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ABSTRACT

Graph-based genome reference representations have seen significant development, motivated by the inadequacy of the
current human genome reference for capturing the diverse genetic information from different human populations and its
inability to maintain the same level of accuracy for non-European ancestries. While there have been many efforts to develop
computationally efficient graph-based bioinformatics toolkits, how to curate genomic variants and subsequently construct
genome graphs remains an understudied problem that inevitably determines the effectiveness of the end-to-end bioinformatics
pipeline. In this study, we discuss major obstacles encountered during graph construction and propose methods for sample
selection based on population diversity, graph augmentation with structural variants and resolution of graph reference ambiguity
caused by information overload. Moreover, we present the case for iteratively augmenting tailored genome graphs for targeted
populations and test the proposed approach on the whole-genome samples of African ancestry. Our results show that, as more
representative alternatives to linear or generic graph references, population-specific graphs can achieve significantly lower read
mapping errors, increased variant calling sensitivity and provide the improvements of joint variant calling without the need of
computationally intensive post-processing steps.

Introduction

The development of the human genome reference1, 2, which constitutes a linear sequence of nucleotides, facilitated a significant
leap forward in our understanding of the human DNA, enabling the development of high-throughput sequencing technologies
and consequently a plethora of genomic studies in both academic and clinical contexts3, 4. Many of the state-of-the-art
bioinformatics methods indeed rely on this high fidelity haplotype in order to make sense of the raw data outputted by
sequencers. This is commonly achieved by aligning short sequencing reads against the linear reference (alignment) and then
identifying the differences in the data with respect to the reference (variant calling)5. Subsequently, this secondary analysis
stage is followed by tertiary analyses such as variant effect prediction on protein transcription6, genome wide association
studies4, 7–9 and population genetic studies8, 10, 11, the validity and effectiveness of which are fundamentally determined by the
genome reference used.

Even though significant efforts have been made to ensure the quality and fitness of the current human genome reference for
genomic studies12, it is derived from a handful of individuals with about 70% pertaining to a single individual, and therefore it
cannot capture the genetic diversity of the vast majority of the human populations around the globe13–15. This issue has been
highlighted by many studies over the past decade, discussing the limitations of the latest human reference genome versions
GRCh37 and GRCh38 in addition to those of a linear reference in general15–20. Various methods for incorporating a wider
breadth of genetic information into the reference genome have been proposed including nucleotide additions and extensions to
the current reference21–23, de novo assembly of raw read data to generate a population-specific consensus sequence24–26, and
graph-based references capable of simultaneously representing multiple diverse populations27–32. All of these methods have
trade-offs between accuracy, efficiency and applicability33. In addition to developing a suitable data structure and appropriate
algorithms to work with it, choosing the appropriate variation information to incorporate into the reference is an important but
understudied problem without a straightforward solution34.

Another level of difficulty is introduced when the execution of bioinformatics solutions in real life scenarios is considered.
Most large scale sequencing studies span a long period of time with different stages of the project such as patient enrollment
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and DNA sequencing being executed in multiple phases distributed over several years35–38. This introduces a cyclic nature to
the project where, in each cycle, the sequenced samples are processed and potentially put to use in tertiary analyses without
waiting for the next cycle (see Figure 1). There are both advantages and disadvantages to processing the data collected in
previous cycles without waiting for the next cycle. On one hand, it is possible to produce valuable insights from the already
available data, or identify potential problems in the sequencing and secondary analysis pipeline before the next batch of samples
are processed. On the other hand, commonly used bioinformatics methods such as joint variant calling39 may require the entire
set of samples to produce accurate results. Another constraint in large-scale projects is that it is not feasible to switch to a
newer and more accurate version of the reference genome throughout the project due to problems that can arise regarding the
incompatibility of the genome coordinate system and variant harmonization.

Figure 1. Steps involved in a multi-phase sequencing project. Large-scale sequencing projects are commonly executed in
multiple phases, each of which comprises the sequencing and bioinformatics analysis of only a subset of the samples that are
planned to be sequenced throughout the project (Large-scale Project Cycle). This iterative nature provides the opportunity to
produce genomic information in each cycle that can be used to improve the bioinformatics processes during the project
(Perpetual Improvement of Graph Genomes). Graph-based secondary analysis approaches can utilize this information to
improve the variant detection power for the following cycles.

An optimal genome reference addressing all of these issues should at least suffice the following criteria:

• Accurate representation of diverse genetic information: One of the fundamental limitations of the current human
genome reference is that it comprises the genomes of only a few individuals and therefore under-represents most of
human populations. An ideal reference should be able to capture the genetic diversity of an entire population and/or
species13–15.

• Compatibility with upstream and downstream methods: To ensure the sustainability and long-term utility of the
results obtained from sequencing data, the bioinformatics community has developed standards and best practices around
inputs/output formats, data storage formats and workflow descriptions40–43. It is crucial for new methods and references
to comply with these standards to maintain the longevity and compatibility of existing results.

• Aptness for improvements and other modifications: It is expected that future studies will identify shortcomings of the
current reference and/or discover valuable genetic information that should be incorporated into the reference. The chosen
genome reference should gracefully lend itself to improvements and other updates so that the downstream tools do not
break and the new results can be processed together with older results without any loss of functionality. It may even be
desirable that such changes to the reference are made while the project is in progress to incrementally improve it with
new findings or to compensate for a deficiency. Since many sequencing projects have multiyear plans with prospective
follow-up studies extending further into the future, it is very likely that the opportunity to improve the reference will
present itself35–38.
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• Computational efficiency and scalability: Even though improvements in hardware have increased the available
computational capabilities, large infrastructure investments and the incentive to use existing but older hardware remain a
prohibitive barrier in front of experimenting with new bioinformatics technologies. Therefore, the tools and algorithms
that can make use of the genome reference should be available (or at least theoretically possible) and computationally
efficient compared to other state-of-the-art approaches such as BWA-MEM44 for alignment and GATK39 for variant
calling.

• Tailorability for targeted applications: It would be unreasonable to expect that a single genome reference will be
suitable for all types of genomic applications. In order to develop a reference that is targeted to an application or a
population, the reference must be adaptable to a specific genomic context. The methods for constructing such references
should also be available, computationally feasible and easy-to-use.

