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Abstract: DNA methylation plays an essential role in regulating gene activity, modulating dis-
ease risk, and determining treatment response. Researchers can obtain insight into methylation
patterns at a single nucleotide level utilizing next-generation sequencing technologies. However,
complex features inherent in the data obtained via these technologies pose challenges beyond the
typical big data problems. Identifying differentially methylated cytosines (DMC) or regions is one of
such challenges. Current methodologies for identifying DMCs fall short in handling low read-depth
data and missing values, capturing functional data patterns, granting multiple covariates (categor-
ical, continuous, or combination), and multiple group comparisons. We have developed an efficient
method to identify DMCs based on a Bayesian functional regression approach, termed DMCFB, that
tackles these shortcomings. Through simulation studies, we establish that DMCFB outperforms cur-
rent methods and results in better smoothing, and efficient imputation. We apply the proposed
method to analyze a dataset containing patients with acute promyelocytic leukemia and control
samples. With DMCFB, we discovered many new DMCs, and more importantly, exhibited enhanced
consistency of differential methylation within islands and at their adjacent shores. Furthermore,
we detected differential methylation at more of the binding sites of the fused gene involved in this
cancer.

Keywords and phrases: DNA Methylation, Functional Generalized Linear Models, Gibbs Sam-
pler, Next-Generation Sequencing, Read-Depth.

1. Introduction

DNA methylation at the fifth position in cytosine (5mC), an epigenetic mark found in many living
organisms, has a variety of regulatory roles in disease and normal biology. Specifically, it regulates or
causes transcriptional activity during embryonic development (Messerschmidt, Knowles and Solter, 2014),
tissue development (Zhang et al., 2013), cell differentiation (Meissner et al., 2008), genomic imprinting
(Li, Beard and Jaenisch, 1993), X-chromosome inactivation (Singer-Sam and Riggs, 1993), etc.

In this paper, we consider in particular the role of differential methylation of processes leading to the
development of cancer; see, for example, Arteaga et al. (2015), Beggs et al. (2013). There is increasing
evidence that epigenetic variation has a considerable influence on the regulatory processes that modulate
cancer growth. The principal focus of our analysis is Acute Promyelocytic Leukemia (APL) (Liquori
et al., 2020; Schoofs et al., 2013). APL is an aggressive subtype of acute myeloid leukemia (AML) that
accounts for 10% of AML cases. APL is highly fatal in a short time with a severe bleeding tendency.
A single mutation is known to cause APL, specifically a translocation involving two genes, the PML
gene on Chromosome 15 and the RARA gene on Chromosome 17 (Wang and Chen, 2008). Although the
genetic cause is clear, how the genetic changes lead to dysregulation has been the subject of ongoing
research (Liquori et al., 2020). For example, Schoofs et al. (2013) observed broad DNA hypermethylation
in APL cells compared with control samples, and they argued that this may be a consequence of a
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loss of transcription factor binding. Epigenetic variation is also strongly believed to influence the choice
of therapeutic intervention: the success of all-trans retinoic acid (ATRA) treatments as an alternative
to chemotherapy has been marked (Arteaga et al., 2015), but such treatments are also known to vary
in efficacy, with resistance to treatment being observed, due to mechanisms related to methylation. Of
specific interest is the PML-RARalpha fusion protein (Jing, Xia and Waxman, 2002; Jing, 2004) which,
when over-expressed due to the translocation, has been determined to have a leukemia-generating action.
Therefore, understanding the modulation of regulation of expression of this protein is of key importance.

In light of the growing understanding the role of epigenetic variation in processes influencing tumori-
genesis, there is a demand for both fundamental and clinical research on DNA methylation, and also a
demand for analytical and statistical tools. Several assays have been developed to collect DNA methy-
lation data (Yong, Hsu and Chen, 2016). Bisulfite sequencing (BS-seq) (Frommer et al., 1992) of DNA
has become a popular technique that provides positive identification of 5mC residues in genomic DNA,
particularly at CpG sites (where a cytosine nucleotide is followed by a guanine nucleotide in 5-3" di-
rection). The technique benefits from the fact that bisulfite treatment will not affect 5mC, but converts
unmethylated cytosines to uracils. Hence, after polymerase chain reaction and sequencing, the combined
experiment leads to single base resolution information on methylation status by simply counting the
number of times a sequencing read at a single genomic position appears as methylated versus unmethy-
lated. Coupled with next-generation sequencing (NGS) (Behjati and Tarpey, 2013), BS-Seq has become an
effective tool to obtain single-nucleotide resolution data from the whole genome. Recently, a rapid decline
in NGS costs made the whole-genome bisulfite sequencing (WGBS) (Lister et al., 2009) more accessible
for research. Other direct assessment techniques include BC-seq (Hodges et al., 2009), Bspp (Ball et al.,
2009), and RRBS (Meissner et al., 2008). Although BS-Seq is one of the most accurate technique to retrieve
methylation data, it has several pitfalls that include false-positive methylation calls due to incomplete
conversion, DNA degradation during bisulfite treatment, methylation in pseudogenes, and inability to
discriminate between different methylated states such as 5mC and 5hmC (Wreczycka et al., 2017).

Much research has been conducted to provide efficient methods for quantitative analysis of DNA methy-
lation data. One specific goal is to identify differentially methylated cytosines (DMC) or regions (DMR),
as methylation is known to vary as a function of various biological and epigenetic factors. Hansen, Lang-
mead and Irizarry (2012) (BSmooth, bsseq) used a binomial model with a local linear regression to smooth
data and retrieve DMRs. Wu, Wang and Wu (2013) (DSS) utilized a Bayesian hierarchical model (Poisson,
Gamma and log-normal) followed by the Wald test to capture DMRs. Wu et al. (2015) (DSS-single) and
Feng, Conneely and Wu (2014) (DSS) followed a similar approach with different hierarchical models (Bino-
mial, Beta and log-normal). Dolzhenko and Smith (2014) (RADMeth) combined a beta-binomial regression
model with Stouffer-Liptak tests for DMR identification. Akalin et al. (2012) (methylKit) suggested us-
ing either logistic regression (capable of adding many covariates) or Fisher’s exact test. In Hebestreit,
Dugas and Klein (2013) (BiSeq), a weighted local likelihood with a triangular kernel assuming a bino-
mial probability function for methylation data is used. Jaffe et al. (2012) (bumphunter) applied linear
mixed models to model methylation levels with the possibility of adding confounders. Several others (e.g.,
Hodges et al. (2011), Molaro et al. (2011), Song et al. (2013) (MethPipe), Saito, Tsuji and Mituyama
(2014) (Bisulfighter), Saito and Mituyama (2015) (ComMet), Sun and Yu (2016) (HHMFisher), Yu and
Sun (2016) (HMM-DM), and Shokoohi et al. (2019) (DMCHMM)) have focused on using versions of hidden
Markov models to profile methylation data and to identify DMCs/DMRs. Lee and Morris (2015) (WFMM)
proposed a wavelet-based functional linear mixed model that accommodates spatial correlations across
the genome and correlations between samples through functional random effects. For more on the existing
methods refer to the reviews by Bock (2012), Robinson et al. (2014), Klein and Hebestreit (2015), Chen,
Lin and Fann (2016), Wreczycka et al. (2017), and Shafi et al. (2017), among others.

