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Summary 

Transcription factors (TFs) regulate gene expression by recognising and binding specific DNA 

sequences. At times, these regulatory elements may be occluded by nucleosomes, making 

them inaccessible for TF-binding. The competition for DNA occupancy between TFs and 

nucleosomes, and associated gene regulatory outputs, are important consequences of the cis-

regulatory information encoded in the genome. However, these sequence patterns are subtle 

and remain difficult to interpret. Here, we introduce ChromWave, a deep-learning model that, for 

the first time, predicts the competing profiles for TF and nucleosomes occupancies with 

remarkable accuracy. Models trained using short- and long-fragment MNase-Seq data 

successfully learn the sequence preferences underlying TF and nucleosome occupancies 

across the entire yeast genome. They recapitulate nucleosome evictions from regions 

containing “strong” TF binding sites and knock-out simulations show nucleosomes gaining 

occupancy in the absence of these TFs, accompanied by lateral rearrangement of adjacent 
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nucleosomes. At a local level, models anticipate with high accuracy the outcomes of detailed 

experimental analysis of partially unwrapped nucleosomes at the GAL4 UAS locus. Finally, we 

trained a ChromWave model that successfully predicts nucleosome positions at promoters in 

the human genome. We find that human promoters generally contain few sites at which simple 

sequence changes can alter nucleosome occupancies and that these positions align well with 

causal variants linked to DNase hypersensitivity. ChromWave is readily combined with diverse 

genomic datasets and can be trained to predict any output that is linked to the underlying 

genomic sequence. ChromWave’s application is limited only by the user's imagination and 

availability of training data.  
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1 Introduction 

Transcription factors (TFs)and nucleosomes play critical roles in regulating gene expression. 

TFs recognise and bind short, specific DNA sequences and occupy thousands of discrete sites 

in the genome. Nucleosomes on the other hand - comprising a 147bp section DNA wound 

around a histone octamer - cover most of the genome with a preference for GC-rich sequence 

regions. With some exceptions, binding of a stretch of DNA by TFs and nucleosomes is 

generally considered to be mutually exclusive (Hayes and Wolffe, 1992; Zhu et al., 2018). 

Histones are evicted or repositioned to occlude or expose TF-binding sites. Thus, the 

competition between TF and nucleosome occupancies plays an important role in effecting gene 

regulatory outcomes (Almouzni and Wolffe, 1995; He et al., 2013; John et al., 2008, 2011; 

Kaplan et al., 2011; Kim and O’Shea, 2008; Lam et al., 2008; Mirny, 2009; Neph et al., 2012; 

Raveh-Sadka et al., 2012; Svaren et al., 1994). However, genome-wide understanding of DNA 

sequence information that determines the competition between these two sets of molecules  

remains elusive. 

 

Existing sequence-based computational models successfully predicted either TF-binding (e.g. 

via position weight matrices; (Jayaram et al., 2016; Mathelier and Wasserman, 2013; 

Wasserman and Sandelin, 2004)) or nucleosome occupancies individually (e.g. using Hidden 

Markov Models, HMM; (Gupta et al., 2008; Kaplan et al., 2009; Peckham et al., 2007; Segal et 

al., 2006)). HMMs have also been applied to predict competitive multi-factor binding in yeast 

(Ozonov and van Nimwegen, 2013; Wasson and Hartemink, 2009; Zhong et al., 2014) as well 

as logistic regression (He et al., 2013). However, key underlying assumptions of HMMs are 

violated, notably that (i) all DNA-binding proteins and their binding motifs are known, (ii) binding 

sites and probability of binding are fully described by the motif alone, and (iii) the binding 

strength for each protein and each motif is known. HMMs do not allow for easy integration of 

various data types measuring different influences on TF and nucleosome occupancies (e.g. 

DNA-sequence, 3D conformation of the genome, histone marks, DNA methylation). Moreover, 

the computational effort required to compute the right concentrations for even just a few TFs is 

substantial. Such drawbacks limit the accuracy and application of these models.  
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Recent advances in the application of  deep learning in genomics have shown great promise to 

model several signals (often simultaneously) from DNA sequence alone (Alipanahi et al., 2015; 

Angermueller et al., 2017; Avsec et al., 2021; Kelley et al., 2018; Wang et al., 2018; Zeng and 

Gifford, 2017). These results make a unified model that can integrate all these different data to 

predict gene regulation genome-wide conceivable. However, most existing approaches apply 

predictions to bins of 100 nucleotides or more, thus limiting their applications to interpreting the 

effects of local sequence changes such as single nucleotide polymorphisms.  

 

Here, we present ChromWave, a flexible deep learning model to understand the effect of 

genetic variation on DNA binding at nucleotide-resolution. Our approach substantially improves 

the current gold standard of models and alleviates some of their constraining assumptions, such 

as the knowledge of all DNA-binding proteins together with their sequence specificity. Although 

we present ChromWave predicting TF and nucleosome occupancies jointly from DNA 

sequence, the framework is easily extendable to predict other data modalities (e.g. histone 

marks, DNA methylation and so on), or dynamically changing DNA binding profiles.  

2 Results 

2.1 The ChromWave deep-learning architecture 

 

ChromWave is a deep-learning algorithm to predict competing TF and nucleosome-occupancies 

at nucleotide resolution on a genome-wide scale. It is based on Google Deepmind’s WaveNet 

model (van den Oord et al., 2016a) that interprets textual information from many adjacent 

positions to infer an audio output. The input to ChromWave is a genomic sequence and its 

outputs are one or more discretised binding profiles of the same length. The number and types 

of outputs can be varied (for example, TFs v nucleosomes, nucleosomes in different conditions). 

Predictions are conditioned on several kilobases of sequence spanning the region of interest, 

meaning that nucleotides surrounding a site are taken into account. Models are readily trained 

using data from experimental measurements of genomic occupancies (such as ChIP-seq, 

CUT&RUN, MNase-seq or ATAC-seq): data can be presented as processed log-ratio values or 

raw count data with minimal preprocessing (Methods).  

 

ChromWave accepts large sequence regions as input (Figure 1A; “Input”); in the example 

below, training was performed using 5 Kb sequences and predictions were made across whole 

chromosomes. The model applies one layer of convolutions to transform the DNA sequence into 

a series of vectors of the same length (Figure 1B; ”Convolution Layers”). This first layer of 

convolution learns patterns in the DNA sequence that can be considered to be motifs that are 

important for model predictions; we refer to these learned patterns as motif filters (Alipanahi et 

al., 2015). Transfer-learning can be applied at this stage - for instance, to incorporate models 

trained on another data set or on data from another organism - by combining the first 

convolutional layer with a pre-trained layer and concatenating their outputs.   
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Next, to share information across neighbouring regions, we apply multiple layers of dilated 

convolution by stacking residual blocks (Figure 1C; “Residual Blocks”); these can be considered 

the main building blocks of ChromWave. A residual block consists of two dilated convolutional 

layers with exponentially dilating filters, followed by element-wise multiplication. The first 

residual block accepts the concatenated output of the first convolutional layer(s) as input and 

subsequent residual blocks accept the output of the previous one as input. In this way, local 

features in lower dilated convolutional layers are accumulated sequentially to capture 

dependencies between distal sequence locations up- and downstream.  

 

Each residual block produces two outputs: (i) a feature map from the previous residual block to 

be used as input to the next one and (ii) a skip connection that is used to calculate the loss 

function (for the input batch) once all the residual blocks have been processed. Within a residual 

block, the input passes through a gated activation z=sigmoid(x) ⊙ tanh(x), where ⊙ denotes the 

element-wise multiplication (similar to the LSTM gated activation units used in PixelCNN (van 

den Oord et al., 2016b)). The gated activation output is finally summed element-wise with the 

block-input to form the residual. Residuals and skip connections allow faster convergence and 

stable training for deeper networks.  

 

Finally, for each output profile, we apply a width-one convolutional layer with a Rectified Linear 

Unit (ReLU) activation (Figure 1D; “Output”). ChromWave outputs a categorical distribution over 

the discretized binding profile values with a softmax layer, optimized to maximize the negative 

log-likelihood (for example, multi-class cross-entropy) of the data with respect to the 

parameters. In the case of multiple output profiles, the loss function is the sum of the individual 

cross-entropies for each profile. We tune hyperparameters on a validation set and we can easily 

gauge if the model is over- or underfitting, while we use a held-out test set for final validation 

after training. ChromWave predicts binned read counts. However, the distribution of bins tends 

to be highly imbalanced, with most representing the genomic average. To deter the model from 

defaulting to the most frequent bins instead of attempting to predict rarer ones with very high or 

very low read counts,  we apply a weighted multi-class cross-entropy using the 

median/frequency per class as weight (Methods).  

 

 

2.2 ChromWave performs a nucleotide-resolution prediction of TF and 

nucleosome occupancies across the whole yeast genome  

 

We trained a model of TF and nucleosome occupancies for the yeast genome using paired-end 

MNase-seq data from (Henikoff et al., 2011). The dataset contains multiple fragment lengths (1-

200bp) reflecting the diverse footprint sizes of the bound proteins and protein complexes. We 
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separated fragments into long (140–200 bp) and short (1-80bp) groups, corresponding to 

nucleosome and TF occupancies respectively; the short fragments do not distinguish between 

TF types. We used the numbers of read fragments that cover each nucleotide position as the 

measure of nucleosome and TF occupancies (Zhong et al., 2014).  

 

Among numerous alternative transfer-learning strategies tested (Methods), we selected a binary 

classification convolutional neural network that applies 256 convolutional filters of kernel size 6 

to learn nucleosomal sequence patterns around dyads mapped by chemical cleavage (Brogaard 

et al., 2012). The best ChromWave model includes these 256 pre-trained convolutional filters 

and another 256 trainable convolutional filters with kernel size 16. 56  filters were initialised with 

the weights from the  position weight matrices of 28 known nucleosome-displacing transcription 

factors and their reverse complements: Abf1,  Cbf1, McM1, Rap1, Reb1, Orc1, Asg1, Azf1, 

Bas1, Ecm22, Ino4, Leu3, Rfx1, Rgm1, Rgt1, Rsc3, Sfp1, Stb4, Stb5, Stp1, Sum1, Sut1, Tbf1, 

Tbs1, Tea1, Uga3, Ume6, and Urc2 (Yan et al., 2018).  

