers of cells are generated to test whether the 
metrics scale also to high-dimensional data, as the currently available single-cell data, and if the 
number of cells impacts performances. Then the overlap and size of the clusters underlying the 
simulated scRNA-seq data are also varied to challenge the various metrics in detecting less clear 
and rare groupings of cells. Second, four real scRNA-seq data, profiled from colorectal cancer 
(CRC) and cell lines, are considered. Finally, we further challenged the distance measures on 
other single-cell omics: scATAC-seq and single-cell DNA methylation. See Methods and Table 1 
for details concerning the data. 
 
In all three contexts, ground-truth labels were available for all cells. In simulated scRNA-seq data, 
the ground-truth labels have been imposed during the data simulation (see Methods). In real 
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single-cell omics, the ground-truth labels are extracted from the original publications. For the four 
profilings of cell lines (Liu scRNA, Li cell lines, Liu scATAC and Leukemia scATAC), labels 
correspond to the cell line of origin and thus reflect strong transcriptional/epigenetic differences. 
In contrast, in the case of the neuronal single-cell DNA methylation (scMethylation mouse and 
scMethylation human) and scRNA-seq from colorectal cancer samples (Li Tumor and Li NM), the 
ground-truth labels reflect clusters previously identified in the data, based on the activity of 
predefined markers. These last applications are clearly more challenging, as much weaker 
differences exist between different cell types or states.   
 
As summarized in Figure 1, we first tested with C-index and Silhouette score whether the various 
metrics are able to detect the similarity between cells belonging to the same group. We then 
applied different unsupervised clustering algorithms to the computed distance matrices and tested 
the quality of the resulting clusters using the Adjusted Rand Index (ARI) and Normalized Mutual 
Information (NMI).   

Comparing Optimal Transport against baseline metrics based on 
cell-cell similarity detection 
Figure 2 summarizes the results of the comparison between Optimal Transport (OT) and baseline 
metrics. Pearson correlation outperformed the other baseline metrics on all data types. We thus 
used it as representative of baseline metrics in Figure 2 and in the following sections. The results 
of alternative baseline metrics are available in Supplementary Table 2. Of note, better 
performances of Pearson correlation with respect to other state-of-the-art metrics had been 
previously observed [12]. 
 
In all simulated data, OT outperforms all baseline metrics (Figure 2A), both in terms of C-index 
and Silhouette score. In particular, the results of OT are not impacted by the number of cells, 
given that it shows a consistently performant behavior for 500, 1,000 and 10,000 cells. These 
results also suggest that OT is scalable to high-dimensional datasets, a crucial feature for the 
analysis of single-cell data. Finally, OT achieves superior performance with highly unbalanced 
clusters, which is more realistic as biological samples are often composed of a mixture of rare 
and common populations of cells, and also with overlapping clusters, which reflects the scenario 
of subpopulations of cells sharing similar transcriptional patterns, as cell populations tracked over 
different developmental phases.  
 
We then considered four scRNA-seq datasets: two of them correspond to cancer cell lines [24,25], 
while the remaining two correspond to colorectal tumour tissue and matched normal mucosa [25]. 
All metrics tend to perform better in cancer cell lines than CRC samples. This result is most 
probably the consequence of the stronger transcriptional difference existing between cell lines. 
Overall, in all the four scRNA-seq datasets, OT outperformed baseline metrics (Figure 2B). The 
improvement provided by OT in cell lines is important, especially according to Silhouette score 
(+0.5 Silhouette score). To show to which extent C-index and Silhouette score reflect a clear 
clustering structure in the cell-to-cell distance matrices, we focused on the smallest dataset, Liu 
scRNA [24]. Figure 2C reports the cell-to-cell distance matrices obtained for this dataset with OT 
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distance, Pearson correlation and Euclidean distance. Cells in the matrices are sorted based on 
their cell line of origin. OT powerfully detected the similarity between cells belonging to the same 
cancer cell line, showing three clear blocks of cells at distance close to zero. In contrast, the 
blocks corresponding to the three cell lines are less marked with Pearson correlation. Finally, with 
Euclidean distance, the values outside the three blocks tend to be less close to one, indicating a 
less clear separation between cells belonging to different cell lines. 
 
Finally, we challenged the various metrics on other single-cell omics data (Figure 2D). The results 
obtained with Pearson correlation and OT are comparable. First, in all datasets, except the 
scATAC-seq cell lines, the Silhouette scores were quite low, indicating that detecting cell-cell 
similarities in scATAC-seq and single-cell DNA methylation data is more challenging. In addition, 
OT performed better for the Liu scATAC-seq and methylation data (mouse and human), while 
Pearson correlation performed better for the leukemia scATAC-seq dataset.  
 