Several features common in the data that arise from assays such as BS-Seq and RRBS lead to analytic
and computational challenges. To illustrate some of these features, we explore a dataset containing sam-
ples from patients with acute promyelocytic leukemia (APL) and also samples from several different types
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of cells or tissues for comparison (Section 2.2). In these data, as in many other sequencing-derived methy-
lation datasets, read-depths — the numbers of individual methylated and unmethylated counts recorded
via the sequencing platform — vary appreciably and often unsystematically across cytosine positions; CpG
sites are unevenly distributed (Lovkvist et al., 2016); both methylation autocorrelation between samples
(Gallego-Fabrega et al., 2015) and between cytosines (Eckhardt et al., 2006) within a profile change ir-
regularly across chromosomes. High heterogeneity has been observed in DNA methylation in cells from
APL patients (Schoofs et al., 2013). Also, a large percentage of positions with missing values exists in
the data, and the magnitude of the data leads to computational challenges for any kind of analysis.

In this work, we propose a new method, called DMCFB, built on a Bayesian functional regression model
for the analysis of sequencing-based measures of DNA methylation. Despite a handful of existing meth-
ods for the analysis of DNA methylation data from sequencing experiments, DMCFB is more inclusive and
addresses more of the data and computational challenges than any other method, as laid out below by
comparing several existing methods. (i) Missing values and imputation: Sequencing data often contain
many missing values; for example, in the APL data, 63% of the CpGs have missing values across samples
(see Section 2.2). Almost all methods, except DMCHMM and DMCFB, remove all or most of the CpGs with
missing values and then impute the rest. In DMCFB, we set the methylation read and read-depth to zero
(i.e., y = 0,n = 0) for missing values in Binomial distribution, and impute methylation level § using the
information from p neighboring points using a functional regression model. This approach gives a more
efficient imputation than other methods including DMCHMM where an HMM and a Binomial distribution
are utilized. (ii) Read-depth: Many measurements in sequencing data are based on only one or two reads,
and in contrast, a few have unrealistically high read-depths. Several methods (e.g., BiSeq) filter CpGs
with low and very high read-depths, whereas DMCFB keeps all available data and uses the read-depth infor-
mation to adjust their contribution in model fitting. Also, since there is a systematic relationship between
read-depths and methylation levels (i.e., CpGs with high read-depth tend to be more hypermethylated;
see Supplementary Figure S3), DMCFB adds the extra covariate log(n+ 1) in the model to account for such
relationship. (iii) Raw methylation level versus counts: The aforementioned methods tend to model either
methylation counts (y,n) or raw methylation levels ™ = y/n. Modeling raw methylation levels may
not fully capture the information (of read-depth) in the data. In DMCFB, we model (y,n) through logit(f)
link with a Binomial(y;n, 3) distribution to account for read-depth information. (iv) Transformation:
Those methods that model 5™ often tend to use a transformation (e.g., log(S™"), or logit(5™")). How-
ever, such transformations become undefined when dealing with CpGs that are fully methylated (™ = 1)
or non-methylated (8™ = 0), and either these data points must be removed prior to analysis, or a small
constant must be subtracted/added to avoid NaN or co values. DMCFB does not require a transformation of
the raw data since it is built on a binomial emission model for the underlying proportion rather than the
observed proportion. (v) Functional pattern: Methylation proportions are known to be highly correlated
across nearby positions (Eckhardt et al., 2006) and samples (Gallego-Fabrega et al., 2015). The most ef-
ficient methods tend to use some type of smoothing to capture these correlations. Techniques range from
weighted local likelihood (e.g., BiSeq), hidden Markov models (e.g., DMCHMM), to functional regressions
(e.g., wavelet-based functional linear mixed model in WFMM). Here, DMCFB also builds on functional regres-
sion concepts. (vi) Distance between CpGs: CpGs are unevenly distributed across the genome (Lovkvist
et al., 2016), and correlations between methylation levels decrease quickly with distance. DMCHMM and WFMM
assume all positions are equally spaced which may under/overestimate autocorrelation; however, DMCFB
incorporates the distance explicitly. (vii) Sample characteristics: In addition to these characteristics of the
methylation data, existing methods take different approaches to test for the association between methy-
lation levels and covariates. Some use a two-stage approach, first smoothing each sample and then testing
on the smoothed data (e.g., BiSeq). Others perform two-group comparisons, i.e. testing for differential
methylation between cases and controls (e.g., HMMFisher). DMCFB, on the other hand, does smoothing
and DMC calling in one run. (viii) Biological replicates: A few methods (e.g., DMRcaller) tend to ignore
biological variation across replicates which may increase type 1 error (Shafi et al., 2017). Recent methods
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(such as WFMM, BiSeq, and now DMCFB, etc.) can utilize such replicates. (ix) Multiple covariates: Usually,
additional features including clinical information are collected about subjects in addition to the DNA
methylation data. Several of the most widely used methods (e.g., BiSeq) are not capable of including
these covariates in their statistical models. Most of those that do are incapable of accounting for multiple
covariate types (that is, both categorical and continuous).

Furthermore, we have addressed several computational challenges including memory management,
parallel computing, etc.; see Discussion (Section 7).

The rest of the paper is organized as follows. In Section 2, we provide brief descriptions of two motivating
methylation datasets focussing on (i) data on three cell types extracted from whole blood and (ii) data
from a study of acute promyelocytic leukemia. Our proposed Bayesian functional regression method to
identify DMCs is given in Section 3. Section 4 covers a comparative simulation study inspired by a real-data
structure. We provide analyses of the two real-datasets in Sections 5 and 6. Finally, Section 7 contains
some concluding remarks.

2. Data

We use two publicly available datasets. One, which we refer to as the WGBS dataset, is a proof-of-principle
dataset containing clear signals, and is used to develop our method and validate performance through
simulation studies; the other, the APL dataset, contains data from patients with leukemia and will be
extensively analyzed using DMCFB, BiSeq, and DMCHMM, and the results will be compared.

2.1. BLK DATA: WGBS data on separated whole blood

To develop our method we used a small part of a publicly available WGBS dataset derived from peripheral
blood samples. Cell types were separated, and methylation profiles were estimated with whole-genome
bisulfite sequencing (WGBS) in CD4" T-cells, CD14" monocytes, and CD19" B-cells. We extracted data
for a small region near the BLK gene on human Chromosome 8, which is known to be hypomethylated
in B-cells (Kulis et al., 2015; Shokoohi et al., 2019). The selected region contains 30,440 CpGs spanning
2 MB (10,352,236 - 12,422,082). The methylation status of 23.39% of positions in these data is missing.
We have previously studied this dataset extensively — see Shokoohi et al. (2019). For more information
see Supplementary Material S1.1.