 

Figure 2A provides the first view of ChromWave’s prediction in two example regions. The model 

has produced two output profiles: one for nucleosome occupancies and another for TF-binding. 

The two examples illustrate the excellent agreement of the predicted occupancies with the 

MNase-seq signal. To measure the model’s performance across the entire yeast genome, we 

compute the geometric mean of Pearson’s correlation coefficients between the predicted 

occupancies and smoothed MNase-seq read counts for nucleosomes and TFs (Figures 2B and 

S1A).  It is immediately apparent that ChromWave achieves an excellent fit across all 

chromosomes in both the TF and nucleosome profiles (genome-wide Pearson correlation of 

0.65 and 0.49 for TFs and nucleosomes respectively) with no apparent biases towards specific 

chromosomal regions such as centromeres and telomeres (Figures 2B and S1A). Black regions 

in Figures 2B and S1A indicate regions where no MNase-seq reads were mapped and thus no 

observed profile could be compared against. However, ChromWave imputes these regions for 

both TFs and nucleosomes with highly plausible binding profiles (Figure S1B). 

 

2.3 ChromWave successfully predicts the competition in DNA occupancies 

between TFs and nucleosomes 

 

Figure 2A provides encouraging examples that ChromWave is able to model the competition for 

DNA-binding between nucleosomes and TFs. The tracks show several nucleosome-free regions 

(5’ NFRs) just upstream of transcriptional start sites (TSSs; indicated by stippled boxes). These 

regions are known distinguishing features between in vitro and in vivo nucleosome occupancy 

maps that arise through binding of TFs and transcription initiation factors. To assess this more 

generally, we examined occupancy patterns in the promoters of protein-coding genes: a meta-

profile of TF and nucleosome occupancies demonstrates that ChromWave accurately captures 

their profiles around TSSs (Figure 2C).  
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To assess whether ChromWave has learned a general promoter architecture rather than an 

implicit competition between TFs and nucleosomes, we tested ChromWave’s predictions 

against genome-wide in vivo nucleosome dyads identified in a independent chemical cleavage 

(Chereji et al., 2018) and ATAC-Seq studies (Schep et al., 2015). Whereas ATAC-Seq lacks 

coverage in heterochromatin (and thus, defined dyads are located in accessible chromatin only), 

chemical cleavage maps dyads genome-wide. ChromWave correctly predicts nucleosome 

occupancy when comparing its predictions with derived dyads from both datasets,  including the 

phasing of nucleosomes on either side  (Figure 2D). Notably, there is a depletion of TF signal 

directly on the dyad, indicating that ChromWave has learned that either TFs or nucleosomes 

can be bound at a DNA-site at a time.  

 

2.4 ChromWave learns known and unknown regulatory motifs associated 

with DNA occupancy competition in S.cerevisiae   

 

ChromWave’s first convolutional layer has learned the DNA sequence patterns that are 

important in predicting nucleosome and TF occupancies. Since the short fragments in the input 

MNase-seq data do not distinguish between TF types, we decided to inspect the learned 

sequence motifs to see if we could match the predicted occupancy positions to specific TFs.  

We examined the first convolutional layers of ChromWave that take the one-hot encoded DNA-

sequences as their input. Each filter can be summarised as a conventional position frequency 

matrix and visualised as a seqlogo plot as previously described (Alipanahi et al., 2015; 

Angermueller et al., 2017). We searched these matrices against known yeast TF motifs (Fornes 

et al., 2020; Gupta et al., 2007; Hume et al., 2015; MacIsaac et al., 2006; Pachkov et al., 2013; 

Zhu and Zhang, 1999). In total, 36 of 256  filters matched known motifs (q-value < 0.05); hence, 

not all 56 filters that were initialised with TF motifs and additional filters were augmented during 

training to capture information that is useful for the prediction task . As a measure of 

importance, we set each filter matching a TF motif o to zero and computed the maximal 

increase (‘gains’) and decrease (‘loss’) in predicted TF occupancies within 300bp windows 

compared with predictions of the full model. A high importance value indicates a large 

contribution to predictions: a ‘loss’ value corresponds to a loss of a predicted TF peak upon 

deletion of the filter, whereas a ‘gain’ represents  an increase in predicted occupancy.  

 

Many of the matched and high-scoring motifs correspond to those of sequence-specific TFs that 

regulate nucleosome occupancy in 5’ NFRs such as Reb1 and Abf1, as well as poly-(d:A,d:T) 

stretches (Figure 3A). These were also identified as some of the best-learned motifs of the 

convolutional layer (measured as the information content in the derived motif) together with 

several unknown motifs capturing lower order sequence composition such as GC content. We 

also found additional motifs associated with TF binding that were deemed unmatched including 

several degenerated versions of the Reb1, the Rap1 motif, poly-(d:A,d:T) stretches, and TATA-

box motifs. 
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2.5 ChromWave uses regulatory motifs to model the competition between 

transcription factors and nucleosomes  

 

In addition to chromatin remodelers, a class of abundant and essential TFs including Abf1, 

Rap1, Reb1 and Cbf1 drive promoter nucleosome exclusion around TSSs (Badis et al., 2008; 

Ganapathi et al., 2011; Hartley and Madhani, 2009; Kent et al., 1994; Tsankov et al., 2011, 

2010; Yarragudi et al., 2004). ChromWave’s learned sequence patterns include motifs for these 

TFs and these filters have strong influence on ChromWave’s predictions (Figure 3A; Cbf1 did 

not have a good match).  

 

To assess ChromWave’s abilities to model the competition between nucleosomes and specific 

TFs, we extracted previously published binding sites for Abf1, Rap1, Reb1 and Cbf1 derived 

from ChIP-exo assays (Rossi et al., 2018) and aligned ChromWave’s outputs (Figure 3B). 

ChromWave predicts remarkably accurate nucleosome exclusion and TF occupancies at these 

sites with the largest effects seen for Rap1 and Reb1(Figure 3B). To understand how 

ChromWave relies on the learned TF motifs for its predictions, we set the weights of filters that 

had learned the motifs for Abf1, Rap1, Reb1, or Cbf1 individually to zero to mimic knock-out 

mutants. Figure 3C displays the difference in predictions between the mutant and wild-type 

conditions. For all four TFs, ChromWave predicts a loss of TF-occupancies and a corresponding 

increase of nucleosome occupancies. Taken together, these results indicate that ChromWave 

has learned that the competition between nucleosomes and TFs is encoded in the underlying 

DNA-sequence.  

2.6 ChromWave computationally recapitulates an experimental study of an 

unwrapped nucleosome between the Gal1 and Gal10 genes 

 
Given these encouraging genome-wide results, we set out to investigate ChromWave’s 

performance at a detailed resolution on remodelled nucleosomes. One of the most abundant 

remodelers in yeast is Remodeling the Structure of Chromatin (RSC). In the Henikoff training 

data, a RSC-nucleosome complex is identified by shorter reads than for nucleosomes alone, as 

the DNA is unwound and becomes more susceptible to MNase digestion. Predicted 

occupancies for these remodelled nucleosomes thus are likely to be present in our TF profiles 

rather than the nucleosome profiles. It is therefore not straightforward for ChromWave to identify 

these pile-ups of shorter reads as nucleosome peaks. 

 

We focused on the GAL4 UAS in the GAL1-GAL10 region described as containing a partially 

unwrapped nucleosome which is remodelled by RSC (Floer et al., 2010). This nucleosome is 

apparent in the Henikoff MNase-seq dataset obtained at shorter digestion times (Henikoff et al., 

2011). This peak has nearly disappeared in the 20-min digestion sample which we used for 

training ChromWave, whereas a peak presumably representing RSC or the RCS-nucleosome 

complex appears in the TF profile. As expected, ChromWave’s predictions on the yeast 

regulatory locus GAL4 UAS follow closely the training data: it predicts a broad TF peak 
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representing the RSC-nucleosome complex directly in the UAS with strongly positioned 

nucleosomes either side (Figure 4A).  

 

The locus encodes three Gal4-binding sites as well as three putative binding sites of the RSC 

complex (Floer et al., 2010). To quantify how the underlying motifs and the surrounding 

sequence influences ChromWave’s prediction, we examined the changes in prediction that 

arose upon perturbing the input sequence through in silico mutagenesis. At every nucleotide 

position in the GAL4 UAS, we considered mutations to each of the three other bases and 

computed changes in the predicted TF and nucleosome occupancies. For each position and 

each possible base, we then summed across all changes in the GAL4 UAS (Figure 4B).  

 

The largest effect is seen in a section region harbouring the 5’ most Rsc3 motif indicated in 

Figure 4B. Mutating the bases of the Rcs3 consensus motif contributed to the most extreme 

prediction changes in the TF profile: targeted disruption of the RSC motif by reducing the GC-

content of the locus decreased the TF prediction in the shaded region dramatically. This 

putative binding site is also where RSC shows its maximal cross-linked ChIP signal (Figure 4D) 

(Floer et al., 2010). 

 

Next, we simulated the deletion of a 61bp sequence containing this RSC3 binding motif  

performed by Floer (Floer et al., 2010). ChromWave correctly predicts a loss of TF occupancy at 

the deleted site, and introduces a new narrower peak covering the three GAL4 motifs. There is 

a dramatic increase in a narrow and strongly positioned nucleosome on the UAS, as well as 

nucleosomes encroaching from either side of the UAS (Figure 4C). These nucleosomes now 

cover hypersensitive sites in wild-type that were reported to be increasingly occluded by 

nucleosomes upon RSC inactivation (Floer et al., 2010).  Comparison with the molecular 

measurements by Floer highlights the remarkable accuracy of the ChromWave predictions 

(compare Figure 4D showing results from (Floer et al., 2010)).  