In this study, we propose a population-specific graph construction method that can meet all of the above criteria and compare
its utility in next-generation sequencing (NGS) read alignment and variant calling to other approaches based on either the
linear genome reference or a generic graph reference that is not tailored to the population. We show that a population-specific
genome graph can significantly improve both read alignment and variant calling accuracy while being computationally efficient.
Moreover, we show that genome graphs can be augmented, simultaneous with the project execution, by incorporating recently
discovered genomic information to further improve the detection power of both short variants (SNPs and INDELs) and structural
variants (SVs). We compare our results with those obtained by using joint variant calling39, which is the state-of-the-art method
for processing a large number of samples, and show that a graph-based approach provides most of the improvements provided
by joint calling. To demonstrate the aforementioned capabilities, we choose the African population for this case study, as
it is the most genetically diverse and also the most under-represented population with respect to the current human genome
reference7, 25.

The accuracy of a graph-based bioinformatics pipeline is fundamentally tied to the graph reference being used with the
pipeline. Therefore, in this study, we present a novel graph curation and construction method that can act as a guideline
for creating a representative, accurate and efficient reference for any population of choice. The relationship between the
representativeness of a graph and the diversity of the population is established. We further elaborate on the number of samples
used to construct the graph reference, the sampling of the population and how they relate to the captured genetic diversity
in the graph reference. We also explore key pitfalls of graph construction that can severely deteriorate the performance of
the graph-based pipeline and show that our proposed method can circumvent those issues. Equally importantly, the proposed
methods are not pertinent only to the specific graph-based tools used in this study but, in principle, can be applied to any other
graph-based bioinformatics toolkits for genetically representative and computationally performant graph reference construction.

Results
In order to test the hypothesis that the bioinformatics analysis can be improved by utilizing a graph-based method and
constructing a population-specific graph, we use the Seven Bridges GRAF pipeline30 and benchmark the pipeline on the
Illumina sequencing data of the African samples from the 1000 Genomes Project7, 45. We split the samples into two sets, each
containing the same ratio of males/females and the 7 African populations in the 1000 Genomes dataset. The construction set is
used for graph reference construction and the benchmarking set is used to measure the performance of various flavors of graph
references. We categorize graph references into three main types depending on the sources used to construct them.

1. Pan-genome graph: A graph reference that contains information from all populations around the world. This type of
graph is not specific to any particular population. It can provide an overall accuracy improvement over linear references
when analyzing any sample regardless of their ancestry. Pan-genome graphs are relatively easier to construct because of
the abundant data in comprehensive and easily accessible public databases such as gnomAD46 and UK BioBank36.

2. Population-specific graph: A graph reference that contains genetic information pertaining to a single population.
Population-specific graphs are tailored towards individuals with a common ancestry and therefore sharing a significant
portion of their genetic variations. Such a graph allows the incorporation of more variants related to the population
while leaving out many variants that are frequently observed in the larger human population but irrelevant to the targeted
population. Many public databases are available to construct population-specific graphs. However, even though they
provide good coverage over continental super-populations, specific information about a given subpopulation is usually
missing.

3. Cohort-specific graph: A graph reference constructed using a subset of the cohort on which the graph is intended to be
used. By pre-processing a subset of the sample set under study, it is possible to get an accurate description of the genetic
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composition which, in turn, can be used to construct a more representative graph as opposed to relying on public data
sources. More often than not, public resources may not properly cover the target population, in which case this type of
graph reference is the only possible solution.

In this study, we construct all three types of graphs for the African population and compare the alignment and variant
calling performance on the benchmarking set. We show that, as the graph reference becomes more tailored to the population
(from type 1 to type 3 above), alignment error rates are reduced significantly and the rate of informative reads increases. In
turn, the sensitivity of the pipeline improves leading to better detection of both high and low frequency variants throughout the
whole genome as well as the functional regions. Including the relevant population diversity in the reference and thus making it
available for read alignment and variant calling enables more consistent genotyping across all samples without the need for a
joint-calling post-processing step.

Iterative analysis of population sequencing data
To simulate a multi-phase sequencing project, the construction set is split into 5 equal sized cohorts of 104 samples, leaving 141
samples for the benchmarking set. Initially, a population-specific graph is constructed using the public database gnomAD46,
which is used to process the first cohort, as shown in Figure 2. This recently expanded database covers all of the subpopulations
sequenced in the 1000 Genomes project and therefore constitutes a good starting point for graph construction. The variant calls
on the first cohort are combined with the public resources to generate the next graph reference which, in turn, is used to process
the second cohort. This iterative procedure illustrates the nature of a multi-phase sequencing project where the graph reference
is augmented with new variant calls after each iteration.

The graphs produced at each step are used to process the benchmarking set and evaluate the performance. Additionally, a
pan-genome graph, which is constructed from multiple public resources and contains genetic information of many populations30,
is used to compare a non-specific graph to the population-specific graphs. Finally, all graph approaches are compared to the
standard linear approach based on BWA-MEM and GATK to establish a baseline for a reliable comparison with the existing
technologies. The linear BWA+GATK pipeline utilizes joint calling and VQSR variant filtration which are the recommended
methods for processing a large number of whole genome samples45.
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Figure 2. Iterative population-specific graph construction workflow. The initial population-specific graph reference
(Pan-African 0) is constructed using publicly available variant databases. At each iteration, a subset of the population
(construction set) is processed with the current graph and the variant calls are used to construct the next graph. This process is
repeated until the entire construction set is exhausted. All graph references are tested on the benchmarking set and their
performance is evaluated. The population-specific graphs (Pan-African 0-5) are also compared to a generic graph
(Pan-Genome) containing the genetic information of many populations and a linear approach using only GRCh38 reference.

Variant Curation for Population-Specific Graphs
Variant selection for graph references still remains an open question. Previous studies mostly relied on simple heuristics or
methods that may not scale well with large and/or missing information34. Here, we propose a framework that relies on two
basic measurements on a given population: Nucleotide diversity within the population and absolute divergence from the current
human genome reference, in this case, GRCh38 (see Methods)47. In short, nucleotide diversity measures the average genetic
distance between the individuals from the same population while absolute divergence measures how distant the population is
from GRCh38.
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It is crucial to make the distinction between these two genetic distance measures. Graph references fundamentally rely
on pre-existing genetic information which is used to construct them in the first place. The more divergent the population is
from GRCh38, the more likely it is that the current bioinformatics methods have failed and will fail to discover important
genetic variation. This essentially determines the detection power of a graph-based method and how much novel discovery can
be expected from it. In instances of large divergence, it may be desirable to additionally incorporate results from orthogonal
technologies (e.g. long-read sequencing data48–50, which is demonstrated in this study) to compensate for the shortcomings of
the technologies already used. On the other hand, a high diversity implies that the individuals from the same population are
genetically distant from each other. This determines the number of samples required to construct a representative graph; diverse
populations will require a larger number of samples for graph construction. This is further elucidated in this section.