2.2. APL DATA: RRBS data on acute promyelocytic leukemia

The second dataset that we analyze here was collected from patients with Acute Promyelocytic Leukemia
(APL) (Schoofs et al., 2013) and is publicly available on the Gene Expression Omnibus (accession no.
GSE42119). These RRBS data contain information on 18 APL patients and 16 control samples, with eight
bone marrow samples from patients in remission (RBM), four profiles of healthy CD34% cells (CD34),
and four profiles from promyelocytes (PMC). Questions of interest include identifying regions where
methylation is different among patients versus controls and also looking at different cell types and/or
disease status (“active” or “in remission”).

The dataset is challenging to analyze. It includes 9,335,693 genomic positions for each of 34 samples.
Approximately 63% of CpGs have missing values across samples. Almost all existing methods will remove
either all 63% CpGs or may impute a proportion of them. This approach leads to unreliable results due
to the loss of much useful information as a result of the removal of many positions from the analysis.
Three out of 16 samples in the control group and 12 out of 18 samples in the APL group are females.
Age ranges between 20 and 83 years. On Chromosome 15, there are 285,437 positions available, and
64.27% of CpGs across the samples have at least one missing value. Furthermore, nearly 6.19% of CpGs
in the control group and about 32.31% of CpGs in the APL group have missing values in all samples. On
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Chromosome 17, there are 510,386 positions available, and among these, there are 59.81% of positions
with at least one missing value, and all samples are missing in 5.55% of CpGs in the control group and
28.91% of CpGs in the APL group. Refer to Supplementary Material S1.2 for more on the data.

A specific focus in our analysis will be the locations of binding sites of the protein PML-RARalpha,
for which (Schoofs et al., 2013) lists some 225 locations on Chromosome 17. Epigenetic variation in the
vicinity of these sites might indicate modulation of the expression of this protein, and so detection of
differential methylation in these sites may lead to key insights.

3. Method

We propose a Bayesian functional regression profiling method to identify bDMcCs. In the following, we
describe the main aspects of the proposed method including the introduction of a functional representation
of the methylation profiles incorporated into a generalized linear model, the possible statistical inference
approaches, several numerical challenges in fitting the model and obtaining parameter values, and the
procedure by which a position is classified as a DMC.

We regard the methylation counts as realizations of a Binomial(n(t), 8(t)) process observed on the
interval [0, 7] which represents some large genomic region, where the read-depth {n(t),t € [0,7]} may
vary as the result of the sequencing process or the underlying propensity for methylation and may be
platform dependent. In this paper, we condition on the read-depth data, thereby ignoring their stochastic
properties. We specify that

E[B(t)] = B(t)  t<[0,T],

where B(t) = Y (t)/n(t), and essentially consider a (functional) model for {B(¢)}. We have access to
replicate data {Y;(t),t € [0,7]},i = 1,...,m, and potentially fixed covariates. We consider a functional
representation of 3(t) using a natural cubic spline basis in ¢; other spline bases may also be used. Our
representation allows a further decomposition into group-specific effects when a grouping structure is
present.

3.1. A spline model for methylation data

We respect the discrete nature of the observation grid (given by nucleotide position) and regard the
observation locations as positive integers t = 1,...,T. We denote the methylation data of a given sample
profile by {(ys, ny),t =1,...,T} where y; and n, respectively represent the methylation read-count and
read-depth at the #*" genomic position. A reasonable, if imperfect, model assumes that

Yi|ne, By ~ Binomial(ny, 8;), t =1,...,T,

where [, is the propensity for each site ¢ to be methylated at each read instance. In this model, each read is
assumed to yield a binary outcome that is conditionally independent of the other reads. The methylation
level at position ¢, §; changes due to different sources of variation. In the BLK data, for example, there are
three cell-types (B-cell, T-cell, and monocyte). In the APL data, there are four types of samples (CD34,
PMC, RBM, and APL), as well as the individuals’ age and sex. Thus there is individual-level variation,
group variation, and possible variation influenced by additional covariates, and these can be incorporated
in a binary regression model

Yt.gil N gis Brgi ~ Binomial(ng g, Brgi);9=1,...,Gii=1,... . mgt=1,...,T, (1)

where G is the number of groups in the variable of interest, my is the number of samples (individuals) in
the ¢'* group, and T is the number of cytosines (CpGs) in a sample.

Due to the DNA methylation autocorrelation structure and the unknown functional form of methylation
patterns in different regions, we propose a spline-based functional (logistic) regression model. Assume the
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vector x is formed from a p-dimensional (natural cubic) spline basis derived from methylation positions.
We then decompose f; 4, in (1) as

logit(Bt i) = log{ B4/ (1 — Brgi)} = X(vo + 0y + vg),

where -, represents the baseline group-level parameter, ds,...,ds are the group-specific contrasts by
setting 4; = 0, and v,; are the individual-level variations. Note that ~, §,, and v,; are all p x 1 vectors.
Accordingly, the design matrix for any individual is denoted as X, ; which is a 7" x 3p block matrix. The
entire design matrix X that includes all groups (G) and all individuals (M = chzl my) is of dimension
MT x (G + M)p. The dimension of the spline basis, p, is termed the resolution and is equivalent to a
band-width parameter. Note that other splines bases will produce fairly similar results. Finally, the model
can be augmented to

logit(By,g,i) = x(Yo + 0y + Vy) + Zgin (2)

for some non-positional and non-spline-related fixed effects, where 1 is a ¢ X 1 vector.

3.2. Modelling the impact of read-depth

In this work, we emphasize the importance of adding an extra covariate based on the read-depth at each
position, as we have observed that read-depth varies systematically with methylation levels and that
higher read-depths tend to result in larger methylation levels (Supplementary Figure S3). For instance,
a plausible model for the BLK data is given as

logit(Btg.i) = X(vo + 8y + vg) + 1 log(neg: + 1) (3)

which allows for the effect of read-depth in an additive fashion on the linear predictor scale. As described
above, in this analysis we treat read-depth as a deterministic quantity and perform a conditional analysis,
even though the stochastic properties of the read-depth process might also be of interest in other settings.

3.3. Inference

To estimate the model parameters either the maximum likelihood (ML) or the Bayesian estimation
approach may be used. Maximum likelihood estimates are useful in a fully Bayesian analysis as they
allow for the Bayesian computational strategy to be implemented more efficiently by providing initial
estimates for the Bayesian procedure.