2.7 Using ChromWave to quantify sequence patterns that differentiate 

between in vitro and in vivo nucleosome maps 

 

Often only nucleosome-sized MNase-seq fragments are retained in publicly available datasets 

and it will not always be possible to train a ChromWave model on both TF and nucleosome 

profiles. Therefore we set out to assess the predictions that can be made using models trained 

on different MNase-seq datasets.  

 

Kaplan et al. published in vitro and in vivo nucleosome maps for the yeast genome (Kaplan et 

al., 2009), the former gauging the effects of DNA sequence alone on nucleosome-positioning 

and the latter including the impact of trans-acting factors. Nucleosome occupancy was 

measured as the log-ratio between the number of MNase-seq reads (of length ~ 147 bp) at a 

nucleotide position and the genome-wide average. In the same study, a Hidden Markov Model 

(HMM) trained on in vitro data was shown to predict in vivo nucleosome organisation with good 

accuracy, albeit with differences at transcription start sites (TSSs).  
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We first trained an in vitro ChromWave model using the in vitro MNase-seq dataset. We then 

trained an in vivo ChromWave model using the in vivo dataset, but applying the pre-trained 

convolutional filters of the in vitro model as fixed filters (i.e. non-trainable), together with a 

further 256 trained convolutional layers. This approach gives us a direct way to detect 

differences in the learned sequence patterns between the in vitro and in vivo models.  

 

Figure 5A shows examples of predictions from ChromWave’s in vitro and in vivo models and the 

Kaplan HMM (Kaplan et al., 2009), each producing a single output profile representing 

nucleosome occupancies. Overall, there is excellent agreement between all three model 

predictions and the MNase-seq data, with expected differences between the in vivo and in vitro 

profiles around TSSs (stippled boxes). Figure 5B gives an overview of ChromWave’s 

predictions across the entire genome: the predictions show exceptionally good agreement with 

the observed data across all chromosomes with no apparent biases towards specific regions 

such as centromeres and telomeres (average Pearson correlation with observed data of 0.9 and 

0.89 for in vitro- and in vivo nucleosomes respectively). The lower correlation of the in vitro 

prediction on chromosome 10 is likely caused by artefacts in the original MNase-seq data 

(Figure S2B) and has been reported previously for other nucleosome positions models (Liu et 

al., 2016; Zhang et al., 2009). We also compared the predicted profiles with independently 

generated in vivo ATAC-seq datasets (Schep et al., 2015)(Brogaard et al., 2012; Chereji et al., 

2018)(Schep et al., 2015). Both ChromWave models perform better than the HMM, and the in 

vivo ChromWave model is far superior to the in vitro models (Figure S2A).  

 

Finally, to test the accuracy of the models in predicting nucleosome positions, we aligned the 

ChromWave predictions to the nucleosome dyad positions defined by chemical cleavage 

(Brogaard et al., 2012; Chereji et al., 2018) or ATAC-Seq (Schep et al., 2015)). Both models 

learned the strongly positioned nucleosome at the dyad: the in vivo model produced a phasing 

pattern either side of the central nucleosome that is similar to the TF+nucleosome ChromWave 

model (Figures 5C and S2C). However, the in vitro model failed to capture the phasing pattern. 

This is in line with the original MNase-seq data (Figure S2D) previous experimental 

observations that phasing is lost if certain factors such as remodelers RSC and SWI/SNF and 

general regulatory factors Abf1 and Reb1 are absent (Gkikopoulos et al., 2011; Krietenstein et 

al., 2016; Zhang et al., 2011). This is also reflected in the accuracy of the NFR predictions 

around TSSs: this characteristic depletion in average nucleosome occupancy in vivo is correctly 

predicted by the in vivo ChromWave model, together with the phasing of nucleosome both up- 

and downstream of the NFR in contrast to both the HMM and the in vitro ChromWave model 

(Figure S2B). 

 

2.8 Determinants of in vivo nucleosome occupancy encoded in 

the DNA sequence 
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The in vivo ChromWave model uses the pre-trained filters of the in vitro model as fixed 

convolutional filters; thus the trainable parameters have been used to learn subtle differences 

between the in vivo and in vitro nucleosome maps. To understand what additional information 

the in vivo model has learned, we inspected the convolutional filters that are unique to this 

model compared with the in vitro one.  

 

We ranked the 256 in vivo-specific motif filters according to their importance, computed using 

their maximum output values (maximal activation) for each 2Kb DNA-sequence input (see 

‘Convolutional Layers’  in Figure 1 where the output of the filters when applied to a one-hot 

encoded DNA-sequence is annotated as a blue square before being concatenated). The 

maximal activation provides a position-independent measure of the occurrence of the learned 

motifs (or highly similar motifs) for each DNA input sequence. To interpret the impact of motifs 

on ChromWave’s nucleosome predictions, we calculated correlations between the vectors of 

filter activation values for an input sequence and the predicted nucleosome occupancy. A 

positive correlation indicates that the presence of a sequence pattern matching the motif is 

favourable to nucleosome occupancy, whereas a negative correlation indicates that it is 

unfavourable. We used the mean of these correlations across all input sequences to interpret 

the effect of each filter across the whole genome.  

 

In Figure 5D, we show a PCA plot of the maximal activations of the in vivo-specific filters across 

all DNA-sequence windows, with each point coloured according to their correlations. We can 

see that motifs with similar GC-content tend to co-occur in the same input sequences with 

similar maximal activations. There are two large clusters: AT-rich motifs which are negatively 

correlated with nucleosome occupancy, and GC-rich motifs that positively correlate with 

occupancy. Among the AT-rich group are known motifs for sequence-specific chromatin 

remodelers such as Stb3, Sfp1, Dig1, Rlm1, and several TATA-box motifs. Poly-(d:A,d:T) 

stretches have been reported to deter nucleosome formation due to the rigidity of the DNA and 

thus are predictive of nucleosome binding (Segal and Widom, 2009). GC-rich filters include 

motifs for TFs whose DNA-binding correlate with nucleosome occupancy (for example Hal9, 

Cbf1 and YLL054C; (Charoensawan et al., 2012) and other motifs predominantly found in the 5’ 

NFRs, echoing many of the patterns learned by the TF+nucleosome ChromWave model (for 

example Gal80, Cbf1 and Pho2) (Figure 5D).   

 

To compare the learned motifs across the different ChromWave models more systematically, 

we computed similarity scores and clustered the convolutional filters (excluding the pre-trained 

filters of each model) as previously described by Vierstra (Vierstra et al., 2020); Supplementary 

Table 2). 63 of the in vivo-specific 256 filters comprise similar motifs to those in the 

TF+nucleosome ChromWave model. Among the other 183 in vivo-specific filters, only 2 - both 

reflecting RSC motifs - clustered with similar motifs found in the in vitro filters. The other in vivo-

specific filters included an additional RSC motif as well as sub-motifs of PHO4/RTG and 

MCM1/PDR1 (Figure S3). 

 

Given the disparities in learned motifs, we hypothesized that the in vitro ChromWave model 

would not be able to correctly model nucleosome eviction at binding sites of general regulatory 
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factors, whereas the in vivo model would be able to model this competition correctly. Indeed, 

when we aligned the predictions again around known binding sites of the Abf1, Rap1, Reb1 and 

Cbf1(Rossi et al., 2018) we observed a stark difference between the predictions of the two 

ChromWave models: the in vitro model predicts a nucleosome directly on the binding sites of 

the TFs, while the in vivo model was able to learn nucleosome depletion on the binding sites, 

albeit not as well as the ChromWave model trained jointly on TF and nucleosome data (Figure 

5E).  

 

In summary, although ChromWave when trained on in vivo nucleosome occupancy maps can 

recover in vivo nucleosome positions to high accuracy, the missing information on TF binding 

hinders modelling the competition of nucleosomes with other sequence-driven binding events.  

 

2.9 Predicting nucleosome occupancy in higher organisms with 

ChromWave 

 

Nucleosome occupancy models trained on yeast data have been reported to produce 

predictions that correlate well with nucleosome maps from other organisms (Awazu, 2017; 

Gupta et al., 2008). However, we found that applying the in vitro and in vivo ChromWave 

models to 23,156 human promoter regions produced terrible agreement with MNase-seq 

datasets (Gaffney et al., 2012; Zhao et al., 2018), with average Pearson correlation coefficients 

of 0.002 and -0.0003, respectively.  

 

We therefore trained a new ChromWave model to predict in vivo nucleosome occupancies 

around human promoter sequences (+/-1KB around TSSs; Methods). We used transfer learning 

across organisms: the first convolutional layers of a yeast in vivo nucleosome occupancy 

ChromWave model as a set of pretrained layers. The final model had only 32 additional trained 

convolutional layers and achieved excellent predictions across all promoters with similar 

performance across the training, test and validation sets (Figures 6A and S4A).  

2.10 ChromWave learns known and unknown motifs associated with 

nucleosome binding and DNA-methylation in human promoter regions 

 

Again we visualised the sequence motifs learned by the first convolutional layer and compared 

them to known motifs (JASPAR CORE vertebrates 2016, JASPAR POLII and HOCOMOCO 

v.10). We then repeated the PCA and correlation analysis described above (Section 2.8) to 

elucidate the co-occurrence of motifs and their impact on nucleosome occupancy predictions. 