To quantify these two metrics and provide a guideline for population-specific graph construction, we measure the diversity
and the divergence in both the whole genome and the whole exome regions for all five populations in the 1000 Genomes dataset,
as shown in Figure 3. The African population shows the highest diversity and also the largest divergence from GRCh38. This
implies that the accuracy of bioinformatics tools will suffer the most when processing the sequencing data for individuals
of African descent. The American population is also highly admixed compared to European, South Asian and East Asian
populations, indicated by its large diversity. This is mainly caused by the large variation in the nucleotide diversities between
American subpopulations (see Supplementary Material S8 for measurements on individual sub-populations). Interestingly,
the East Asian population shows a large divergence from GRCh38 while showing the least amount of diversity among the
five populations. This means that, even though standard linear methods are likely to miss important variation information for
East Asian populations, a relatively small number of samples should be sufficient to construct a graph reference reasonably
representative to the extent that can be expected by relying on the data obtained with linear methods. It is shown in the following
sections that long-read sequencing data can be incorporated into graph references to account for large divergence from GRCh38.
Finally, it is observed that the European population has the lowest divergence, which is expected considering the sequencing
data used to construct the current human genome reference. However, the diversity within the European populations is still
large enough, in fact larger than East Asian populations, to warrant the development of a population-specific graph reference.
As expected, in the whole exome, both the nucleotide diversity and the absolute divergence are much smaller compared to the
whole genome, nevertheless, the trends between populations remain the same.

Next, we investigate the influence of the number of samples on the representativeness of the constructed graph reference
and show that it correlates well with the population’s nucleotide diversity. In this experiment, we pick samples from a given
population one by one and measure how much of the population’s genetic variation is correctly captured in the graph reference.
To include only common variants in the graph, we use an allele frequency (AF) cut-off of 5%, variants below which are
discarded. At each step, we compare the content of the graph with the complete population information (obtained from all
available samples), label any high (AF ≥ 5%) and low (AF < 5%) frequency variants in the graph as true and false positives,
respectively, and finally calculate true positive rate (TPR) and false positive rate (FPR). This procedure is repeated for each
population independently, as shown in Figure 4 (for results with other AF threshold values, see Supplementary Material S8).

The TPR and FPR are also calculated theoretically, assuming an underlying AF distribution obtained empirically for each
population, as shown in the inset (see Methods for details). The results are shown in Figure 4a. It is seen that the TPR and
FPR improve with increasing number of samples albeit with diminishing returns for larger sample sizes. For instance, by
constructing a graph using approximately 700 African samples, one can expect to capture 98% of the variation information with
a false positive rate slightly above 2%. The experiment and theory agree well, with some deviation for large number of samples
due to the limited number of samples available in the experiment. It is important to note that the rate of improvement with
increasing number of samples for each population is inversely correlated with the nucleotide diversity of the population (Figure
3). The descending order of nucleotide diversity is AFR > AMR > SAS > EUR > EAS, which is exactly the same order of
improvement rates, i.e. convergence rates, from low to high. For instance, we observe a slower convergence for the African
population as opposed to the European population because the former is much more diverse. The East Asian population graph,
on the other hand, improves the fastest since it has the lowest nucleotide diversity. It is also noteworthy that the convergence
rate does not depend on the absolute divergence from GRCh38, as mentioned earlier. This is illustrated by the East Asian TPR
and FPR curves, which have the highest convergence rates even though the divergence of the East Asian population is higher
than all populations except the African. A detailed table for different values of AF cutoff and TPR is provided for all population
along with the corresponding FPR in Supplementary Table S1. This table can be used as a guideline for other populations via a
comparison of their nucleotide diversity.

In order to measure the effect of sampling on the graph convergence rates, we compare a homogeneous sampling approach
to a clustered sampling approach. Homogeneous sampling ensures that samples for graph construction are picked from all
subpopulations uniformly so that there are no abrupt changes in the genetic architecture of the graph reference as more samples
are added. Although this approach is expected to more quickly capture the populations genetic information, it is not always
possible due to missing detailed ancestry information or different subpopulations being sequenced in different phases of the
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Abbr. Definition
ADG Absolute divergence from GRCh38 reference in the whole genome
PDG Population diversity in the whole genome
ADE Absolute divergence from GRCh38 reference in the whole exome
PDE Population diversity in the whole exome

ADG PDG ADE PDELow

High

17.6817.81

10.2410.11

American

ADG PDG ADE PDELow

High
20.10

22.20

11.8412.72

African

ADG PDG ADE PDELow

High

17.2816.99

9.97 9.60

European

ADG PDG ADE PDELow

High

17.6217.48

10.20 9.89

South Asian

ADG PDG ADE PDELow

High

17.82
16.22

10.31 9.11

East Asian

Figure 3. The nucleotide diversity and the absolute divergence from GRCh38 for populations in the 1000 Genomes
dataset. Nucleotide diversity measures the average genetic distance between the individuals from the same population and
absolute divergence indicates how distant the population is from GRCh38. The African population has the highest genetic
diversity and also the largest divergence from the current human genome reference GRCh38, which leads to significant loss of
accuracy in pipelines relying on the linear reference. The nucleotide diversity from high to low is as follows:
AFR > AMR > SAS > EUR > EAS. All populations show sufficiently high diversities and can potentially benefit from a
population-specific graph reference.

project. To compare homogeneous sampling to the worst case scenario, clustered approach assumes that the samples are first
picked exclusively from a specific subpopulation until there are no samples left belonging to that subpopulation. Then, the
procedure is applied to another subpopulation until all subpopulations in the dataset are exhausted. The results are shown in
Figure 4b. It is clear that clustered sampling results in a slower convergence rate; therefore, graph references are significantly
less representative of the population compared to homogeneous sampling. Abrupt jumps are also observed in TPR and FPR
curves at points where a new subpopulation is introduced to the graph reference.

The use of an AF cut-off is a vital filtering step for graph-based methods and justified by the fact that a low frequency
variant will pose misinformation to most of the samples and make the alignment more ambiguous and genotyping less accurate
for those samples. The exact AF cut-off is a free parameter and can be chosen depending on the specific application, population,
or type of sequencing data. We have observed that a value of 5% provides shows good performance without incurring large
computational costs (see Supplementary Material S4). For more targeted data such as whole-exome or panel sequencing, a
lower threshold can be used without much computational burden.