Overall, OT clearly outperformed existing metrics in the detection of cell-cell similarities in 
simulated and real scRNA-seq and single-cell DNA methylation data. The results are less clear 
for scATAC-seq data. See Supplementary Table 2 for the performances of other state-of-the-art 
baseline metrics. 
 
 

Comparing Optimal Transport against baseline metrics based on 
hierarchical clustering 

 
Hierarchical clustering was applied to the cell-to-cell distance matrices computed with OT and 
Pearson correlation. In all datasets, the number of clusters was optimized based on the Silhouette 
score (Methods). Table 1 summarizes the number of clusters obtained across all datasets and 
compares them with those defined in the original publications. The resulting clusters were then 
compared with the ground-truth labels based on Adjusted Rand Index (ARI) and Normalized 
Mutual Information (NMI) (Figure 3).  
 
In simulated data, all the five datasets contain three underlying clusters. As described in Table 1, 
in four out of five cases, both OT and Pearson correlation identified the correct number of clusters. 
The only exception is represented by the dataset composed of 10,000 cells, where OT correctly 
detects the presence of three clusters, while Pearson correlation overfitted the data, by 
subdividing the three groups into five clusters. According to ARI and NMI, both Pearson 
correlation and OT give rise to perfect results (Figure 3A). Pearson correlation also led to optimal 
ARI and NMI scores in the dataset of 10,000 cells, as overfitting is not captured by these scores.  
 
Turning to real scRNA-seq data, in the case of Liu scRNA data, both Pearson correlation and OT 
detected the correct number of clusters (Table 1). Concerning the two CRC datasets, for Li Tumor, 
containing seven cell types, both Pearson and OT predicted the presence of six clusters, thus 
missing the rare population of mast cells, only represented by one cell.  In contrast, for Li NM, 
Pearson correlation dramatically overfitted the data and inferred 23 clusters, while OT suggested 
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the presence of five clusters. Finally, for Li cell lines, composed of seven cell lines, OT suggested 
the presence of eight clusters, while Pearson identified ten. Overall, in all scRNA-seq datasets, 
excepting Liu [24], no distance captured exactly the numbers of clusters reported in the 
corresponding publications. However, the number of clusters inferred by OT was always much 
closer to the ground-truth, while Pearson correlation tended to highly overfit the data. Regarding 
the NMI and ARI scores, in three out of four datasets, OT outperformed Pearson correlation 
(Figure 3B). The only exception is represented by Liu scRNA, for which both metrics achieved 
perfect clustering. Interestingly the clustering improvement produced by OT was stronger for the 
two CRC data, which are also the most challenging to cluster.  
 
In other single-cell omics data, the results are less clear and, as observed previously, the 
performances of OT are comparable with those of the best performing baseline metrics (Pearson 
correlation). Regarding the numbers of clusters, in Liu scATAC, both Pearson correlation and OT 
correctly detected the presence of three clusters. In Leukemia scATAC, composed of six cell 
lines, OT and Pearson correlation predicted three and 25 clusters, respectively. Finally, in 
methylation data, both OT and Pearson underestimated the real number of clusters. As shown in 
Figure 3C, the ARI and NMI values follow the same trends as the C-index and Silhouette score 
shown in Figure 2D. OT showed better performances in cell lines scATAC and human 
methylation, while Pearson correlation performed better for mouse methylation and Leukemia 
data. Of note, Pearson correlation performed well according to ARI and NMI for Leukemia data, 
but this performance is obtained considering 25 clusters instead of the five real clusters 
presumably present in the data. This is a practical demonstration of the interest of inferring the 
optimal number of clusters based on the Silhouette score, rather than fixing it to the value reported 
in their original publication.  
 
The improvement provided by OT for cell-cell similarity inference (Figure 2) has an impact on 
clustering performances. Of note, these results are also in agreement with those observed when 
the number of clusters is fixed (Supplementary Table 3). 
 
 

Comparing Optimal Transport against baseline metrics based on 
spectral clustering 
 
To test whether the improvement provided by OT in cell clustering depends on the clustering 
algorithm, we repeated the same tests with spectral clustering. Also in this case, the number of 
clusters was optimised based on the Silhouette score (Methods). The numbers of resulting 
clusters are listed in Table 1, while the corresponding values of ARI and NMI are provided in 
Figure 4.   
 