As for the yeast in vivo model, ChromWave learned AT-rich motifs, including the TATA-box 

binding motif, that anti-correlate with nucleosome occupancies in human promoters, and GC-

rich motifs that are positively correlated (Figure 6B).  
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A big difference between yeast and human genomes is the potential for cytosine methylation, 

which at promoters causes transcriptional repression. It is associated with certain sequence 

patterns; for instance, CG dinucleotides repeats (CpGs) and other motifs have been shown to 

be predictive of DNA methylation states (Angermueller et al., 2017). Methylation states affect TF 

and nucleosome occupancies, high density dinucleotide stretches such as CpG islands become 

densely occupied by nucleosomes upon methylation (Collings and Anderson, 2017; Collings et 

al., 2013). CpG-methylation has been shown in vitro to affect the binding of most human TFs to 

DNA, for some increasing and for some TFs decreasing binding (Yin et al., 2017).  Although 

ChromWave was not given any information on methylation, the model has successfully learned 

the interplay between CpG patterns, methylation and nucleosome organisation (Figure 6B). For 

instance, learned motifs include a CpG pattern (CG) which is associated with DNA methylation 

in humans (Schübeler, 2015), and the motifs of TFDP1, SP3 and MNT, three proteins that are 

excluded upon methylation of open chromatin (Bartke et al., 2010). 

 

We hypothesized that a model trained only on promoters might lack the information necessary 

to predict nucleosome occupancies in other types of genomic regions. For instance, CTCF-

binding sites in intergenic regions are known to be depleted of nucleosomes (Kim et al., 2007). 

We asked ChromWave to make predictions around experimentally identified CTCF sites (Davis 

et al., 2018; Zhang et al., 2020), and in stark contrast to the MNase-seq data, the model placed 

nucleosomes directly over the CTCF sites irrespective of the binding strength of CTCF (Figure 

S4B).  

2.11 Genetic components of promoter architecture in the human genome 

 

To assess the impact of sequence changes at human promoters, we used ChromWave to 

prioritise single nucleotide polymorphisms (SNPs) by their predicted impact on nucleosome 

positioning.  

 

First, we predicted the effects of sequence changes at DNase I sensitivity quantitative trait loci 

(dsQTLs; 1366 of 6057 fell within +/-1kb around TSS; Degner et al., 2012). These are genetic 

variants that modify chromatin accessibility as measured by DNase I sequencing. Although 

many dsQTLs did not affect predictions, we identified 30 promoters where ChromWave’s 

chromatin accessibility predictions based on MNase-seq data were highly affected by dsQTLs 

(Figure 7A and Supplementary Table 3). We used the annotation of DNA-Hypersensitive Sites 

(DHS) from the same study  (Degner et al., 2012) to annotate SNPs inside and outside of 

DHSs. Of the 30 dsQTLs that we identified to change chromatin accessibility, 7 were inside an 

annotated DHS, whereas the rest acted distally.  

 

We focused on dsQTLs that changed ChromWave’s prediction locally at the dsQTL itself (Δ 

prediction SNP-WT > 0 or  Δ prediction SNP-WT < 0), as well as  a dramatic effect on the 

overall nucleosome occupancy  profile measured by the Pearson correlation coefficient (PCC) 

between the predicted WT and SNP-perturbed profiles (1-PCC>0.05). We identified 17 dsQTLs 

leading to gains in nucleosomes thus decreasing chromatin accessibility (1-PCC > 0.05 and Δ 
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prediction SNP-WT > 0) and 13 dsQTLs causing losses (1-PCC > 0.05 and Δ prediction SNP-

WT < 0).  

 

The promoter of the ZBTB11-AS1 gene displays one of the largest changes in both the local 

prediction and the overall binding profile (1-PCC > 0.15,  Δ prediction [C>T] - WT > 4). The 

predictions of the promoter sequence with different bases substituted at the dsQTL are shown in 

Figure 7B. The reference genotype (C) and a C>G change at the dsQTL yield the lowest 

predicted local nucleosome occupancy at the dsQTL, whereas C>A and C>T changes cause 

dramatic increases in predicted occupancies, with a strongly positioned nucleosomes directly on 

the dsQTL (Figure 7B, top panel). The PLEKHM3 promoter is an example of a loss in 

nucleosome occupancy following a single nucleotide change (Figure 7C): alteration from the 

reference genotype (A) to C or G at the dsQTL removes a weakly positioned nucleosome (1-

PCC >0.09,  Δ prediction [A>G] - WT < -3). An A>T change does not alter the profile (Figure 7C, 

top panel).   

 

2.12 Changes in nucleosome-binding in human promoters induced by 

simple sequence changes are restricted to ‘hot spots’ which cover 

previously identified dsQTLs  

 

To assess the impact of sequence changes in the whole promoter region on nucleosome 

occupancy, we computed the maximal gain and loss in prediction at each position given all 

possible base changes along the sequence for all promoter regions in the dataset.  

 

The bottom panels in Figures 7B and 7C show these maximal gains and losses for the two 

example promoters of ZBTB11-AS1 and PLEKHM3. In both promoter regions, not all 

nucleosome position predictions are dynamic under sequence changes. Instead, the predicted 

decrease and increase in prediction is restricted to small regions in the promoters (some of 

which coincide with the position of the dsQTL), while most nucleosome occupancy predictions 

are robust to individual base changes.  

 

These observations suggest that most nucleosome positions in human promoter regions are 

robust to sequence changes while some can be altered considerably through simple base-

changes. Figure 7D shows individual and average profiles of maximal gains and losses of 

nucleosome occupancy prediction given all possible base-changes in all promoter regions in the 

dataset. The nucleosome occupancy of around two thirds of human promoters are affected by 

single nucleotide changes in 1000bp around the TSSs in either gain or loss (Figure 7D).  These 

changes of occupancy are indeed not randomly distributed in the promoters. Instead, given the 

right single nucleotide changes (compared with wild-type), more nucleosomes bind close to and 

directly on the TSS (Figure 7D left). However, given the right single nucleotide changes 

(compared to wild-type) nucleosomes are lost just up- and downstream of the TSS, while 

nucleosomes directly on the TSS are more stable (Figure 7D right).  
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3 Discussion 

 

We presented a deep learning framework called ChromWave to model DNA-binding profiles of 

nucleosomes and TFs simultaneously at nucleotide resolution to high precision and deployed it 

genome-wide in yeast across different data sets and experimental methods as well as in human 

promoter regions. ChromWave learned intricate sequence grammar of DNA accessibility and 

competition between DNA-binding proteins.  ChromWave surpasses with its precision, scope 

and flexibility current state of the art methods to predict TF and nucleosome binding from DNA-

sequence alone. We demonstrated and visualised how ChromWave identifies and uses specific 

sequence features that encode information for DNA-binding and the competition between 

nucleosomes and TFs.  

 

We showed that ChromWave recapitulates computationally results from a previous study that 

was based on lab experiments (Floer et al., 2010) to determine TF and nucleosomes binding in 

the well-studied GAL1-GAL10 locus. Taken together, our results match the experimentally 

derived interpretation in (Floer et al., 2010): a small (partially unwound) nucleosome is 

positioned at the locus UASg by the RSC complex thereby facilitating Gal4 binding to its side. 

Upon deletion of the RSC binding site, nucleosomes encroach over the UAS and compete with 

Gal4 for binding. These results illustrate how ChromWave can be used to generate and test 

hypotheses in silico before testing these in the lab.  

 

In the human genome, ChromWave lets us annotate dynamic hotspots where nucleosome 

occupancy is highly affected by simple base changes in the DNA-sequence compared with the 

rest of the promoter region. By comparing models that were trained on different types of data, 

we have qualified sequence patterns that allow ChromWave to correct in vitro nucleosome 

positions to in vivo. In addition, these experiments have shown that lacking TF-binding 

information severely impedes the capability of the model to predict nucleosome positions to a 

high precision and the models are unable to capture the competition between different DNA-

binding factors.  

 

Previous work to model TF- and nucleosome-binding at nucleotide-resolution has been 

constrained to the usage of HMMs in the yeast genome (Ozonov and van Nimwegen, 2013; 

Wasson and Hartemink, 2009; Zhong et al., 2014). An advantage of these models over 

ChromWave is that they can resolve which TF is predicted to be bound at a certain position 

based on the assumption that the TF has a well annotated motif. However, due to the 

computational complexity of determining concentrations for all used TFs in the model, these 

studies had to constrain their models to only a small set of TFs (158 TFs were used in (Ozonov 

and van Nimwegen, 2013), 89 in (Wasson and Hartemink, 2009), and only 42 in (Zhong et al., 

2014)). Nevertheless, our work was inspired by these early studies; in fact we used the same 

training data and similar pre-processing methods as in (Zhong et al., 2014) albeit the former 

study was constrained to promoter regions. At the expense of the ability to distinguish different 

TF binding events, ChromWave can predict nucleosome- and TF-binding genome-wide, and 

can resolve binding events not directly explainable by an annotated motif.  
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Our work also builds on the success of recent deep learning methods that model DNA-binding 

and gene expression, e.g. (Alipanahi et al., 2015; Kelley et al., 2015, 2018; Quang and Xie, 

2016). Most of these models perform binary classification tasks and predict whether a relatively 

short DNA-sequence (30bp-1000bp) will be bound by a TF or RNA-binding protein  (Alipanahi et 

al., 2015),  a nucleosome (Quang and Xie, 2016), or surrounds a DNase I hypersensitive site in 

different cell types (Kelley et al., 2015). However, these models are constrained to one short 

sequence at time and can not provide genome-wide profiles as they ignore competition between 

any DNA-binding factors. In contrast, (Kelley et al., 2018) developed the first deep learning 

model, called Basenji, that can model distal regulatory interactions to predict quantitative (as 

opposed to binary) genomic profiles such as read counts of DNase I seq, histone modification 

ChIP-seq, and expression data. ChromWave takes a similar approach by modeling read counts 

of MNase-seq data. Basenji can take 131kb regions as input which is much larger than the 

2000bp-5000bp we chose for ChromWave, however this scale comes at the cost of resolution: 

while Basenji predicts one value for every 128bp bins (which already was a refinement over the 

200bp bins of ChromHMM (Ernst and Kellis, 2017)), ChromWave makes a prediction for each 

individual nucleotide. This is an important improvement as most of our results on the intricate 

competition of TFs and nucleosomes display changes on just a few base-pairs with most TF 

binding sites predicted to be shorter than 15bp (Stewart et al., 2012). This resolution has only 

been achieved by a recently published model (BPNet) which shares many similarities in its 

architecture with that of ChromWave (Avsec et al., 2021). While BPNet predicts several TF 

binding profiles simultaneously and the study focused on TF binding motifs, nucleosome 

occupancies and their competition was largely ignored.  