Graph Reference Construction
Given a set of samples from a population and other relevant variant sources, the method for variant curation is now established
as discussed in the previous section. However, the construction of the graph reference itself is not a straightforward task;
simply adding all curated variants into the graph structure could cause computational inefficiencies and, at the same time, lead
to inaccuracies in alignment and variant calling. In this section, we discuss the pitfalls that can significantly deteriorate the
performance of the secondary analysis pipeline and propose a graph construction method that can digest variants of any type
(SNPs, MNPs, insertions, deletions, complex structural variants) from multiple sources and produce an optimal graph reference.

The first issue related to incorporating multiple variant databases or VCF files into a graph is variant harmonization. Mainly
due to the discordance between the variant representations of different bioinformatics pipelines, the same variants might be
expressed differently in different VCF files. Addition of all such variants will introduce different but equivalent paths in the
graph reference, leading to alignment problems. To overcome these issues, the multi-allelic variants are split and all variants are
left normalized with respect to the backbone of the graph reference (in this case, GRCh38 canonical chromosomes). Moreover,
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Figure 4. True positive rate (TPR) and false positive rate (FPR) in population-specific graph references with respect
to number of samples used for graph construction. TPR and FPR are calculated for each population shown in the legend.
An allele frequency (AF) threshold of 5% is used, below which the variants are discarded. (a) Theoretical calculation (see
Methods) and simulated results. (b) Simulated results with homogeneous and clustered sampling. Homogeneous sampling
assumes samples are taken from subpopulations uniformly, whereas clustered approach simulates the extreme case where
samples are taken from each subpopulation until it is exhausted. Inset shows the AF distribution used for calculations, which is
obtained empirically from the 1000 Genomes dataset for each major population.

non-standard variant definitions in the VCFs are removed and only fully sequence resolved ones are kept. This process is
implemented as the first stage of our graph construction pipeline (Prepare Inputs), as shown in Figure 5a.

Another important graph construction step is the preparation of the linear genome reference. It is common to use the linear
reference as the backbone of the graph reference, which facilitates variant representation with respect to the same sequence and
the coordinate system, ensuring compatibility with the standard bioinformatics tools29, 30, 51, 52. We assume the same approach
and use the GRCh38 assembly as the backbone for all graphs. There are the so-called alt-contigs in the GRCh38 assembly,
which represent alternate sequences for certain regions in the canonical chromosomes. These regions show high variability in
the population and alt-contig haplotypes are provided as additional sequences to augment the haploid genome. However, the
natural way of incorporating alternate sequences is indeed adding another path to the graph reference. Therefore, we have
developed an alt-contig processing step (GRCh38 Alt Processing in Figure 5a) which removes alt-contigs from the GRCh38
assembly, maps them to the canonical regions and finally adds them as graph paths with an appropriate representation. The
details of this process are shown in Figure 5b. First, the contigs labelled as ALT and NOVEL are removed from the linear
reference so that it only contains the primary chromosomes, unplaced and unlocalized contigs and decoy sequences. Next, ALT
and NOVEL contigs are mapped to the primary chromosomes. Since they usually contain long stretches of sequences that are
identical to the linear reference, ALT and NOVEL contigs are decomposed into smaller variants and left normalized. The final
outputs are a modified linear reference that does not contain the alt-contigs and a VCF file that concisely represents alt-contigs
with respect to the linear reference.

The Merge Variants step in Figure 5a merges the harmonized input variants and the variants obtained from the alt-contigs
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Figure 5. Graph reference construction pipeline. The pipeline takes a set of VCF files and the linear reference (to be used
as the backbone of the graph reference) as input, and outputs the constructed graph reference along with the modified linear
reference and a list of variants that are excluded from the graph. (i) The input variants are processed to avoid any
incompatibility with the graph representation and resolve potential issues in the VCF files. (ii) The alt-contigs in the linear
assembly are added as edges into the graph reference and decomposed into smaller variants if necessary. (iii) All variants are
merged and the allele frequency is re-calculated. (iv) Structural variants that are similar to the linear assembly or to each other
are filtered and the decoy sequences are modified. (v) The reads are simulated from the constructed graph to detect and prune
edges that cause multi-mapping in read alignment.

to output a single VCF file containing only biallelic variants without any duplicates. This step also re-calculates the allele
frequency for each variant by taking into account all of the input sources and their sample sizes.

After merging all variant sources, the resultant VCF is put through the filtering stage. The first step is the SV Filter (see
Figure 5a) which processes all structural variants (SVs) to resolve any ambiguity that might be introduced to the reference due
to the nature of short-read sequencing data. There are several possibilities to take into account to achieve this: The SVs may be
similar to the linear reference; they may be similar to each other; or they may be similar to the decoy sequences which are
essentially used to pull all reads that are not supposed to align to the canonical regions. This process is illustrated in Figure 5c.
If the match block size between an SV and the reference, which is defined as the longest identical subsequence between the
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two, is larger than a threshold, the SV is filtered out, i.e. not added to the graph reference. We choose this threshold to be the
read length, since it is very difficult for variant callers to reassemble the reads to detect SVs when there is an alignment gap
larger than the read length. Similarly, if the match block size between multiple SVs is larger than the read length, only the
largest SV is kept. All SVs that pass these two steps are compared to the decoy sequences in the GRCh38 and any matching
sequence is masked in the decoys. This is a necessary step, since the decoy sequences have aggregated not only non-human
DNA sequences but also population haplotypes pertaining to under-represented populations such as the African and the Asian
ancestries53. The SVs can also be filtered due to computational reasons. In this study, we limited the size of insertions and
deletions in graphs to 5k and 90k, respectively, for computational efficiency considerations.

A graph reference can be improved by augmenting it with new variant information, as will be shown in the following
sections. However, as more variants are added, the number of possible paths in the graph grows exponentially and it becomes
highly likely that there will be identical paths in different regions of the graph. This issue introduces ambiguity to the genome
during read alignment, potentially causing sequencing reads to be multi-mapped and become uninformative for variant calling.
Therefore, a Multimap Filter is implemented as the final stage of graph construction as shown in Figure 5d. The purpose of this
filter is to break the identity of the paths in the graph by selectively removing variants from it. This is achieved by simulating
reads that traverse all possible paths in the graph reference, mapping these reads back to the graph reference, identifying regions
that cause multi-mapping, and diluting the variants in these regions of the graph. We calculate the smallest set of variants that
resolves the ambiguity and only remove those variants to avoid detracting from the representatives of the graph reference. The
exact criteria used in this process is described in Supplementary Section S1, along with the details of all steps shown in Figure
5a.