3.5.1. Maximum likelihood estimation

The log-likelihood function is given by

G mg T

(W) = Z Z Z Yrgi (X(Vo + 84+ Vyi) + Zg:m) — 0y g log (1 4+ 0050 470.m) (4)

g=1 i=1 t=1

where W = (v¢,02,...,06,811,- - Bame: M) and Bygi/ (1 — Brgi) = eX(V0tdg+ve)+20.m By setting the
first partial derivatives of (4) to zero, and verifying that the matrix of second partial derivatives is
negative definite and that the solution is the global maximum, one can derive a numerical solution as
U = arg maxg {(¥). For generalized linear models (GLM), even at a large scale, the ML approach can
be implemented effectively using R packages such as fastglm (Huling, 2019). However, we prefer a fully
Bayesian approach as it yields a more complete representation of associated uncertainties in light of the
data and model specification.
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3.3.2. Bayesian estimation

The full Bayesian model is given as follows. Denote the estimated logistic scale methylation levels by
B" = [Bi4.:]- We propose the model represented by the factorization

p(y|n7 B*)p(ﬂ*b(a Z,%o, 697 vg,i7 77)]7(')’07 697 vg,ia T’)

We allow for a deterministic relationship between (x, 2,7, 8,4, v,:,1n) and B, specifically that at each
site, logit(f; 4.i) follows the linear model in (2). By choosing suitable priors, inference for the collection of
unobserved quantities (v, d,, vy, 1) and B is attained using computational methods based on Markov

Chain Monte Carlo (MCMC).

3.4. Numerical methods and techniques

We briefly describe the numerical methods required for inference in the following sections.

3.4.1. Iteratively re-weighted least squares

Although the maximum of (4) can be drawn numerically, the cumbersome process involves solving a
system of nonlinear equations, and as is usual for GLMs we adopt an iteratively re-weighted least squares
(IRLS) approach: beginning with a tentative solution we apply the recursion

~(+1)

7 L (XTWOX) X (y - ) (5)

until there is no appreciable change to the estimates.

3.4.2. Quasi-IRLS

Due to the high-dimensionality of the calculation of XTW®X in (5), there are typically issues with
required memory, however, one can utilize the block-structure of X to speed up the process, or resort
to minorization-maximization (MM) procedures or quasi-IRLS which simplifies the iterative estimation
procedure by setting W equal to the identity for each [ in (5), that is, without the requirement to
recompute the weight matrix W and the inverse Hessian (XTW(Z)X)_l; in a GLM it is known that the
MM procedure converges to the maximizer of the log-likelihood. These procedures are appreciably faster
to compute but can be slower to converge to the ML estimate.

3.4.83. Bayesian inference

For fully Bayesian inference we adopt an MCMC approach and perform block updates of the effect-specific
parameters. The Gibbs sampler is used to collect MCMC samples; we devise a Gibbs sampler algorithm
by introducing independent Gaussian priors on the model parameters, although this can be easily relaxed.
The priors on all parameters are chosen to be independent N (0, 77) priors. The hyper-parameter 7y can
be specified subjectively, but it is also common to adopt an empirical Bayes approach, and choose 7 after
inspection of the data. We describe one such empirical approach below. In general, it is straightforward
using simulation to study the impact of different prior specifications; elicitation can be readily carried
out by simulation from the prior, and reconstructing the prior for the profiles by computing the 5 values
in (3).

The Gibbs sampler updates are structured as block updates for the term-specific parameters, v, d4, vy, 1,
conditional on the other parameters. In each update, the full conditional posterior distribution corresponds
to a posterior from a Bayesian binary regression model, and this update can be achieved efficiently using
bayesglm in the arm library in R (Gelman and Su, 2020). There are three possible strategies: a full update
for one parameter block may involve
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1. multiple ‘inner’ accept-reject Metropolis-Hastings steps to sample the full conditional posterior; this
provides an exact update of the block which should lead to faster convergence in the ‘outer’ chain;

2. a single ‘inner’ accept-reject Metropolis-Hastings steps to sample the full conditional posterior; this
also provides an exact update of the block but may lead to slower convergence in the ‘outer’ chain;

3. an exact update using the approximate full conditional distribution given by the Normal approxima-
tion to the non-Normal exact version, that is, from the standard approximation N (0, (XTW (6)X)™!)
inspired by the quadratic approximation of the log-likelihood function.

The third approach essentially appeals to a Gaussian approximation to the full posterior distribution,
and we have found that in fact, the Gaussian approximation works well in most cases. The Gibbs sampler
approach — rather than a joint update of all parameters simultaneously — is usually more feasible in large-
scale problems. Finally, it is generally not feasible to build a complete functional regression genome-wide.
Instead, we use a partitioning approach that fits the model in smaller genomic segments, tailored to the
computational resources available (specifically, the available physical RAM and number of cores). The
R package we have developed optimizes the segment size on an automatic basis. For the details of the
implementation of our method refer to Algorithms 1-9 in Supplementary Material S3.

3.5. Identifying DMCs

Having gathered MCMC samples for parameters at position ¢, we compute the 100(1 — «)% credible
interval for each (multiple) comparison in the categorical variable of interest. If at least one of the
intervals does not contain zero at position ¢, the position is classified as a DMC. The process is repeated
for all positions. In addition to the (overall) DMC, the pairwise DMCs are also reported when there are
more than two categories in the variable of interest.

4. Simulation Study

We have assessed the performance of the proposed method in simulations inspired by the cell-separated
data described in Section 2.1. In what follows we provide simulation scenarios and settings, selected
methods for comparison, simulation results, and sensitivity analysis.

4.1. Scenarios and settings

We use the identical scenarios and settings for simulation proposed in Shokoohi et al. (2019). The methy-
lation information available in the BC and monocyte samples were chosen to generate simulated data
as follows: (a) First, read-depths then methylation counts of all BC samples were aggregated. (b) Next,
the missing information was imputed using nearby count information. (c) Using ‘lowess’ in R, we fitted
a smooth curve (span = 0.05) denoted G1; this curve was used to specify a baseline profile. (d) Using
Supplementary Table S2, we generated the second group curve called G2 by adding effect sizes to the
chosen regions of G1. (e) By fitting a Normal distribution to the methylation difference between G1 and
all BC samples we obtained p ~ 0 and o ~ 0.18. We used these estimates to add extra variation to G1
and G2 for all samples. (f) Read-depths of all BC and monocyte samples were chosen to generate 500
simulated datasets, where within each dataset we generated 8 samples from G1 and 13 samples from G2
by doing the following steps: (i) Additional variation at each site was generated using N (0, 0.18) random
errors which were added to the methylation levels in G1 and G2. (ii) All values are truncated to fall
in [0,1]. (iii) Methylation counts were generated by multiplying the generated methylation levels in the
previous step. The integer parts of these data were chosen as the final methylation counts. Supplementary
Figure S4 presents the graph of the DMRs, one simulated dataset that compares it to the methylation in
the real dataset.
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Several of the most prominent and widely-used analysis tools were chosen for comparison including
bsseq (Hansen, Langmead and Irizarry, 2012), bumphunter (Jaffe et al., 2012), BiSeq (Hebestreit, Dugas
and Klein, 2013), DSS (Feng, Conneely and Wu, 2014), DMRcaller (Zabet and Tsang, 2015), HMM-DM
(Yu and Sun, 2016), HMM-Fisher (Sun and Yu, 2016), WFMM (Lee and Morris, 2015) and DMCHMM (both
non-weighted and weighted approaches) (Shokoohi et al., 2019). Refer to Supplementary Material S4 for
a brief comparison of the chosen methods.