 

A main limitation of any model relying on training data restricted to certain regions in the 

genome is illustrated by our human promoter ChromWave model predicting nucleosomes at 

CTCF-sites: as we only trained in promoter regions, its genome-wide predictions cannot be 

trusted as it was not exposed to binding factors outside of promoter regions. To remedy this 

bias, ChromWave could be further trained on more DNA-sequences that span the (mappable) 

genome. Another approach may be using an ensemble of several ‘expert’ ChromWaves models 

that have learned specific sequence context (e.g ‘promoter regions’, ‘insulator-sites’,..). Either of 

these approaches can be realised with the ChromWave framework, however this observation 

highlights the importance of understanding the data and training details whenever models such 

as ChromWave (and their predictions) are being used. 

 

Although we presented ChromWave as a model of different chromatin accessibility profiles, 

ChromWave is a flexible framework to model genome-wide chromatin-modification and readily 

extendable to other data such as 3D interactions, histone modifications and DNA-methylation, 

as well as transferable to mammalian genomes. As such, ChromWave is an unprecedented 

framework to study how genetic variability impacts DNA-binding, gene expression, histone 

marks, DNA-methylation, and 3D interactions (or any combinations thereof) simultaneously in 

silico at nucleotide-resolution. Other applications of ChromWave may be modelling time-

dependent chromatin profiles changes, where we expect the environmental changes to have an 

effect on DNA-binding. As a proof of concept, we have successfully used ChromWave to model 
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nucleosome profiles of young and old yeast (data not shown, but code and data are available on 

github https://github.com/luslab/ChromWave).Other applications of ChromWave may be the 

modelling of binding profiles during differentiation, or hormone changes. 

 

In summary, ChromWave allows the prediction of TF and nucleosome binding simultaneously 

genome-wide at nucleotide resolution with high precision. The sequence-based approach allows 

the annotation of every mutation in the genome that influences chromatin accessibility through 

TF or nucleosome binding. ChromWave has the potential to provide important insights into the 

effect of genetic variation on transcriptional changes in complex diseases, at a certain time-

point, but also during changes over time.  As more and more non-coding variants are 

discovered in the human genome, these insights can provide us with important understanding 

how SNPs affect biological mechanisms and phenotypes.  
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Figure Legends 

Figure 1. The ChromWave deep learning architecture to predict chromatin accessibility 

profiles. 

Input. DNA sequences are one-hot coded to four rows representing A, C, G, and T before 

entering the model. The annotations of the transcription factor binding sites and transcriptional 

start site are examples indicated to help convey the reasons for the various elements of the 

architecture. Convolutional Layers. We first apply a convolutional layer followed by batch 

normalisation and ReLU layers several layers. If we used transfer-learning we also use a 

convolutional layer with pre-trained weights followed by a max-pooling layer before 

concatenating these with the trainable convolutional layer. Residual Blocks. To share 

information across large distances, we apply several layers of dilated convolutions in at least 

nine residual blocks. Each residual block contains two dilated convolutions with exponentially 

dilating filters (one gate, one filter) followed by element-wise multiplication. The gated activation 

output is (i) outputted as skip connections which are aggregated after all residual blocks, and (ii) 

as residual summed with the block input and used as input to the next residual block. Output. 

After the final residual block and aggregating the skip connections, for each output profile a 1x1 

convolutional layer with ReLU activation is applied and passed to the final prediction layer 

where another 1x1 convolution layer makes predictions across the sequence. A prediction is 

made for each input position by the last layer through a softmax activation function and 

represents a bin of the discretised binding profiles. We compare these predictions to the 

experimentally observed profiles (the target) via the mutual information between observed and 

predicted classes, as well as the Pearson correlation coefficient (the latter is not used during the 

fitting of the model parameters with stochastic gradient descent with back propagation, but only 

for the selection of the best model during the hyperparameter optimization).The predicted 

(discretised) profiles are finally turned into continuous profiles by reversing the discretisation 

process used on the input data.  
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Figure 2. Nucleotide-resolution prediction of TF and nucleosome occupancies in the 

yeast genome. 

A. Two representative examples of the predicted TF and nucleosome occupancy profiles from 

the training set (chromosome 16) and the unseen test set (chromosome 10). The profiles 

predicted by ChromWave are shown in black for comparison with the observed MNase-seq data 

shown in grey. B. Geometric means of the Pearson Correlation coefficients between predicted 

and observed TF and nucleosome occupancy genome-wide. Indicated are which chromosomes 

formed the validation and test sets (all other chromosomes formed the training set). Correlations 

were computed in sliding windows of size 300bp and then averaged over 300bp bins.  C.  

Average predicted and observed TF and nucleosome occupancy in yeast promoters. 

Metaprofiles +/- 1KB of ChromWave’s predictions and MNase-seq data (in Fragments Per 

Million, FPM) around all TSSs for predicted and observed TF and nucleosome occupancy. Each 

track was normalised by subtracting the genomic average before plotting. D. ChromWave’s 

predictions of TF and nucleosome occupancy around experimentally defined nucleosome 

dydas. Heatmaps showing +/-1kb regions around  nucleosome dyads called either on ATAC-

seq (top, (Schep et al., 2015)) or defined by chemical cleavage (bottom, (Chereji et al., 2018)) 

data. The ATAC-seq heatmap was split according to four biological replicates (A, B, C, D). 

Predicted nucleosome occupancy (NUC) and TF-binding (TF) in FPM are shown as separate 

heatmaps next to each other. Average predictions are shown as metaprofiles on top of each 

heatmap. Each track was normalised by subtracting the genomic average before plotting.  

 

Figure 3. ChromWave uses regulatory motifs to model the completion between 

transcription factors, chromatin remodelers and nucleosomes. 

A. Importance of motif detectors associated with nucleosome-TF competition.  Motif importance 

(setting associated filter to zero)  was plotted against the sum of information content (IC) for 

each motif detector. Shapes indicate if the motif was annotated by TOMTOM (triangle, q<0.05) 

or de novo discovered (point,q>0.05). The color  to gain or loss of TF binding prediction by 

setting the motif to zero.  Selected motifs were annotated with their associated sequence logo. 

B. Nucleosome and TF occupancy per base-pair centered on TF binding sites defined by ChIP-

exo. Heatmaps showing +/-1kb regions around ChIP-exo peak. Each heatmap panel is based 

on a different TF peak set from top to bottom: Abf1, Cbf1, Rap1 and Reb1. Average predictions 

are shown as metaprofiles on top of each heatmap. Heatmaps showing ChromWave’s 

predictions (left) and MNase-seq data (right)  of nucleosome (NUC) and TF (TF) occupancy as 

indicated (in Fragments Per Million, FPM). Each prediction track was normalised by subtracting 

the genomic average before plotting. C. Log2-fold change in nucleosome and TF occupancy 

predictions (in FPM) when ChromWave’s fillters are perturbed per base-pair centered on TF 

binding sites defined by ChIP-exo. Meta-profiles showing average log2-fold changes in +/-1kb 

regions around ChIP-exo peak. Each panel is based on a different TF peak set from top to 

bottom: Abf1, Cbf1, Rap1 and Reb1. Log2-fold change was computed between the predictions 

of the full ChromWave model and a perturbed model where the convolutional filters 

corresponding to the respective TF-binding motifs (defined by TOMTOM annotation) were set to 

zero. 
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Figure 4. ChromWave recovers computationally an experimental study of an unwrapped 

nucleosome bound by RSC between the Gal1 and Gal10 genes 

A.  MNase-seq profiles and ChromWave’s predictions (in Fragments Per Million, FPM) of TF 

and nucleosome occupancy in the intergenic region on chromosome 2 between the GAL10 and 

GAL1 genes. The light shaded region indicates a yeast regulatory locus GAL4 UAS. The dark 

shaded region indicates a 61bp region deleted in C. Inside, a partially unwrapped nucleosome 

bound by RSC is shown as a broad peak in the TF profile as the nucleosome is represented by 

shorter reads. Annotations of Gal4 and RSC motifs are indicated by stippled lines. B. In silico 

mutagenesis with respect to the prediction in the Gal4 UAS (shaded region). Each column of the 

heatmap corresponds to a position in the sequence, each row represents a mutation to the 

corresponding nucleotide. The quantities in the heatmap display the difference “Δ pred” in 

ChromWave’s predictions (summed across the shaded region) after substituting the row’s 

specified nucleotide into the sequence. Annotation of the GAL4 and RSC motifs show that point 

mutations in a RSC binding site (which coincides with the first RSC motif) lead to the biggest 

loss in prediction in the TF occupancy profile in the GAL4 UAS. C. ChromWave’s predictions of 

TF and nucleosome occupancy after deleting a 61bp sequence containing the RSC binding site 

(indicated by the stippled lines and the dark shaded region in A) in the GAL4 UAS. TF prediction 

changes to a narrow peak towards the 5' end of GAL4 UAS, and a strongly positioned 

nucleosome is predicted in the middle of the GAL4 UAS. Previously hypersensitive sites on the 

borders of the shaded region are now predicted to be occluded by nucleosomes. These 

predictions recover experimental results in the original study on this unwrapped nucleosome 

(Floer et al., 2010). D. Original Figure 1F from (Floer et al., 2010) for comparison. RSC binding 

to a WT and a truncated UASg. Cells bearing TAP-tagged RSC and grown in raffinose. The four 

Gal4 sites within the UASg are in cyan. 

Figure 5. Nucleosome-only ChromWave models to decipher determinants of in vivo 

nucleosome occupancy in the yeast genome. 