We use the aforementioned method to construct graph references at each step of the project workflow shown in Figure 2,
and look at their contents and growth rates with each iteration. Starting with the public datasets and iteratively augmenting it
with the genetic information of the African population using the construction sets, we obtain six different graph references.
Pan-African 0 refers to the population-specific graph obtained using only gnomAD and Pan-African 5 is the final graph obtained
after all five construction sets have been added to the graph. Pan-African 1 is the first graph that contains variants directly
obtained from the cohort under study. In the construction of Pan-African 1 graph, we also incorporate the high quality SVs
curated by the Human Genome Structural Variation Consortium (HGSVC) using PacBio HiFi sequencing data for 10 African
samples in the 1000 Genomes dataset54. This will further demonstrate in the next section that population-specific graphs can
effectively be used for SV genotyping at the population scale.

The variants counts of all graphs, their overlaps with each other and the average AF are shown in Figure 6. Total sizes of
each graph are shown on horizontal bars and the intersection sizes are shown for various combinations indicated with filled
circles. It is seen that each construction set increases the size of the graph by a significant percentage; however, the growth rate
decreases with each iteration. This implies diminishing returns for graph augmentation as more samples are added. Detailed
breakdown of each graph’s content into variant types can be found in the Supplementary Table S2. The contribution of each
source to the final population-specific graph Pan-African 5 is given in Supplementary Table S3.

The top panel in Figure 6 shows the mean allele frequency (AF) for the corresponding intersection of graphs. The mean
AF for the variants added with each subsequent graph augmentation is lower than the previous ones (c.f. the six bars on the
right-hand side). This is an expected trend since most of the high frequency variants are already captured in the initial iterations
and only the lower frequency variants (above the AF cutoff) remain to be discovered in the rest of the construction set. It should
be noted that this trend is observed because the samples are collected uniformly across all subpopulations. If, for instance, two
genetically distinct subpopulations of the African population were to be added to the graph reference exclusively at different
iterations, then the contents of the graph might change dramatically at an intermediate step, as discussed in the previous section
(see Figure 4 for homogeneous and clustered sampling approaches).

Interestingly, each graph contains a small number of variants that are unique to itself. For example, Pan-African 0 graph
contains around 23k variants that are not in any subsequent graphs. This indicates that these variants are removed in the
construction of Pan-African 1 graph because their combination with the new variants added from the first construction set
causes ambiguity in the reference.

Finally, we look at the variant composition of the construction sets that are used to construct the graphs Pan-African 1-5.
The comparison of variants found in each construction set is shown in Figure 7. It is seen that most of the common variants
(around 94%) with AF ≥ 5% are shared in all sets as expected, since all sets contain the same number of samples from each
African subpopulation and the same female/male ratio. This implies that the processing order of these sets in the project
workflow (Figure 2) is unimportant. We also observe a significant reduction in the number of variants shared by subsequent
groups and the mean AF of the variants added. This shows that most of the more common variations are captured in earlier
iterations, and subsequent groups contribute mostly infrequent variants around AF cut-off.

The total number of variants for each set is shown in the horizontal bars. A consistent increase is observed with each
iteration. This indicates that the variant calling sensitivity increases with each graph augmentation and there is merit in
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Figure 6. Comparison of constructed graphs. Graphs constructed throughout the iterative process are compared to each
other. Total number of variants in graphs are show as horizontal bars on the left. Shared and unique variants in each graph are
shown as intersection sets with the number of variants and the mean AF values for each set displayed above.

augmenting graphs even during graph constructions.

Alignment
In order to measure the performance of the constructed graphs on secondary analysis, we use each of them independently to
process the benchmarking set of 141 samples, which were left out of graph construction for testing purposes. Specifically, the
population-specific graph references Pan-African 0-5 are compared with each other, with the Pan-Genome graph and also with
the linear BWA+GATK pipeline.

First, the alignment accuracy for each pipeline is compared as shown in Figure 8. Each panel shows a different alignment
statistic as a violin plot. Each violin corresponds to a different graph reference, representing the median and the distribution
of the statistic over all benchmarking samples. Panel (a) shows the percentage of unmapped reads. BWA maps more reads
compared to any of the graph references. This is due to the lenient alignment approach used by BWA as opposed to the more
stringent criteria used by the graph aligner. All population-specific graphs map more reads compared to the Pan-Genome
approach, while progressively mapping more reads with each augmentation. It is seen that improper read (classified as either
an improper orientation for read pairs or an insertion length outside the expected range) and uninformative read (MAPQ
< 20) percentages are much lower for graph approaches compared to BWA. Population-specific graphs also provide better
performance compared to the Pan-Genome graph with the exception of Pan-African 0. Pan-African 0 graph is, although still
tailored to the African population, based on public databases and potentially contains many variants irrelevant for the cohort
under study. This manifests itself as a larger number of unmapped, improper, and uninformative reads compared to graphs
incorporating variants directly obtained from the cohort (Pan-African 1-5).

The multi-mapped read ratio is also higher for BWA compared to any graph approach. A distinct jump is observed between
iterations 0 and 1. This is due to the addition of cohort-specific SVs into the graph reference. Even though we have implemented
a multi-mapping detection filter into the graph construction method (Figure 5d), a graph-based approach will inevitably increase
the similarity between genomic regions simply because the genome reference now contains more nucleotide sequences. Our
graph construction method effectively balances the trade-off between multi-mapping and other improvements as evidenced by
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Figure 7. Comparison of construction sets used for graph construction. Each construction set contains common variants
(AF≥ 5%) that are selected for addition into the graph. Total number of variants above the AF cutoff in each set is shown as
horizontal bars on the left. Shared and unique variants in each set are shown as intersection sets with the number of variants and
the mean AF values displayed above.

the significant reduction in the improper and uninformative read ratios from Pan-African 0 to Pan-African 1 (Figure 8b & 8d).
Informative reads are defined as any read with a mapping quality larger than or equal to 20 (MAPQ ≥ 20). This is a

common threshold used in most state-of-the-art variant callers, below which the reads are simply discarded and therefore do not
have any influence on variant calling30, 39, 55. It is seen in Figure 8e that graph approaches provide a significantly higher number
of informative reads. The difference in the number of informative reads between the graph types is minimal. However, it is
equally important to have the reads align to their proper places in addition to having high mapping quality. In this case, the
reads are aligning to the population-specific haplotypes in the graphs and there is significant relocation of reads both within
chromosomes and between chromosomes (see Supplementary Section S2 for details), which is demonstrated in the next section
by the increased sensitivity in variant discovery and SV genotyping.