In simulated data, Pearson correlation and OT metrics always detected the correct number of 
clusters (Table1) and achieved perfect clustering according to ARI and NMI (Figure 4A).  
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For scRNA-seq data, both Pearson correlation and OT correctly predicted the clusters present in 
Liu scRNA. The two CRC datasets contain seven cell types, corresponding to our ground-truth 
labels. For Li Tumor, both Pearson and OT predicted the presence of three clusters. In contrast, 
for Li NM, Pearson correlation overfitted the data and inferred 13 clusters, while OT suggested 
the presence of five clusters. Therefore, in colorectal cancer, a better approximation of the true 
clustering present in the data has been obtained with hierarchical clustering. Finally, for Li cell 
lines, OT suggested the presence of five clusters, while Pearson correctly identified seven 
clusters. Concerning the NMI and ARI scores, OT outperformed Pearson correlation for three of 
the four datasets (Figure 4B). The only exception is represented by Liu scRNA data, where both 
Pearson and OT achieved perfect clustering.  
 
Concerning other single-cell omics, Pearson correlation and OT correctly identified three clusters 
for Liu scATAC data. Regarding Leukemia scATAC data, involving six cell lines, both OT and 
Pearson overfitted the data, predicting 18 and 14 clusters, respectively. Finally, in methylation 
data both OT and Pearson drastically underestimated the real number of clusters. Regarding ARI 
and NMI (Figure 4C), for Liu ATAC data, the results are optimal with both metrics. In all other 
datasets, performances are slightly changed compared to those observed with hierarchical 
clustering (Figure 3C). For mouse scMethylation and Leukemia scATAC data, Pearson and OT 
showed comparable performances, while for human scMethylation data, Pearson correlation 
performed better.  
 
Overall, the clustering conclusions previously derived with hierarchical clustering are confirmed 
with spectral clustering. Indeed, there is a good agreement between spectral clustering and 
hierarchical clustering for simulated data and scRNA-seq data. Only marginal variations were 
observed, such as a reduced difference between Pearson and OT for colorectal cancer data, 
when spectral clustering is employed. In other single-cell omics data, the results of the two 
clustering algorithms are less concordant, but the overall performances of Pearson and OT 
remain comparable. Of note, we obtained similar results for fixed numbers of clusters 
(Supplementary Table 3). 
 

Open-source implementation and distribution  
To foster the reproducibility of all the results presented in this work, we provide a Jupyter notebook 
covering all the analyses performed. Coded in Python, this notebook is available at 
https://github.com/ComputationalSystemsBiology/ot-scOmics, together with all the preprocessed 
single-cell data used in this study. Since computing Optimal Transport distances is 
computationally intensive, the code is designed to be run on a GPU, taking advantage of the 
PyTorch library. For users who do not have access to a GPU, extensive explanations are provided 
to run the Jupyter notebooks on the Google Collaboratory platform 
(http://colab.research.google.com/).  
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Discussion 
In this study, we assessed the potential of Optimal Transport (OT) to infer cell-cell similarities from 
single-cell omics data. We extensively benchmarked OT performances against state-of-the-art 
metrics. Interestingly, OT outperformed alternative metrics in capturing cell-cell similarities in 
simulated and real scRNAseq data. The biological relevance of this improvement was assessed 
by performing cell clustering. In all cases, the use of OT distance resulted in improved clustering 
results. Of note, two clustering algorithms have been used to test whether the observed 
performances were affected by the choice of the algorithm. We further challenged the metrics to 
detect cell-cell similarity in other single-cell omics: scATAC-seq and single-cell DNA methylation 
data. In these cases, OT showed performances comparable with the best performing baseline 
metric, namely Pearson correlation. Overall, the results obtained for scATAC-seq and single-cell 
DNA methylation data are less convincing than those for scRNA-seq data. These results are 
presumably due to the additional challenges introduced by these omics data, in particular their 
high sparsity and the close-to-binary nature of scATAC-seq data [9,37].  
 
Our evaluation of metrics performances is dependent on the ground-truth labels associated with 
the input datasets. In cell lines, the ground-truth is well established and wide transcriptional 
differences exist between different cell lines. Biological samples instead consist of cell types and 
states having less pronounced transcriptional differences. What is a ground-truth in this case is 
thus less clear. We here used as ground-truth the clusters identified in the original publication of 
each dataset. However, such labels could be improved. In addition, given that the original 
publications employ Euclidean distance or Pearson correlation to define the labels, the usage of 
such labels as ground-truth is expected to advantage these metrics compared to alternative ones.   
 
Of note, Dimensionality Reduction (DR) is frequently applied to reduce the noise in single-cell 
data before cell clustering and further downstream analyses. Here, we applied feature selection 
without DR to test to which extent different metrics are affected by such noise. In addition, the 
most popular DR approaches, such as PCA, diffusion maps, NMF and ICA, rely on Euclidean 
geometry. Hence, we avoided using DR to not favor the Euclidean metrics in our benchmarking. 
However, the good performances provided by OT suggest that further efforts should be devoted 
to design DR methods for single-cell data based on other metrics. 
 