4.2. Simulation results

Quantification of performance of each method is based on the following definitions: True Positive (TP,
CpG is correctly identified as bMC); True Negative (TN, CpG is correctly identified as non-DMC); False
Positive (FP, CpG is incorrectly identified as DMC); False Negative (FP, CpG is incorrectly identified
as non-DMC). ‘Sensitivity’ (SE) of DMRs and ‘Specificity’ (SP) of non-DMRs for each simulated dataset
re{l,..., R} are defined as

_ #TP in the j DMR of the r* simulated dataset

E.
SE;(r) #CpGs in the j» DMR ’

for j=1,...,10, and

SPy(r) #TN in the £ non-DMR of the r** simulated dataset
T =
¥ #CpGs in the k** non-DMR ’

for k =1,...,11, where R = 500. The average ‘Sensitivity’ of the j* DMR and the average ‘Specificity’
of the k' non-DMR are respectively calculated as SE; = Zle SE;(r)/R and SP;, = Zle SPx(r)/R. The
accuracy is calculated as ACC = {#TP + #TN} / #CpGs for each method. We also report the modified
accuracy (MACC) by assuming that DMR1 through DMRS are the only real DMRs as given in Shokoohi
et al. (2019).

We set the nominal false discovery (FDR) threshold at 5% for any applicable method. We modified the
default parameters in each tool to match simulation settings and to increase their efficiency. WFMM does
not impute missing data; instead of removing the positions with missing values, we used a naive approach
based on neighboring information to impute them in the simulated datasets to get higher performance.
The results of DMCFB are based on normal priors with mean zero and precision 10 for all parameters, and
choosing p = 30 as the resolution (band-width). We set a = 5 x 1072 for the Bayesian credible intervals
in DMCFB.

Figure 1 depicts the ACC and MACC results for different methods. DMCFB performs better than the
existing methods. Figure 2 illustrates the average ‘Sensitivity’ and the average ‘1-Specificity’, separated
for each DMR and non-DMR. DMCFB is superior in terms of ‘Sensitivity’. The results for ‘1-Specificity’
show that DMCFB is either better than or comparable to other methods. One advantage of DMCHMM is
the ability to detect small differences in methylation profiles (DMR1, DMRS), and large differences with
high precision (DMR2-7) (Shokoohi et al., 2019). Our proposed method outperforms DMCHMM in this regard.
Supplementary Figure S6 presents Cohen’s Kappa. Our new method outperforms the competing methods.
Supplementary Figure S7 shows the proportions of the times that the start and end of a DMR are
identified as DMCs. DMCFB’s results are higher than those of other methods. The empirical FDR (eFDR)
in Supplementary Figure S8 shows that DMCFB attains the nominal FDR.
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Fig 1: The average overall accuracy (ACC) and average overall modified accuracy (MACC) for different
methods in simulated data for the first scenario; Errors are generated from N(u = 0,0 = 0.18). Relevant
results are reproduced from Shokoohi et al. (2019). (sd error bars are added.)
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Fig 2: (a) The average proportion of correctly identified DMCs (‘Sensitivity’) for each method separated
by DMRs; (b) The average proportion of incorrectly identified DMCs (‘1-Specificity’) for each method
separated by NDMRs (The axis is truncated) in simulated data for the first scenario; Errors are generated
from N(pu = 0,0 = 0.18). Relevant results are reproduced from Shokoohi et al. (2019). (sd error bars are
added.)

4.2.1. Sensitivity Analysis

Since our proposed Bayesian approach depends on the choices of band-width and prior, we performed
sensitivity analyses concerning both specifications. First, in terms of band-width, we have chosen a wide
range of values in {20,25,...,60} to study its impact. Figure 3 compares ‘Sensitivity’ and ‘1-Specificity’
of DMCFB using different choices of band-width. From this figure and Supplementary Figures S19-S22, we
can conclude that the results are fairly robust for the band-width selection, specifically when the effective
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size is large. Secondly, concerning prior precision, we examine Gaussian priors with different precisions,
7'9_1 € {30,20,10,1/0.18,1,0.3,0.2,0.1}, for sensitivity analysis: it transpires that, overall, better results
are observed with respect to eFDR if the precision is estimated from the data using an empirical Bayes
approach. In this case, the average empirical site-specific standard deviation proves to provide a reasonable
scaling, leading to the specification 7 = 0.18. Figure 4 and Supplementary Figures S28-S31 show the
robustness of the results.
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Fig 3: (a) The average proportion of correctly identified DMCs (‘Sensitivity’) for each choice of band-width
separated by DMRs DMCFB; (b) The average proportion of incorrectly identified bmcCs (‘1-Specificity’) for
each choice of band-width separated by NDMRs in DMCFB (The axis is truncated) in simulated data for
the first scenario; Errors are generated from N(u = 0,0 = 0.18). (sd error bars are added.)
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Fig 4: (a) The average proportion of correctly identified DMCs (‘Sensitivity’) for each choice of precision
of prior separated by DMRs in DMCFB; (b) The average proportion of incorrectly identified as bMmcs (‘1-
Specificity’) for each choices of precision of prior separated by NDMRs in DMCFB (The axis is truncated)
in simulated data for the first scenario. Errors are generated from N(u = 0,0 = 0.18). The precision is
chosen, in order, in {30, 20,10,1/0.18,1,0.3,0.2,0.1}. (sd error bars are added.)

A summary of conclusions drawn from several simulation studies is as follows. (i) DMCFB outperforms
all considered methods in almost all criteria including accuracy, Cohen’s Kappa, ‘Sensitivity’, and the
percentage of detecting start and end of DMRs. (ii) In terms of ‘1-Specificity’, the DMCFB method is either
comparable or better than that of other methods. (iii) Apart from bumphunter, HMMDM, and BiSeq, all other
methods including DMCFB attained the nominal FDR at 5%. (iv) Similar to DMCHMM, DMCFB’s performance is
excellent in DMRs with large effect sizes (say 0.2) and does not depend on any other features. (v) For small
effect sizes (say 0.1), our method’s performance is superior to other methods including DMCHMM. (vi) DMCFB
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does a better job in smoothing the data followed by DMCHMM and WFMM. Specifically, DMCFB is robust
concerning the length of DMRs and the size differences; see DMRs 2-7. (vii) Similar results are observed
using larger variability for noise (o = 0.24) (see Supplementary Material S5.3). The decline in performance
using our method is negligible. This result shows that DMCFB is robust with regard to variation in the
data while other methods have noticeable performance loss. (viii) Using a different simulation setting
with DMRs of different lengths, we observed trends similar to those described above (see Supplementary
Material S5.4). (ix) Sensitivity analysis shows DMCFB is robust for band-width selection. (x) A sensitivity
analysis is done by re-assembling regions to see how a regulatory landscape is altered by the grouping
factor. The results are observed to be robust (see Supplementary Material S6.4). (xi) Sensitivity analysis
concerning the precision of prior distribution shows the robustness of the results. More specifically, better
eFDR is observed when the prior precision is estimated from data using an empirical Bayes approach.