A useful metric to measure the representativeness of a population-specific is the alignment error rate, i.e. per-base mismatch
rate with respect to the genome reference. A smaller error rate indicates that the genetic composition of the population is more
successfully captured and also the reference bias is reduced. Figure 8f shows that the error rate consistently decreases from the
linear approach to the Pan-Genome graph and to the Pan-African graphs. Each augmentation of the Pan-African graph achieves
a better the error rate, leading to around 50% reduction compared to BWA in the last iteration. This is an indication of the
accuracy improvements that the iterative graph construction approach can provide.

Next, we investigate how much each graph is utilized during read alignment. We calculate the average number of graph
edges that are used in alignment per sample and compare it to the total number of edges in the constructed graph reference,
as shown in Figure 9a. The ratio of the two is also shown as the orange line. It is seen that all population-specific graphs
have a much higher utilization rate compared to the pan-genome graph which contains variants from many populations.
Population-specific graphs provide a utilization rate of around 50% per sample, whereas it is below 40% for the Pan-Genome
graph. Notably, even though they are smaller in size, Pan-African 0 & 1 graphs provide better performance than the Pan-Genome
graph (see Figures 8 & 10. This implies that a targeted graph reference performs better than a more comprehensive but generic
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Figure 8. Alignment Metrics. Rate of unmapped (a), improper (b), multi-mapped (MAPQ=0) (c), uninformative (MAPQ
< 20) (d) and informative reads (MAPQ ≥ 20) (e). (f) Alignment error rate. Error rate is the ratio of mismatches to aligned
bases in alignments with respect to the reference. Wilcoxon tests between consecutive distributions are performed. In all cases
except for one (uninformative reads between iterations 2 and 3) the difference is significant (p < 10−3).

graph reference, mainly because the irrelevant variants in the generic graph can act as misinformation and cause ambiguity for
read alignment. It is also observed that each graph augmentation grows the size of the graph and the number of edges being
used, as expected. The utilization rate (orange line) is slowly reduced with each augmentation. This agrees with the results in
Figure 6, which shows that the mean AF of the variants added in each subsequent iteration is lower.

Figure 9b shows the total utilization of the graph references across all benchmarking samples. All edges are binned by the
number of samples that make use of them in alignment, with yellow and purple bars showing the number of edges used by
all and none of the samples, respectively. The Pan-Genome graph has the highest number of unused edges and also the least
number of edges used by all samples. The Pan-African 0 graph contains fewer variants but better utilization, proving that even
a population-specific graph based on public datasets constitutes a more representative graph reference. The usage of graph
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Figure 9. Graph edge utilization. Utilization of graph variants in alignments for benchmark samples. (a) Total number of
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samples

edges increase with each augmentation with a trivial amount of unused edges.

Variant calling
In this section, we measure the utility of population-specific graphs for variant calling. In addition to being able to make
alignments against graph references, Seven Bridges GRAF pipeline also uses a graph-aware variant caller that can make use of
the information stored in graph references. We show the overall performance on single nucleotide polymorphisms (SNPs),
insertions and deletions (INDELs) and structural variants (SVs) for all graph references in Figure 10. Panels (a) and (c) show
the number of SNPs and INDELs discovered per sample, respectively. It is seen that the Pan-Genome graph provides a higher
sensitivity compared to the BWA+GATK pipeline. Moreover, the Pan-African graphs 0 to 5 can increasingly detect more
variants compared to the Pan-Genome graph. The Ti/Tv ratio for SNPs is in the expected range and INDEL het/hom ratio
approaches the value 3 for the final Pan-African graph. Both SNPs and INDELs are annotated using the dbSNP154 variant
database56 and labelled as known or novel. Fraction of known variants is around 87% for all pipelines, which implies that most
of the additional variants detected by the graph pipelines are previously discovered in other studies and therefore are likely to
constitute a reliable variant call set. Detailed variant counts categorized into genotypes, variant type and known/novel with
respect to dbSNP154 are provided in Supplementary Table S4. The Ti/Tv and Het/Hom ratios for known and novel variants and
each variant type are provided in Supplementary Table S10. It is important to note that the values shown in Figure 10B&D are
not subject to any additional filtration other than those applied internally by the variant caller. To see the influence of further
filtration based on variant call confidence, we filtered the Pan-African-5 graph variant calls based on the QUAL annotation
and, in effect, removed lower confidence variants. With a QUAL threshold of 70, the total number of variants per sample is
decreased by 116k on average, resulting in a Ti/Tv ratio of 1.95 and an INDEL het/hom ratio of 2.86 (detailed results using
various threshold values are provided in Supplementary Table S12).

Figure 10e shows the number of SVs detected by each pipeline (SVs are defined as variants longer than 50 base pairs). The
size distribution of SVs are also shown in Figure 10f for BWA+GATK, Pan-Genome, Pan-African 0 and Pan-African 5 pipelines.
It is seen that the linear approach BWA+GATK has a significantly lower SV detection rate and can only detect short SVs. The
Pan-Genome graph provides considerable improvement over the linear approach. This is made possible by the addition of the
alt-contigs in the GRCh38 assembly as alternate paths into the graph reference. Tailoring the graph reference to the African
population using public databases that contain only short variants (Pan-African 0) provides only a slight improvement over the
Pan-Genome graph and only for short SVs. The major contribution to SV detection in Pan-African 0 graph is still facilitated by
the alt-contigs. As discussed previously, starting with Pan-African 1 graph, SVs obtained directly from the 1000 Genomes
African samples are used to augment the population-specific graphs. The result of this augmentation is a much higher rate of
SV detection and also an increase in the size of SVs that can be genotyped.
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Figure 10. Variant calling metrics. Sample distribution of SNP counts (a), transition to transversion ratio (Ti/Tv) for SNPs
(b), INDEL counts (c), heterozygous to non-reference homozygous ratio (Het/Hom) for INDELs (d) and structural variant (SV)
counts (e). Panel (f) shows the size distribution of detected structural variants. Wilcoxon tests between consecutive
distributions are performed. In all cases the difference is significant (p < 10−21).