Finally, we applied OT to different single-cell omics in isolation. However, different omics data 
presumably provide complementary information on individual cellular states. Combining different 
single-cell omics with appropriate metrics thus represent a critical challenge in computational 
biology. Our results suggest that OT could be a valuable metric for the integration of different 
omics data. 
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Data availability 
The datasets used in the study are all public and accessible through their corresponding 
publication (Table 1). Preprocessed data together with the code to reproduce the analyses are 
available at https://github.com/ComputationalSystemsBiology/OT-scOmics. 
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Table 1. Summary of the datasets used for our benchmark and their clustering results. In 
the first part of the table (“Data description”), for each dataset, we specify the name with which 
we denote it in the paper, the reference to its original publication, the type of data, the number of 
cells, the number of features after preprocessing and the number of clusters (e.g. cell types, cell 
lines) present in the data. In the second part of the table (“Clustering results”), we report the 
number of clusters, chosen by maximizing the silhouette score, with hierarchical and spectral 
clustering for Pearson correlation and OT distance. 

 
Dataset name 

Data description Clustering results 

Data type Reference Number of 
cells 

Number of 
features after 
preprocessing 

Number of 
clusters in 

ground-truth 

Detected 
number of 
clusters for 
hierarchical 

clustering (OT) 

Detected 
number of 
clusters for 
hierarchical 
clustering 
(Pearson) 

Detected 
number of 
clusters for 

spectral 
clustering (OT) 

Detected 
number of 
clusters for 

spectral 
clustering 
(Pearson) 

500 cells Simulated 
scRNA-seq data 

Splatter [23] 500 5000 3 3 3 3 3 

1000 cells Simulated 
scRNA-seq data 

Splatter [23] 1000 5000 3 3 3 3 3 

10,000  cells Simulated 
scRNA-seq data 

Splatter [23] 10000 5000 3 3 5 3 3 

Unbalanced 
clusters 

Simulated 
scRNA-seq data 

Splatter [23] 1000 5000 3 3 3 3 3 

Overlapping 
clusters 

Simulated 
scRNA-seq data 

Splatter [23] 1000 5000 3 3 3 3 3 

Liu scRNA scRNA-seq Liu et al. [24] 206 10000 3 3 3 3 3 

Li Tumor scRNA-seq Li et al. [25] 364  10000 7 6 6 3 3 

Li NM scRNA-seq Li et al. [25] 266  10000 7 5 23 6 13 

Li cell lines scRNA-seq Li et al. [25] 561 10000 7 8 10 5 7 

Liu scATAC scATAC-seq Liu et al. [24] 206 10000 3 3 3 3 3 

scMethylation 
mouse 

Single-cell DNA 
methylation 

Luo et al. [27] 3377  10000 16 3 3 3 3 

scMethylation 
human 

Single-cell DNA 
methylation 

Luo et al. [27] 2740  10000 21 3 7 3 10 

Leukemia 
scATAC 

scATAC-seq Corces et al. 
[26] 

391  7602 6 3 25 24 14 

 
Figure1: Workflow for metrics comparison. The employed procedure, from the input 
preprocessed data to the performance evaluation is summarized for (A) baseline metrics and (B) 
Optimal Transport, respectively. The graphic contents in the figure are taken from flaticon.com. 
 
Figure 2. Comparison of Optimal Transport (OT) against Pearson correlation in cell-cell 
similarity inference. Barplots for C-index and Silhouette score are reported for (A) simulated 
scRNA-seq data composed of 500, 1,000 and 10,000 cells, with unbalanced groups and 
overlapping clusters; (B) four scRNA-seq datasets; (D) two single-cell DNA methylation and two 
scATAC-seq data. Examples of the distance matrices obtained with OT, Pearson correlation and 
Euclidean distance in Liu scRNA-seq are reported in (C). 
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Figure 3. Comparison of Optimal Transport (OT) against Pearson correlation in hierarchical 
clustering. Barplots for Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) are 
reported for (A) simulated scRNA-seq data composed of 500, 1,000 and 10,000 cells, with 
unbalanced groups and overlapping clusters; (B) four scRNA-seq datasets C. two single-cell DNA 
methylation and two scATAC-seq data.  
 
Figure 4. Comparison of Optimal Transport (OT) against Pearson correlation in spectral 
clustering. Barplots for Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) are 
reported for (A) simulated scRNA-seq data composed of 500, 1,000 and 10,000 cells, with 
unbalanced groups and overlapping clusters; (B) four scRNA-seq datasets: (C) two single-cell 
DNA methylation and two scATAC-seq data. 
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