5. Proof of Principle Analysis of Sorted Cells

The BLK data resembles a dataset in which several challenges such as multiple groups, variable read-
depths, and missing values, exist jointly. Almost none of the existing methods can efficiently handle
such complexity by addressing all the known challenges. To this end, we have compared the methylation
profiles between cell types near the BLK gene described in Section 2.1 using DMCFB. The BLK data include
8 BC, 13 monocyte, and 19 TC samples in which methylation counts and read-depths for 30,440 CpGs are
available. We used normal priors with 7y =~ 0.18. The value of 7y is computed by obtaining the standard
deviation (SD) of methylation levels among samples at each position, and then averaging the SD values
over all the positions. The band-width is set to 30. The fitted model is identical to (3), where BC is
the baseline, n,4; is the read-depth at position ¢ of sample ¢ in group g where ¢t = 1,...,T = 30,440,
g=1,23andi=1,...,m, with m; = 8 my = 13 and m3 = 19.

A set of 1000 MCMC samples is collected after a burn-in of 1000, which is more than enough to
achieve convergence. We set = 5 x 1072, 1 x 107° and 1 x 107® in constructing the credible intervals
(Supplementary Table S5); hence, the CpG site at position ¢ is classified as a bMC if at least one of the
(1 — @)% credible intervals for group comparisons does not include zero.

For o = 1 x 1078, we observed in total 36.14% of CpGs were identified as DMC (Supplementary Ta-
ble S5). Among these, approximately, 18.46%, 14.37%, and 24.17% of CpGs were differentially methylated
respectively for pairwise comparisons BC vs monocyte, BC vs TC, and monocyte vs TC. Figure 5 depicts
the result of this analysis for the region near the BLK gene promoter. From this figure, we can observe
that the three cell-types are differentially methylated specifically at the promoter of the BLK gene. These
results are in concordance with the literature (Kulis et al., 2015). It is worth mentioning that most an-
alytical tools are incapable of imputing missing values efficiently and analyzing all three groups in the
BLK data at once, i.e. performing three simultaneous comparisons.
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Fig 5: (a)-(c) Identified DMCs for three pairwise comparisons of cell-type specific methylation data near
the BLK gene promoter. Short black vertical lines indicate CpGs where one cell type was significantly
different from the other, at credible interval level o = 1 x 10~%. The average methylation level for each
cell-type is also plotted.

6. Analysis of Patients with Acute Promyelocytic Leukemia Versus Control Cell Types

Schoofs et al. (2013) described differences in methylation between patients with APL and three types
of normal cells: mononuclear cells from remission bone marrow, CD347" cells from healthy donors, and
promyelocytes derived in vitro from CD34" cells. APL is known to be caused by a Chromosome 15-17
translocation affecting promyelocytic leukemia-retinoic acid receptor «, and these authors explored, in
RRBS data, how methylation patterns differed across the genome. Using RRBS profiling, Schoofs et al.
(2013) showed widespread hypermethylation in APL samples, not only restricted to the location of the
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translocation.

Here, we use DMCFB to reanalyze the data on Chromosome 15 and 17, to see if additional sensitivity can
be achieved. From the point of view of building an analytic approach for these data, the APL data present
several significant challenges: (i) A large proportion of the data points is missing. Most other methods
cannot handle such complexity and will remove either all or big chunks of positions. (ii) Additional
covariates such as age and sex are of interest, and this may force users to choose among a few methods
that can handle multiple covariates. (iii) Read-depths vary dramatically in different regions; few methods
account for such information. (iv) It can be seen from Supplementary Figure S2 that the methylation
pattern changes dramatically in different regions; simple smoothing techniques cannot efficiently capture
such complexity.

We can conclude that the approaches that are taken in Schoofs et al. (2013) (i.e., removal of most
positions with missing values and low read-depth and not including additional sources of variation in age
and sex) have probably led to a set of weak or unreliable results. Hence, we reanalyzed the APL dataset
using DMCFB and compared the results with those of BiSeq.

We do two reanalyses of the data: First, we perform a simple case-control comparison without con-
sidering any additional covariates and grouping the three types of controls (CD34, PMC, and RBM)
together. This allows a direct comparison of the results by DMCFB with the results by BiSeq presented by
Schoofs et al. (2013) (Section 6.1). The second analysis compares the four groups of samples and includes
covariates (Section 6.2).

6.1. Reanalysis of APL data by comparing DMCFB and BiSeq

The fitted model in DMCFB is set to

logit(ﬁt,g,i) = X(’YO + 69 + Ug,i) + T log(nt,gﬂ' + 1)7

where -, is the baseline group level (CD34), d, (APL) is the group-specific contrast by setting d; = 0,
v,,; are the individual-level variations, x is the (natural cubic spline transformation) design matrix, n 4,
is the read-depth at position ¢ of individual ¢ in group ¢ for t = 1,...,T (T = 285,437 and 510, 386
for Chromosome 15 and 17, respectively), g = 1,2 and ¢ = 1,...,m, with m; = 16 control samples and
mo = 18 APL patients.

We used Gaussian priors with 7y & 0.12. The value of 7y is computed by obtaining the SD of methylation
levels among samples at each position, and then averaging the SD values over all the positions. The band-
width is set to 30.

We collected 1000 MCMC samples after a burn-in of 1000 runs, which is more than enough for conver-
gence. For calling genome-wide significance in genetics, the thresholds of « = 1 x 107 or v = 1 x 107% are
commonly used (Lander and Kruglyak, 1995). These thresholds were derived to control the family-wise
error rate at 5% for genetic data. Although an appropriate threshold for WGBS data is not known, here
we choose a threshold of o = 1 x 1078 and note that very similar numbers of DMCs were identified if we
used the more liberal threshold. For BiSeq, we first used the significance level & = 1 x 107%, but this
identified only a very small number of DMRs (and consequently a very small number of DMCs). Therefore,
for our BiSeq analysis, we used significance thresholds of & = 1 x 107! and o = 5 x 1072 for testing and
trimming clusters, respectively.

Tables 1(A, B) show how and when DMCFB and BiSeq agree or disagree for Chromosomes 15 and 17,
respectively. The tables show the numbers of DMCs called for the two methods, along with the percentages
conditional on an annotation (Islands, Shores, and Deserts). Firstly, in Table 1(A), we observe a much
smaller number of sites are called DMC by BiSeq relative to DMCFB. The significance thresholds used for
BiSeq will affect this proportion, but the level we have chosen is already quite liberal (o = 5 x 1072).
Secondly, we can see that if BiSeq calls a DMC, then DMCFB will call the same site as a DMC 80.6% of the
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time. This proportion is fairly consistent across the three site annotations, although it is a little lower
for Desert regions than those of Islands and Shores. In contrast, we can see substantial differences in
performance among the sites that BiSeq does not call as DMCs. Overall, the DMCFB method calls 33%
of these sites as DMCs. But this percentage ranges from 25.6% for CpG Deserts to 51.9% for the CpG
Islands. In Table 1(B), similar findings are obtained. The agreement with BiSeq calls is a little higher
— 83.4% instead of 80.6%, and a similar trend is seen among sites not called by BiSeq, such that DMCFB
is calling more DMCs in Islands and Shores than in Desert regions. Figures ?7?7(A,B) look at coherence
within Islands. If an Island is identified as differentially methylated by DMCFB it is more likely that most
of the CpGs inside the Island are identified as DMC compared to BiSeq, and this finding indicates better
smoothing by DMCFB as we saw in simulation studies.