Based on the results comparing different versions of population-specific graphs, it is concluded that the each iteration
provides better overall performance in terms of alignment and variant calling accuracy. Using the output of the last iteration as
the final graph reference, we now compare the variant calls made by the Pan-African 5 and the BWA+GATK pipelines in more
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detail. Figure 11 shows the cumulative variant counts for both pipelines with respect to the allele frequency (detailed counts are
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Figure 11. Comparison of variant calls for Graph (Pan-African 5) and GATK results. Cumulative variant counts with
respect to the allele frequency are shown for the graph (blue) and the GATK (red) pipelines. Solid lines show the common calls
between the two pipelines. Dashed lines show the unique variants to each pipeline. Dotted lines indicate the common variants
that are called with a different AF by the two pipelines as shown in the legend, i.e. the blue (red) dotted line shows the variants
for which graph (gatk) detects a higher allele frequency.

provided in Supplementary Table S7). The variants are first classified into SNPs and INDELs (panels A and B, respectively),
and then into common (detected in the population by both pipelines) and unique (detected by either pipeline) variant sets.
High concordance is observed between the pipelines as majority of the variants are detected by both pipelines (solid lines). In
order to distinguish between the genotyping efficacy of these methods, common variants are further split into two categories as
AFGRAF > AFGATK and AFGATK > AFGRAF (dotted lines). The former represents the number of variants that are detected in the
population by both methods but genotyped with a higher sensitivity by the graph pipeline (and vice versa for the latter). Among
the variants observed in the population with a high frequency (≥ 5%), graph pipeline is able to genotype approximately 120k
INDELs and 119k SNPs with a higher AF, where as the same numbers for GATK is 106k INDELs and 51k SNPs. Additionally,
it is noteworthy that the graph-based approach identifies approximately 6 times as many unique variants as the linear method.

In order to predict the potential clinical significance of the variants detected by the graph-based approach and rule out any
bias in variant calling sensitivity towards specific genomic regions or prevalence in population, we stratify all detected variants
detected into exonic, intronic and intergenic regions. We further divide the variants into three frequency bins as singleton
(observed in only one sample), rare (AF < 5% but observed in multiple samples) and common (AF ≥ 5%), and compare the
results to the linear approach BWA+GATK. Table 1 shows the counts of variants unique to each pipeline (detailed variant
counts are provided in Supplementary Table S5).

The use of Pan-African graph leads to the detection of 3 to 4 times more high and moderate impact variants in exonic
regions for all frequency bins, compared to the BWA+GATK pipeline. Specifically, there are 429 and 9457 more high and
moderate impact variants, respectively, detected by the graph pipeline. The contrast between the linear and the graph approaches
increases in intronic and intergenic regions although the total number of high and moderate impact variants is lower in these
regions. Similar trends are observed for low impact and modifier mutation events in all regions. These observations indicate that
the Pan-African graph improves the sensitivity across the whole genome without any bias towards a specific genomic region.

Graph-based analysis as an alternative to joint calling
The standard practice for analyzing the sequencing data of a large pool of whole-genome or whole-exome samples is using the
variation information at the population level to inform genotyping at the individual level. This is commonly achieved by using
joint calling: a method that produces a genomic VCF (GVCF) file from read alignments for each sample independently, and
then jointly genotypes all GVCF files together39. The result is a multi-sample VCF file containing genotype information for all
samples at each loci where there is variation in the population. One of the fundamental advantages of joint calling is that it can
recover missing variants and correct genotypes in individuals by considering the rest of the population. The recommended
step after joint calling is the variant quality score recalibration (VQSR): a machine learning based variant filtration tool that is
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Region Impact Singleton
(Graph)

Rare
(Graph)

Common
(Graph)

Singleton
(GATK)

Rare
(GATK)

Common
(GATK)

Exonic HIGH 935 259 145 419 294 197
Exonic MODERATE 5855 3582 2944 1371 1028 525
Exonic LOW 2533 1698 1497 570 404 270
Exonic MODIFIER 36781 29140 20203 5354 6949 2841
Intronic HIGH 297 218 158 39 31 17
Intronic LOW 1310 982 730 159 171 133
Intronic MODIFIER 1239286 998546 404136 255666 321315 92814
Intergenic MODERATE 458 389 206 100 102 17
Intergenic MODIFIER 1575710 1287305 831713 240360 300409 99425

Table 1. Functional impact of detected variants that are unique to each pipeline. Variants are split based on their
occurence; Singleton (observed in a single sample), Rare (AF < 5%) and Common (AF ≥ 5%).

effective on large number of samples39.
A population-specific graph reference readily captures the population’s genetic diversity and therefore it is able to utilize

this information not just in variant calling but also in read alignment, unlike the standard joint calling approach. To measure
how these two approaches compare to each other, we extract the variants that are recovered/corrected by the BWA+GATK joint
calling pipeline, i.e. variants that would have been missed with single sample calling, and look at the concordance of these
variant calls with the calls made by the graph-based approach. The variants are classified by VQSR as PASS and non-PASS,

20% 0% 40% 80%

Pan-African-5

Pan-African-4

Pan-African-3

Pan-African-2

Pan-African-1

Pan-African-0

Pan-Genome

non-PASS PASS

SNP
INDEL

Figure 12. Concordance between GATK joint calling and population-specific graph approach. Percent of loci called by
the graph pipeline for the variants rescued in traditional joint calling. Results are split based on the filtration output of VQSR.

indicating whether or not they pass the filtration criteria to be considered as high quality variant calls. The percentage overlap
of these recovered/corrected genomic loci with the calls made by each graph pipeline is shown in Figure 12. The Pan-African 5
graph is able to genotype almost 80% of the variants recovered by traditional joint calling, without the need of a post-processing
step, while calling less than 20% of the variants filtered out by VQSR. Since a population-specific graph contains variants
relevant only to the population under study, it can provide both sensitivity and specificity. All population-specific graphs after
the second iteration show similar concordance with respect to joint calling. It is also noteworthy that even the Pan-Genome
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graph provides most of the improvements provided by joint calling. The detailed breakdown of variant counts for each genotype
and variant type is provided in Supplementary Table S6.