 

A. A representative example of the predicted in vitro and in vivo nucleosome occupancy profiles  

from the training set (chromosome 14).  Occupancy is measured and predicted as log2-fold 

change of number of reads at each position over genome average, in Reads Per Million (logfc-

RPM). Predictions by ChromWave are shown in black for comparison with the observed 

MNase-seq data shown in grey and the predictions of the Hidden Markov Model (HMM) trained 

on the in vitro data (Kaplan et al., 2009) shown in blue. Stippled boxes indicate observable 

differences in nucleosome occupancy in vitro and in vivo. B Genome-wide comparison of 

predicted and observed nucleosome occupancy. Pearson Correlation coefficients were 

computed between predicted and observed nucleosome occupancy  (left: in vitro, right: in vivo). 

The chromosomes forming the validation and test sets as indicated (all other chromosomes 

formed the training set). Correlations were computed in sliding windows of size 300bp and then 

averaged over 300bp bins for visualisation. C. Predictions per base-pair centered on 

nucleosome dyads defined by chemical cleavage (Chereji et al., 2018).  Heatmaps showing +/-

1kb regions around annotated nucleosome dyads. Average predictions are shown as 

metaprofiles on top of each heatmap. Plots from left to right display predictions of the following 
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models: in vitro nucleosome ChromWave, in vivo nucleosome Chromwave, and nucleosome 

prediction and TF predictions from the joint TF-nucleosome ChromWave model. Each track was 

normalised by subtracting the genomic average before plotting. D.  Motif detectors associated 

with in vivo nucleosome occupancy.  Each point in the scatter plot represents a motif that is 

PCA embedded using maximum activations of motif detectors per sequence as input. The 

shape of each point indicates if the motif was annotated by TOMTOM (triangle) or de novo 

discovered (point). The size of each point was scaled with the mean activation of the motif 

detector. The colour scale corresponds to the mean Pearson correlation between activation and 

prediction per base-pair. Selected motifs were annotated with their associated sequence logo.  

E. In vivo and in vitro nucleosome occupancy prediction per base-pair centered on TF binding 

sites defined by ChIP-exo. Heatmaps showing +/-1kb regions around the ChIP-exo peaks. Each 

heatmap panel is based on a different TF peak set from top to bottom: Abf1, Cbf1, Rap1 and 

Reb1. Heatmaps from left to right display predictions of the following models: in vitro 

nucleosome ChromWave, in vivo nucleosome Chromwave, and nucleosome prediction and TF 

predictions from the joint TF-nucleosome ChromWave model. Average predictions (logfc-RPM 

for the nucleosome-only model, FPM for TF-nucleosome model) are shown as metaprofiles on 

top of each heatmap.  Each track was normalised by subtracting the genomic average before 

plotting.  

 

Figure 6. Predicting nucleosome occupancy in human promoters with ChromWave. 

A. Comparison of MNase-seq and predicted nucleosome occupancy  in +/- 1kb around 23,156 

annotated human TSSs. Occupancy is measured and predicted as log2-fold change of number 

of reads at each position over genome average, in Reads Per Million (logfc-RPM).  Top: 

Metaprofiles of average nucleosome occupancy measured by MNase-seq (left) and predicted 

by ChromWave (right) are centered around TSSs. Heatmaps are showing the data and 

predictions of each TSS in the rows. TSS are sorted by the Pearson Correlation coefficients 

between observed and predicted profiles from top to bottom (as indicated by the arrow) and 

these are shown on the left as barplot. B. Motif detectors associated with human promoter 

nucleosome occupancy. Each point in the scatter plot represents a motif that is PCA embedded 

using maximum activations of motif detectors per sequence as input. The shape of each point 

indicates if the motif was annotated by TOMTOM (triangle) or de novo discovered (point). The 

size of each point was scaled with the mean activation of the motif detector. The colour scale 

corresponds to the Pearson correlation between activation and prediction per base-pair. 

Selected motifs were annotated with their associated sequence logo. 

Figure 7. ChromWave learns known and unknown motifs associated with nucleosome 

binding and DNA-methylation in human promoter regions 

A. Volcano plot to identify dsQTLs that change nucleosome occupancy in  promoter regions. 

Each point represents a dsQTL variant, some annotated with a promoter name. Along the x-

axis, we plot the difference ( ∆ prediction (MT-WT) ) between the predicted nucleosome 
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occupancy given dsQTL variant and the wild-type input sequence. Along the y-axis, we show (1- 

the Pearson correlation coefficient) between the predicted nucleosome occupancy given the 

dsQTL variant and the wild-type input sequence. The shape of each point indicates if dsQTL 

falls within or outside of the previously associated DNAse-Hypersensitive Site (DHS). The 

colours represent the genotype of the variant as indicated. B. Example of maximal disruptive 

dsQTLs on nucleosome occupancy predictions. Top Panel: Nucleosome occupancy for different 

genotypes at the dsQTL (indicated by the dotted red line) compared with observed data. Bottom 

Panel: Line plots show the maximal increase (‘gain’) and maximal decrease (‘loss’) in the 

predictions at each position given all possible single base-pair changes along the sequence. C. 

Example of maximal disruptive dsQTLs on nucleosome occupancy predictions. As B. D. 

Hotspots in human promoters susceptible to changes in chromatin accessibility due to single 

nucleotide polymorphisms. Maximal increase (‘gain’) and maximal decrease (‘loss’) in the 

predictions at each position given all possible single base-pair changes along the sequence in 

+/- 1kb around 23,156 annotated  human TSSs. Top: Meta-profiles of maximal increase (‘gain’) 

(left) and maximal decrease (‘loss’) (right) in ChromWave’s predictions centered around the 

TSSs. Bottom: Heatmaps are showing the maximal increase and decrease for each TSS in the 

rows.  

Supplementary Figure 1. 

A. Genome-wide comparison ChromWave’s predictions of TF and nucleosome occupancy and 

observed data. Shown are Pearson Correlation coefficients between predicted and observed TF 

(left) and nucleosome (right) occupancies (in Fragments Per Million, FPM). The chromosomes 

forming the validation and test sets are indicated (all other chromosomes formed the training 

set). Correlations were computed in sliding windows of size 300bp and averaged across 300bp 

bins for visualisation. B.  A representative example imputed TF and nucleosome occupancies 

from the test set (chromosome 10). Shown are ChromWave’s predictions of TF and nucleosome 

occupancy profiles (in FPM) in black in an unmapped region for comparison with the observed 

MNase-seq data (in FPM) shown in grey.   

 

Supplementary Figure 2. 

A. Genome-wide comparison of predicted and observed nucleosome occupancy across 

different datasets. Shown are Pearson’s correlation coefficients of the predicted occupancy of 

the in vitro and in vivo nucleosome ChromWave models and the HMM from (Kaplan et al., 2009) 

with ATAC-Seq (Schep et al., 2015) and the in vitro and in vivo MNase-seq data both genome-

wide and separately on training, test and validation sets, as indicated. B. Comparison of 

nucleosome occupancy across models and across in vivo and in vitro datasets in yeast 

promoter.  Metaprofiles +/- 1bp around all TSS on chromosome 10 of average predicted and 

observed nucleosome occupancy (in logfc-RPM)(upper panel).  Metaprofiles +/- 1bp around all 

TSS of average predicted and observed nucleosome occupancy (in logfc-RPM) in vitro (middle 

panel) and in vivo (lower panel). Each track was normalised by subtracting the genomic average 

before plotting. C. Model predictions per base-pair centered on nucleosome dyads called on 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.19.436198doi: bioRxiv preprint 

https://paperpile.com/c/Ccdmji/jsSL9
https://paperpile.com/c/Ccdmji/IJRFY
https://doi.org/10.1101/2021.03.19.436198
http://creativecommons.org/licenses/by/4.0/


 

28 

ATAC-seq.  Occupancy is measured and predicted as log2-fold change of number of reads at 

each position over genome average, in Reads Per Million (logfc-RPM). Heatmaps showing +/-

1kb regions around ATAC-seq nucleosome dyads for four biological replicates (A, B, C, D). 

Average predictions (in logfc-RPM) are shown as metaprofiles on top of each heatmap. Plots 

are displaying nucleosome occupancy prediction using following models: in vitro nucleosome 

ChromWave (“in vitro”), in vivo nucleosome Chromwave  (“in vivo”), and nucleosome prediction 

(“NUC”) and TF predictions (“TF”) from the joint TF-nucleosome ChromWave model. Each track 

was normalised by subtracting the genomic average before plotting. D. MNase-seq occupancy 

profiles centered on nucleosome dyads defined by chemical cleavage (Brogaard et al., 2012).  

Plots are displaying nucleosome and TF occupancy using following data: in vitro nucleosome 

(“in vitro”) and in vivo nucleosome (“in vivo”) from (Kaplan et al., 2009) (measured as log2-fold 

change of number of reads at each position over genome average, in Reads Per Million (logfc-

RPM)), and nucleosome (“NUC”) and TF (“TF”) in Fragments Per Million (FPM) from (Henikoff 

et al., 2011). Heatmaps showing +/-1kb regions around nucleosome dyads. Dyads not covered 

by the nucleosome MNase-seq data from (Kaplan et al., 2009) show as no signal in the two left 

heatmaps. Average occupancies are shown as metaprofiles on top of each heatmap.  

 

Supplementary Figure 3. 

A. Motif clustering on the convolutional filter from all yeast models. Briefly, pairwise motif 

similarities were computed between the filters from all yeast models and used as input for 

hierarchical clustering visualised here as heatmap.  Clusters were subsequently defined by 

cutting the dendrogram at height h=0.9 indicated in the barplot on top of the heatmap. The 

clusters were manually annotated using previous TOMTOM results as shown on the right.  

Supplementary Figure 4. 