We now address the detection of differential methylation in the vicinity of PML-RARalpha binding
sites. Supplementary Table S8 presents which of the known binding sites listed in Martens et al. (2010)
are identified as differentially methylated, when comparing APL and controls, by either method. We
observe that DMCFB identified more binding sites as differentially methylated than did BiSeq. On Chro-
mosome 15, DMCFB identified 14 sites, while BiSeq identified only 2 sites as differentially methylated; on
Chromosome 17, DMCFB identified 43 sites, while BiSeq identified only 2 sites. We also display the read-
depth of the known binding sites that are not identified as differentially methylated by either method
or identified by only DMCFB in Supplementary Figures S38(A, B) on Chromosome 15 and Supplementary
Figures S39(A, B) on Chromosome 17. From these figures, we observe that when neither method detects
a DMC (at known binding sites), often the read-depth is very low, and so the capability to detect DMCs
is compromised. However, when the read-depth is moderate or high, DMCFB identifies appreciably more
binding sites as differentially methylated. In addition, DMCFB exhibits more sensitivity for capturing the
documented widespread dysregulation.
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TABLE 1
Comparing DMCFB and BiSeq in identifying DMCs in the APL data
(A) Chromosome 15

BiSeq

All CpGs NDMC % of 2x2 table % of BiSeq NDMC pMC % of 2x2 table % of BiSeq DMC
DMCFB nomc! 178,198 62.43 3,586 1.26

DMC 88,726 31.08 33.24 14,927 5.23 80.63
CpG Island
DMCFB NDMC 29,453 39.28 2,647 3.53

DMC 31,738 42.32 51.87 11,149 14.87 80.81
CpG Shore
DMCFB NDMC 14,560 51.74 479 1.70

DMC 10,809 38.41 42.61 2,293 8.15 82.72
CpG Desert
DMCFB nome 134,185 73.60 460 0.25

DMC 46,179 25.33 25.60 1,485 0.81 76.35

(B) Chromosome 17
BiSeq

All CpGs NDMC % of 2x2 table % of BiSeq NDMC DMC % of 2x2 table % of BiSeq DMC
DMCFB nome 317,755 62.26 3,098 0.61

DMC 173,921 34.08 35.37 15,612 3.06 83.44
CpG Island
DMCFB NDMC 68,600 49.40 2,647 1.84

DMC 56,121 40.41 45.00 11,587 8.34 81.90
CpG Shore
DMCFB NDMC 49,128 57.34 400 0.47

DMC 32,990 38.51 40.17 3,157 3.68 88.75
CpG Desert
DMCFB noMc 200,027 69.98 138 0.05

DMC 84,810 29.67 29.77 868 0.30 86.28

INot a pmc

Additional analytic results are found in Supplementary Material S8.1, and here we highlight some
features of these additional results:

e Supplementary Table S9 examines the agreement between adjacent Islands and Shores and shows
whether they agree. On both analyzed chromosomes, if an Island contains at least one DMC, its
adjacent Shore is more likely to be identified as differentially methylated by DMCFB than BiSeq,
suggesting increased sensitivity of DMCFB. For example, on Chromosome 15 with DMCFB, 61.9% of
sites with at least one DMC in an Island also identified at least one DMC in the adjacent Shore.
In contrast for BiSeq, this percentage was only 32.6%. Similarly, if an Island was not differentially
methylated, its adjacent Shore is also more likely to be not called differentially methylated by DMCFB
than BiSeq.

e Supplementary Table S10 addresses the direction of the methylation changes, overall and by an-
notation. When both methods identify a CpG as DMC, they mostly agree on the direction of the
methylation, and if they do not agree on the direction, BiSeq tends toward hypermethylation. If
a CpG site is detected as DMC by only DMCFB, the direction is mostly hypomethylation in Islands
and hypermethylation in Shores and Deserts. If a CpG site is detected as DMC by only BiSeq, the
direction is mostly hypomethylation in both Islands and Shores. These findings are similar for both
Chromosomes 15 and 17.

e Supplementary Figures S40 and S41 represent read-depth for DMCs captured by DMCFB, BiSeq, or
both. Clearly, median read-depth is lower for DMCFB, which speaks to our method’s efficient use of
information. When both methods call a DMC, read-depth tends to be very high in the APL samples
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- i.e., a strong clear signal for differential methylation.

e Supplementary Figures S42-S45 illustrate the difference between the raw data and the smoothed
data, and also show how APL’s methylation levels are often much higher than among controls. The
differences between patients and controls become far more apparent after smoothing, and overall,
DMCFB captures far more sites as differentially methylated than BiSeq.

We present a comparison between DMCFB and DMCHMM in Supplementary Material S8.3.

6.2. Reanalysis of APL data by accounting for all the information using DMCFB

In this section, we reanalyze the APL data using DMCFB but account for the additional information of sex,
age, and the four groups (CD34, PMC, RBM, and APL). The full model is set to

logit(Byg:) = x(vo + 04 + vVg) +n1log(negs + 1) + 1224 + 3wy,

where 7y is the baseline group level (CD34), §; = 0, 2 (PMC), §; (RBM), and 3 (APL) are the group-
specific contrasts, v,; are the individual-level variations, x is the (natural cubic spline transformation)
design matrix, n, 4; is the read-depth at position ¢ of individual ¢ in group g with its effect 7y, z,; is the
sex of individual 7 in group ¢ with its effect 72, and w,; is the age of individual ¢ in group g with its effect
ns. Recall t =1,...,T (T = 285,437 and 510, 386 for Chromosome 15 and 17, respectively), g = 1,2 and
i =1,...,my with m; = mg = 4, mg = 8, and my = 18 for the four groups CD34, PMC, RBM, and
APL, respectively.

A set of 1000 MCMC samples is collected after a burn-in of 1000, which is more than enough to
achieve convergence. We set & = 5 x 10721 x 107° and 1 x 107% in constructing the credible intervals.
The results are presented in Tables 2(A, B) for Chromosome 15 and 17, respectively. The patterns in both
chromosomes and all three o levels are almost similar, specifically for &« = 1 x 107° and o = 1 x 1078,
This analysis, therefore, leads to six age- and sex-adjusted pairwise comparisons across the four sample
types. The most number of DMCs are found for the contrast APL versus CD34, followed by APL versus
PMC and APL versus RBM. Overall, 3.626% of CpGs identified as DMC using o = 5 x 1072,

It is worth noting that almost all the analytical tools are incapable of analyzing the APL data by
comparing all six contrasts in one run, and considering all additional information on subjects while
keeping all the CpGs in the analysis and imputing the missing values.
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TABLE 2
Reanalysis of the APL data using DMCFB by accounting for all available informations; Chromosome 15 and 17.
(A) Chromosome 15