Discussion
The conceptual distinction between the nucleotide diversity within a population and the absolute divergence from a reference
sequence plays a decisive role in setting the expectations for the accuracy of sequencing data analysis and approaches that utilize
novel reference structures such as genome graphs. Despite the quantitative similarity, these two metrics are fundamentally
independent. Nucleotide diversity measures the average genetic distance between any pair of individuals from the same
population and therefore carries a biological meaning. In the context of NGS, the reference genome is used only to have
an intermediate representation of an individual’s genome, therefore it does not influence, at least theoretically, the diversity
measurement. On the other hand, absolute divergence is the genetic distance to an arbitrarily defined DNA sequence (GRCh38
in this case), and its value can range from very low to very high for populations with a similar diversity, as empirically shown in
Figure 3. Although it does not have a biological foundation, the absolute divergence significantly influences the performance of
bioinformatics methods. Standard approaches can suffer from a loss of accuracy when used on divergent populations, which is
usually reflected in increased reference bias in alignment and decreased variant call sensitivity. The variant curation method for
graph construction presented in this study lays out a procedure for sample selection that is based on the population’s genetic
diversity. The representativeness of the resultant genome graph is also calculated with associated true and false positive rates.
We expect that the improvements obtained from a genome graph will be more dramatic for divergent populations. We have
tested the graph construction method on the African population which is both the most diverse and the most divergent among the
five populations in the 1000 Genome dataset. While exemplifying the suitability of genome graphs for large scale sequencing
projects, the iterative graph construction approach emphasizes the importance of extracting genetic information directly from
the cohort under study and making the graph reference more tailored to the cohort. Transitioning from the linear human
genome reference GRCh38, which is the least specific reference, to a pan-genome and finally to a set of population-specific
graphs is shown to improve secondary analysis on multiple fronts. We expect this improvement trend to continue as graphs are
further tailored to sub-populations or even smaller groups of individuals with higher genetic similarity, assuming the number of
samples in the group remains sufficiently large to capture the genetic context.

There are several pitfalls faced during the construction of a graph reference. With an aim to address these, our graph
construction method takes into account the possibility of introducing ambiguity to the reference genome as more variants
are added and resolves the culpable graph paths. This is a crucial step regardless of the types of variants being added to the
graph; we have observed in the construction of Pan-African graphs that even a few SNPs might cause undesirable amounts of
read multi-mapping. Moreover, great care should be exercised if large variants such as SVs are being added to the graph to
make sure that they do not have high similarity to the reference genome or to each other. These control mechanisms lead to an
effective graph construction with alignment benefits such as higher rate of informative reads and reduced reference bias, which
remains an obstacle for linear methods, especially in genomic studies of under-represented populations. Since the applicability
of our graph construction method (see Figure 5) is not limited to the specific tools used in this study, we expect that similar
improvements can be obtained for other graph-based bioinformatics toolkits.

We have shown that population-specific genome graphs facilitate the detection of more variants and genotyping of SVs
at the population scale. We have been able to identify thousands of functionally important variants in the exome that are
completely missed by the standard BWA+GATK pipeline. Additionally, we have detected significantly more novel SNPs and
INDELs when compared against dbSNP database release v154 (see Supplementary Table S4). Further studies are required
to truly understand the impact of these variants for clinical applications. Another advantage of population-specific graphs is
that they can readily provide the sensitivity and specificity improvements expected from joint calling without the need for
simultaneous processing of all samples in the cohort. This also removes the computational burden faced by joint calling when
applied to large cohorts on the order of tens of thousands of whole genome samples.

Methods
Nucleotide Diversity and Absolute Divergence
Graphs rely on enhancing linear reference with common polymorphisms existing within a population. Therefore it is important
to estimate the level of polymorphism existing within a population (diversity) as well as how much the population differs from
the linear reference (divergence).

Polymorphism within a population is commonly measured with nucleotide diversity defined by Nei and Li in 197947.
This measure calculates the average number of nucleotide differences between two sequences for all possible pairs within
a population. Since variant call format defines sequence differences with respect to a common linear reference, nucleotide
diversity can simply be calculated from variant calls of samples from a population. For a given variant locus, diversity
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contribution will be sum of the number of base differences between two alleles weighted with respect to their occurrence
frequencies over all possible allele pairs at that loci. Diversity for a genomic region will be the sum of all diversity contributions
from variant loci in the region divided by the size of the region.

Diversity =
∑variant loci ∈R ∑i, j 6=i

|i|| j|δi, j
N(N−1)

|R|
(1)

where i, j are the distinct alleles at given loci, |i| is the number of occurrences for particular allele, δi, j is the edit distance
between two alleles, N is the total number of alleles at given loci and |R| is the number of bases within the genomic region.

Divergence is similar to diversity, but instead of measuring the differences between two samples from the population, each
sample in the population is compared against the linear reference. Therefore the divergence contribution at a variant locus
is average nucleotide differences between an allele and the reference weighted by the occurence frequencies of those alleles.
Divergence within a genomic region is then the sum of all divergence contributions divided by the size of the region.

Divergence =
∑variant loci ∑i

|i|δi,r
N

|R|
(2)

where δi,r is the edit distance between allele i and referece allele at that loci.

Calculation of TPR and FPR in Graph Construction
Graphs enhance linear reference by incorporating common variations, therefore variants are selected by a allele frequency
cut-off. Furthermore, since graphs are constructed from a subset of samples from a population, observed allele frequency of a
variant in the subset can differ from the ideal allele frequency in whole population thus resulting in a different set of variants to
be selected for graph. Variants in the graph constructed from a subset can be divided into two groups: true variants (ideal allele
frequency above cut-off) and false variants (ideal allele frequency below cut-off). True positive rate (T PR) is the rate of true
variants with respect to ideal graph size, and similarly false positive rate (FPR) is the rate of false variants with respect to ideal
graph size.

Ideal allele frequency of a given variant can be considered as the occurrence probability of that variant for each allele.
Assuming the occurrence of variant is independent for each allele, number of times a variant is observed in N diploid samples
(2N alleles) follows a binomial distribution with allele frequency as success probability. For an allele frequency cut-off ( fc)
used in graph construction, the probability of adding a variant with true allele frequency f into graph in N samples is then sum
of probabilities where occurrence count results in observed allele frequency larger than cut-off (k/2N ≥ fc).

P(added| f ) = P
(

k
2N
≥ fc| f

)
=

2N

∑
k≥2N fc

(
2N
k

)
f k (1− f )2N−k (3)

T PR can be calculated by the expected fraction of true variants added to graph in N samples divided by the fraction true
variants.

T PR =

∫ 1
fc P(added| f )p( f )d f∫ 1

fc p( f )d f
(4)

Similarly, FPR can be calculated by the expected fraction false variants added to graph in N samples divided by the fraction
of true variants.

FPR =

∫ fc
0 P(added| f )p( f )d f∫ 1

fc p( f )d f
(5)

Additional information
Supplementary information is available.
Competing financial interests: All authors have been employed by Seven Bridges Inc. throughout the period of work for this
study.
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