A. Comparison of MNase-seq and predicted nucleosome occupancy  +/- 1kb around all human 

TSSs grouped by training, test and validation sets as indicated. Occupancy is measured and 

predicted as log2-fold change of number of reads at each position over genome average, in 

Reads Per Million (logfc-RPM). Top: Meta-profiles of average nucleosome occupancy measured 

by MNase-seq (left) and predicted by ChromWave (right)  (in logfc-RPM) are centered around 

23,156 annotated TSSs. Bottom: Heatmaps are showing the data and predictions of each TSSs 

in the rows. TSS are sorted by the Pearson Correlation between observed and predicted 

profiles from top to bottom as indicated by the arrow. Individual Pearson correlation coefficients 

are shown on the left of each heatmap as barplot. B. MNase-seq and predicted nucleosome 

occupancy around ChIP-seq CTCF binding sites. Metaprofiles are centered on CTCF peak 

summits, and these were split into quintiles according to the CTCF peak scores. Top: 

Metaprofile of the average nucleosome occupancy, as measured by MNase-seq  (in logfc-

RPM), for +/- 1kb around CTCF binding sites. Bottom: Metaprofile of ChromWave’s predicted 

average nucleosome occupancy (in logfc-RPM). Colors indicating CTCF quintiles, where 

quintile “five” corresponds to highest, and quintile “one” to the lowest ChIP-seq scores.    
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Star Methods 

 

RESOURCE AVAILABILITY  

Lead contact 

Further information and requests for resources should be directed to and will be fulfilled by the 

Lead Contact, Dr Sera Aylin Cakiroglu (aylin.cakiroglu@crick.ac.uk).  

 
Materials Availability 

This study did not generate new unique reagents. 

 
Data and Code Availability 

The code, trained models, preprocessed input data and model predictions as BigWig files are 

publicly available on github (https://github.com/luslab/ChromWave). R-scripts implementing 

several visualisation methods can also be found on github 

(https://github.com/luslab/chromWaveR). The hyperparameter search space as well as the 

optimal parameters for all models can be found in Supplementary Table1. Motif clusters of the 

yeast models can be found in Supplementary Table 2. Human promoters with variable 

nucleosome occupancy at different base-changes in dsQTLs are listed in Supplementary Table 

3.  

METHOD DETAILS 

Data Preparation 

Yeast data sets 

We obtained the reference genome sequences of sacCer1 and sacCer3 (Engel et al., 2014). 

We used the biomaRt package (Durinck et al., 2005, 2009) to retrieve gene annotation 

information from Ensembl release 91 (Zerbino et al., 2018) using BioMart web services 

(Kasprzyk et al., 2004; Smedley et al., 2015). We downloaded the nucleosome occupancy maps 

from (Kaplan et al., 2009) available as log-ratios of paired-end  in vivo and in vitro MNase data 

aligned to sacCer1. Missing values were replaced by the chromosome mean and values 

exceeding 3 times the genome-wide median were clipped to this maximal value. We smoothed 

the profiles using a 1D Gaussian filter with standard deviation (std) σ = 5 truncated at 3 stds. 

The genome-wide minimum was added to all values before scaling and discretizing the 

continuous values y as 𝑥 = 𝑓𝑙𝑜𝑜𝑟(2.5 ∗ 𝑦). This resulted in 22 discrete classes for both the in 

vitro and in vivo data. We obtained the Hidden-Markov model (HMM) from the same publication  
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(Kaplan et al., 2009) and generated its predictions for both sacCer1 and sacCer3. We annotated 

the unique nucleosome map  in S.cerevisiae  from chemical cleavage sequencing of (Brogaard 

et al., 2012)  to the yeast genome sacCer3 and obtained newer chemical cleavage nucleosome 

occupancy data from the Henikoff lab (Chereji et al., 2018). Nucleosome dyad positions derived 

from ATAC-seq samples were downloaded from (Schep et al., 2015). We obtained raw MNase-

seq data from (Henikoff et al., 2011) and mapped these to the sacCer3 genome with Bowtie2 

(parameters: -X 2000 ), version 2.3.4.3 

 (Langmead and Salzberg, 2012). Resulting alignments were filtered to remove unmapped, 

multi-mapping and unpaired reads and duplicated fragments were removed. Next, we computed 

separate signal tracks for TF fragments (max length <= 80) and mono nucleosome fragments 

(140 <= length <= 200). Both signaling tracks were scaled to fragments per million (FPM) where 

the scaling factor was computed as 106 divided by the number of fragments of the TF and 

mononuc fragments separately. Finally, signal track computation was performed using 

deepTools2’s “bamCoverage” function (parameters: -bs 1 --extendReads  --center) 

(Ramírez et al., 2016). Given the significant difference in sequencing depth of the two replicates 

(~191 million reads vs ~31 million) we only used the deeper sequenced first replicate for all 

subsequent analysis. Instead of normalising the read coverage by taking the log ratio between 

coverage and genomic mean, we are modelling here directly the number of reads to preserve 

the sparsity of the TF-fragment signal. Missing values were replaced by the chromosome mean, 

read counts exceeding 3 times the genome-wide median were clipped to this maximal value and 

normalised by subtracting the genome-wide mean after which negative values were set to zero. 

We then smoothed the two profiles separately using a 1D Gaussian filter with σ = 5 truncated at 

3 stds. We discretized these continuous values y as 𝑥 = 𝑓𝑙𝑜𝑜𝑟(𝑍 ∗ 𝑦) where Z=10 and Z=5 for 

the transcription factor and nucleosome profiles, respectively. This resulted in 5 and 9 discrete 

classes for the transcription factor and nucleosome profiles respectively.  

Publicly available preprocessed high-resolution binding sites for  Abf1, Cbf1, Rap1 and Reb1 as 

measured by ChIP-exo were downloaded from (Rossi et al., 2018).  

 

Human data sets 

We obtained gene and TSS annotations as well as the reference sequences in hg38 from 

UCSC via the R Package TxDb.Hsapiens.UCSC.hg38.knownGene (Team BC, Maintainer BP, 

2019). We downloaded nucleosome occupancy data from (Gaffney et al., 2012) preprocessed 

and aligned to the hg38 reference genome as bigWig file (in Reads Per Million, RPM) from 

(Zhao et al., 2018)(sample hsNuc0340101). The read coverage per base-pair around human 

TSSs was computed with the function “computeMatrix” in the deepTools2 package (Ramírez et 

al., 2016) (parameters: reference-point --referencePoint TSS -a 1000 -b 1000 

--binSize 1 --sortRegions keep --nanAfterEnd  --missingDataAsZero). Read 

counts exceeding 3 times the median of the whole dataset were clipped to this maximal value 

and subsequently normalised by taking the log2 ratio between read counts and genome-wide 

mean. We then smoothed the profiles with a 1D Gaussian filter std σ = 5 truncated at 3 stds and 

discretized the continuous signal y as 𝑥 = 𝑓𝑙𝑜𝑜𝑟(2.0 ∗ 𝑦). This resulted in 17 discrete classes.  
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Publicly available CTCF binding sites for the cell line GM12878 were downloaded from the 

ENCODE portal  (Davis et al., 2018; Zhang et al., 2020).  

Previously determined DNAse hypersensitivity quantitative trait loci (dhsQTL) were downloaded 

from the supplementary information of (Degner et al., 2012). Downloaded dhsQTLs were 

overlapped with promoter regions and we only retained those dsQTLs that were overlapping 

promoter regions (+/-1kb around TSSs).  

 

Model architecture, implementation and training 

Binary classification CNN to model nucleosome specificity 

Nucleosomal DNA-sequences of 201bp were derived from the set of unique nucleosome dyads 

as measured by chemical cleavage (Brogaard et al., 2012) by extending 100bp either side from 

the dyad position. Dyads that were closer than 100bp to chromosome ends were excluded. This 

set of nucleosome sequences was then divided into training (50%), validation (30%) and test 

(20%) set. Reverse complements of the sequences were added to each of these datasets and 

then one-hot encoded. One-hot encoded means in this context that for example adenine is 

encoded as (1, 0, 0, 0),  cytosine as (0, 1, 0, 0) and so forth. We generated a set of ‘negative’ 

examples of the same size by randomly shuffling each of the input sequences preserving the 

distribution of dinucleotides. One hot encoded nucleosomal and background sequences were 

used as input to train convolutional neural networks (CNN) implemented to predict labels y=1 

(nucleosomal sequence) and y=0 (shuffled sequence) respectively. 

 

CNNs were implemented with the python package Keras2.0 (Chollet and Others, 2015) with 

tensorflow backend. We used dropout and early stopping (patience = 20). We trained each CNN 

for 100 epochs with the Adam optimizer and reduced the learning rate by a factor of 0.1 if the 

loss had not improved for 10 epochs. In addition to the loss function, we monitored the accuracy 

as area under the receiver-operator curve (auROC) and Matthew’s correlation coefficient 

(MCC). To determine the optimal architecture of a CNN capturing sequence features of 

nucleosome dyad preferences in vivo, we searched the hyperparameter search space in 

Supplementary Table 1 to determine the optimal set of hyperparameters using the 

hyperparameter optimization algorithm “Tree of Parzen Estimators” (TPE) (Bergstra et al., 2011) 

as implemented in hyperopt package (Bergstra et al., 2013). We performed 51 independent 

hyperparameter searches. In each of the hyperparameter searches, we performed 30 trials (e.g. 

iterations) and returned the model maximising the MCC on the validation dataset across those 

trials. As the final model, we chose the model which maximised this score across all 51 

searches.  

  

ChromWave models  

We divided the yeast genome into windows of fixed length which formed as one-hot encoded 

DNA sequences the input to the ChromWave models. We split the chromosomes randomly into 
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training, validation and test sets (excluding the mitochondrial chromosome): chromosomes 9 

and 16 of sacCer1  (chromosomes 2 and 10 of sacCer3)  were used for test, chromosomes 4, 5 

and 7 of sacCer1 (chromosomes 3, 5, and 11 of sacCer3) for validation and all other 

chromosomes of sacCer1 (of sacCer3) used for training for nucleosome (TF-nucleosome) 

models. As prediction target for each sequence, the respective discretised in vitro, in vivo 

nucleosome occupancy profile or the TF-nucleosome profiles were used. For each sequence, 

the reverse complement together with the reversed occupancy profile(s) were added to the 

respective data set. Sequence and target pairs thus allocated to training, validation and test set 

were randomly shuffled within each set.  