Q Pairwise contrasts NDMC! % DMC % Hyper %  Hypo %
a=5x10"2 PMC CD34 98.814 1.186 0.651 0.535
RBM CD34 99.722 0.277 0.165 0.113

APL CD34 98.371 1.629 1.142 0.487

RBM PMC 99.847 0.153 0.066 0.087

APL PMC 99.612 0.388 0.135 0.253

APL RBM 99.364 0.635 0.369 0.266

All positions 96.374 3.626 - -

a=1x10"° PMC CD34 99.977 0.023 0.022 0.001
RBM CD34 99.983 0.017 0.016 0.001

APL CD34 99.832 0.168 0.139 0.029

RBM PMC 99.979 0.021 0.015 0.006

APL  PMC 99.976 0.024 0.009 0.015

APL RBM 99.975 0.025 0.018 0.007

All positions 99.768 0.232 - -

a=1x10"% PMC CD34 99.977 0.023 0.022 0.001
RBM CD34 99.983 0.017 0.016 0.001

APL CD34 99.832 0.167 0.139 0.029

RBM PMC 99.979 0.021 0.015 0.006

APL PMC 99.976 0.024 0.009 0.015

APL RBM 99.975 0.025 0.018 0.007

All positions 99.769 0.231 - -

(B) Chromosome 17

Q Pairwise contrasts NDMCt % DMc % Hyper %  Hypo %
a=5x10"2 PMC CD34 98.930 1.070 0.607 0.462
RBM CD34 99.597 0.403 0.185 0.218

APL CD34 97.897 2.103 1.555 0.548

RBM PMC 99.650 0.350 0.159 0.191

APL PMC 99.320 0.681 0.377 0.303

APL RBM 98.985 1.015 0.554 0.461

All positions 95.611 4.389 - -

a=1x10"° PMC CD34 99.941 0.059 0.007 0.051
RBM CD34 99.998 0.002 0.002 0.001

APL CD34 99.765 0.235 0.215 0.020

RBM PMC 99.976 0.024 0.024 0.000

APL  PMC 99.891 0.109 0.093 0.016

APL RBM 99.892 0.108 0.093 0.015

All positions 99.691 0.309 - -

a=1x10"% PMC CD34 99.941 0.059 0.007 0.051
RBM CD34 99.998 0.002 0.002 0.001

APL CD34 99.765 0.235 0.214 0.020

RBM PMC 99.976 0.023 0.023 0.000

APL PMC 99.891 0.109 0.093 0.016

APL RBM 99.892 0.108 0.093 0.015

All positions 99.691 0.309 - -

1Not a pme
7. Discussion

In this article, we have proposed an efficient DNA methylation approach, DMCFB, for DMC identification
based on a functional data model and a Bayesian estimation and inference procedure. We have demon-
strated the superiority of this method over existing methods through exhaustive simulation studies as
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well as robustness via sensitivity analysis concerning both band-width and prior selection. The proposed
method is flexible in terms of adding any source of variation and is robust with respect to the true under-
lying methylation pattern. Missing values are automatically imputed. The method is capable of adding
discrete or continuous covariates or combinations. Most existing methods ignore read-depth information
in the analysis; by adding the read-depth as an extra source of variation in the model, our proposed
method adjusts the methylation levels for better estimation. Similar to DMCHMM, our proposed method
shows consistent behavior in the sense that the results depend on the difference in methylation between
groups and not other aspects of DMRs such as length, location, autocorrelation pattern, read-depth, etc.
One drawback of DMCHMM is that the efficiency deteriorates if the distances between CpGs are explicitly
included in the HMM model. Our proposed method is not restricted in this sense.

While reanalyzing the APL data we noted that BiSeq’s default significance threshold maintains a
very stringent control over the false discovery rate, and only a small number of bDMCs are identified;
in fact, DMCFB identifies overall 6 (Chromosome 15) or 10 (Chromosome 17) times more DMCs than
BiSeq. However, it is possible to adjust the BiSeq package options slightly, and we ran another series of
analyses where the BiSeq’s call was 7.5% (Supplementary Table S11(A)) instead of 6.5% (Table 1(A))
on Chromosome 15. However, the results of this sensitivity analysis showed less agreement with DMCFB,
i.e. among DMCs called by BiSeq, the percentage also called by DMCFB dropped from 81.63% (Table 1(A))
to 68.79% (Supplementary Table S11(A)) on Chromosome 15. In contrast, among CpGs not called by
BiSeq, the percentage of DMCs called by our method remained essentially unchanged from Table 1. This
suggests that when BiSeq is less confident in a call, that the two methods are using nearby reads and
methylation patterns differently. Furthermore, the ability to capture more bMcCs in CpG Islands reflects
DMCFB’s ability to use information from adjacent CpGs via our functional smoothing. Given the density
of CpGs in the Islands, we obtain much more sensitivity in these regions. DMCFB, due to the functional
regression and efficient imputation, seems to capture better a signal that persists across several CpGs.
DMCFB often identifies all CpGs in an Island as differentially methylated, whereas BiSeq tends to capture
less than half. Similarly, we have shown that if an Island displays differential methylation, that DMCFB
more often also finds differential methylation in the adjacent Shores. Similarly, the additional sensitivity
of DMCFB is also visible when examining the known binding sites of PML-RARalpha; performance of
our approach was particularly notable when the read-depths were moderate. The two methods are both
smoothing, but they are using the information differently.

We now elaborate on several computing challenges and the techniques implemented in DMCFB as in
which we addressed them.

e Partitioning: We partition data for two reasons: one, to avoid using a very large dimensional design
matrix which results in very high-dimensional computation and memory problems; two, to utilize
the multi-core facility provided in many computing machines which increases the speed of the
process. Note that by partitioning the data into smaller segments, a smaller resolution can be used.
We recommended partitioning the data into regions of size 500 CpGs and using a single resolution
of 30 in each partition for all parameters.

e Parallel computing: Implementing parallel computing results in faster computation. Users can use
two approaches for parallel computing to speed up the process: (1) running the computation on
several partitions simultaneously; (2) using further parallel computing while estimating 5, ,; pa-
rameters, both of which are implemented in DMCFB.

o Multi-resolution modeling: To speed up the process one can use a multi-resolution model choosing
different band-widths for the model parameters (v, d,, v,,;). For example, one may choose a larger
band-width for v,; and a smaller one for (v, d,).

e Software: We provide a universal R package optimized by using several fast libraries and codes in R
and C by following the Bioconductor guidelines.

In summary, our proposed method provides an improved, robust, and flexible method for bMC/DMR


https://doi.org/10.1101/2021.03.21.436232

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.21.436232; this version posted March 22, 2021. The copyright holder for this preprint
(which was not certified by Zggaer review) is the author/funder. All rights reserved. No reuse allowed without permission.
Shokoohi et al./Differential Methylation in Cancer via Bayesian Functional Regression 22

identification.

Supplementary Material

Web supplement including tables, figures and extra data analyses referenced here are available with this
paper at the Annals of Applied Statistics on the ims website. Our open-source package DMCFB is available
at http://bioconductor.org/packages/DMCFB/.
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