 

At each base-pair position the model is asked to perform a classification task to predict the class 

of the discretised nucleosome occupancy at that position. To combat the bias towards the 

overrepresented genomic mean, we use a weighted multi-class cross-entropy as loss function 

where the class weights were computed as follows: the class weight of class i was computed as 

the median of all class frequencies divided by the frequency of class i. Here, the class frequency 

was computed as the total number of class occurrences divided by the fragment length. Finally, 

to avoid very large weights for rarely occurring classes the minimum between the class weight 

and 100 was chosen. In the case of the TF-nucleosome model, the class weights were 

independently computed for each of the two profiles. Code implementing the models and 

hyperparameter search can be found in the ChromWave repository on github 

(https://github.com/luslab/ChromWave/). Models were implemented using the python package 

Keras 2.3.1 (Chollet and Others, 2015) with tensorflow backend.  

 

In addition to the loss function, we monitored the class accuracy and Pearson’s correlation 

coefficient between observed and predicted profiles on the validation set. To determine the 

optimal architecture of a ChromWave model, we searched the hyperparameter search spaces in 

Supplementary Table 1 to determine the optimal sets of hyperparameters of the model 

maximising the sum of class accuracy and Pearson’s correlation coefficient  between observed 

and predicted profiles in the validation set. The hyperparameter optimisation algorithm TPE 

(Bergstra et al., 2011) was used as implemented in the hyperopt package (Bergstra et al., 

2013). In each of the hyperparameter searches, we performed 100 trials where we trained each 

model for 50 epochs and then trained 6 additional neural networks on the full training set using 

this set of hyperparameters for 100 epochs. 

 

For the human promoter model, we used one-hot encoded DNA-sequences of the human 

genome (hg38) corresponding to +/-1000bp around annotated TSSs as input to the model. We 

split the chromosomes randomly into training, test and validation data (excluding the sex and 

mitochondrial chromosomes). As prediction target for each sequence, the respective discretised 

nucleosome occupancy profile was used. For each sequence, the reverse complement together 

with the reversed occupancy profile was added to the respective data set. Sequence and target 

pairs allocated to training, validation and test set were randomly shuffled within each set. The 

class frequency was computed as the total number of class occurrences divided by the 

fragment length. Finally, to avoid very large weights for rarely occurring classes the minimum 

between the class weight and 40 was chosen. We employed the same training strategy as for 
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the yeast ChromWave models. The search spaces for the hyperparameters and optimal values 

for each of the models are shown in Supplementary Table 1. 

  

Transfer learning 

In addition to training the weights of the neural networks from a random initialisation, we also 

compared different transfer learning approaches.  

 

For the in vivo nucleosome occupancy, we trained (i) a network was initialised with the weights 

of the in vitro nucleosome Chromwave (keeping the best architecture constant) and was trained 

for a further 100 epochs, (ii) networks during a hyperparameter search with (a) a set of 

convolutional layers are initialized with the weights of the filters of the in vitro nucleosome 

ChromWave model and subsequently frozen (ie. not further trained), or (b) trained further,  and 

(c) a set of convolutional layers are initialized with the weights of the filters of CNNs trained on 

protein-binding-microarray data of 89 yeast transcription factors (Zhu et al., 2009) in addition to 

the nucleosome in vitro nucleosome ChromWave model filters, as described in (Alipanahi et al., 

2015) - here all filters were further trained.  

 

For the TF-nucleosome competition model, we compared (i) initialising all convolutional layers 

at random, (ii) adding the pre-trained convolutional layers of the nucleosome specificity model 

trained on the chemical cleavage data (but not allowing these to be trained further), and (iii) 

initialising a set of trainable convolutional layers with position weight matrices (and their reverse 

complement) of a set of yeast transcription factors.  

 

The final models were trained using the following transfer learning approaches. For the in vitro 

nucleosome occupancy we initialise the first set of non-trainable convolutional layers of the 

ChromWave model with the weights from the convolutional layers of the CNN trained on the 

chemical cleavage data. For the in vivo nucleosome occupancy, we initialised a set of 

convolutional layers with the weights of the filters of the in vitro nucleosome ChromWave model 

which were not trained further. For the TF-nucleosome competition model, we added the 

convolutional layers of the CNN trained on the chemical cleavage data (but not allowing these to 

be trained further), and initialised a set of trainable convolutional layers with position weight 

matrices (and their reverse complement) of a set of yeast transcription factors. As set of 

transcription factors, we chose the following previously described nucleosome-deplacing 

factors:  Abf1,  Cbf1, McM1, Rap1, Reb1, Orc1, Asg1, Azf1, Bas1, Ecm22, Ino4, Leu3, Rfx1, 

Rgm1, Rgt1, Rsc3, Sfp1, Stb4, Stb5, Stp1, Sum1, Sut1, Tbf1, Tbs1, Tea1, Uga3, Ume6, Urc2  

(Groups 1&2 in (Yan et al., 2018)). PFMs and convolutional layers of the pretrained CNNs are 

also available on github (https://github.com/luslab/ChromWave/).  

 

For the human promoter nucleosome model, we trained networks during a hyperparameter 

search from a random initialisation as well as with a set of convolutional layers initialized with 

the weights of the filters of an intermediate in vivo nucleosome occupancy trained on the yeast 

data (which was not used as the final yeast model). The final human promoter model was 

derived employing the described transfer learning approach.  
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QUANTIFICATION AND STATISTICAL ANALYSIS 

 

Correlations between observed and predicted signals genome-wide 

We computed the Pearson’s correlation coefficients in sliding windows of 300bp (with step size 

1) between observed and predicted profiles. To evaluate the performance of the TF-

Nucleosome competition model we computed the geometric means between the TF and 

nucleosomes profiles as previously published in (Zhong et al., 2014): if 𝑟𝑇𝐹 and 𝑟𝑁𝑈𝐶are the 

Pearson correlation coefficients of predicted and observed TF  and nucleosome signals in a 

300bp window, we assign the score 1/2 √(1+𝑟𝑇𝐹) × (1 + 𝑟𝑁𝑈𝐶) to the first base in that window. 

Note that this score ranges from 0 to 1. In case of the nucleosome-only data, we report 

genome-wide measures (e.g Pearson’s correlation coefficient) using all regions omitting bases 

with missing values in the MNase-seq data. This approach is not used for the TF-nucleosome 

model where the TF signal is very sparse and excluding regions with zero reads would highly 

influence this correlation and at the same time not penalise for predicted signal in unmapped 

regions.  

 

Motif filter visualisations and annotations 

The first convolutional layer of a CNN can be summarised as a conventional position frequency 

matrix (PFM) and visualised with a seqlogo plot as previously described (Alipanahi et al., 2015; 

Angermueller et al., 2017). We matched these PFMs  against available yeast motif databases 

(Fornes et al., 2020; Hume et al., 2015; MacIsaac et al., 2006; Pachkov et al., 2013; Zhu and 

Zhang, 1999) with TOMTOM (Gupta et al., 2007). Motif filters were defined as ‘known’ if they 

matched against a known motif with q-value < 0.05.  

 

PCA embeddings of learned patterns/motifs 

As a measure of importance of the learned motifs, we computed the maximum output value 

(maximal activation) of the respective ChromWave filter for each DNA-sequence window. To 

understand the impact of these motifs on ChromWave’s TF predictions better, we computed the 

correlation between the vector of filter activations along the sequence and the predicted TF 

occupancy profile. A positive correlation implies the existence of the motif in a sequence is 

increasing TF binding, while a negative correlation implies the motif being unfavourable for TF 

binding. We then applied PCA to the maximal activations of all filters across all DNA-sequence 

windows.  

 

Clustering of learned patterns/motifs across models 
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Motif clustering was performed as previously described in (Vierstra et al., 2020) with code 

obtained from https://github.com/jvierstra/motif-clustering. Briefly, motif similarities were 

computed between filters from all yeast models (invitro, invivo, TF-NUC, excluding the pre-

trained filters of each model) using TOMTOM (Gupta et al., 2007). These pairwise similarities 

were used as input for hierarchical clustering followed by cluster definition by cutting the 

dendrogram on a given height (h=0.9). These clusters were manually annotated using previous 

TOMTOM results and visualized. Results can be found in Supplementary Table 2.  

In silico mutagenesis scores and visualisation 

To visualise the changes in prediction given changes in input, we computed the prediction 

profile for each of the possible base changes at each position along the input sequence as 

previously described (Alipanahi et al., 2015). To visualise the effect of each base change in an 

area of interest, we summed over all changes within that area of interest for each base. We 

visualize the result as a heatmap where each column is a position in the sequence, each row a 

substituted base pair and the colour reflecting this summed change across the sequence if that 

base pair is substituted in the sequence. To visualise global changes as line plots, we computed 

the maximum (‘gain’) and minimum (‘loss’) difference of the prediction given of all possible 

changes at each position.  

 

DHS accessibility under in silico mutagenesis 

We used the human-promoter trained ChromWave model to elucidate the impact of different 

SNPs in previously annotated DNase I sensitivity quantitative trait loci (dsQTLs)  (Degner et al., 

2012). Here we substituted each possible base-change in the position of the dsQTL and 

computed the difference in prediction on the dsQTL of the model. To account for overall-

changes to the binding profile we also computed the Pearson’s correlation coefficient between 

the predicted WT profiles and the prediction given the perturbed input sequence. dsQTLs were 

differentiated into “within DHS” and “outside DHS” depending on their position relative to the 

DHS which is influenced by the respective SNP  (defined in the same publication (Degner et al., 

2012)). Results of this analysis can be found in Supplementary Table 3.  

 

Other visualisations  

Heatmaps and average meta-profiles were produced using the “computeMatrix” and 

subsequent “plotHeatmap” or “plotProfile” functions in the in the deepTools2 package (Ramírez 

et al., 2016).  
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