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Highlights 

● A large fraction of the C. necator proteome is related to environmental readiness 

● Highly utilized enzymes are more abundant and less variable 

● Autotrophy related enzymes are largely underutilized 
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● Knockout of Calvin cycle genes increases growth rate on sugar but decreases affinity 

Summary 

Bacteria must balance the different needs for substrate assimilation, growth functions, and            

resilience in order to thrive in their environment. Of all cellular macromolecules, the bacterial              

proteome is by far the most important resource and its size is limited. Here, we investigated                

how the highly versatile 'knallgas' bacterium Cupriavidus necator reallocates protein          

resources when grown on different limiting substrates and with different growth rates. We             

determined protein quantity by mass spectrometry and estimated enzyme utilization by           

resource balance analysis modeling. We found that C. necator invests a large fraction of its               

proteome in functions that are hardly utilized. Of the enzymes that are utilized, many are               

present in excess abundance. One prominent example is the strong expression of CBB             

cycle genes such as Rubisco during growth on fructose. Modeling and mutant competition             

experiments suggest that CO2-reassimilation through Rubisco does not provide a fitness           

benefit for heterotrophic growth, but is rather an investment in readiness for autotrophy. 

Introduction 

Cupriavidus necator (formerly Ralstonia eutropha) is a model aerobic lithoautotroph and           

formatotroph, and is notable for production of the storage polymer polyhydroxybutyrate           

(PHB) [Yishai et al., 2016, Brigham, 2019 ]. Cupriavidus necator H16 (hereafter abbreviated            

C. necator) is a soil-dwelling bacterium with a large genome (~6,600 genes) distributed on              

two chromosomes and one megaplasmid [Pohlmann et al, 2006 ]. It features a wide arsenal              

of metabolic pathways for xenobiotics degradation, hydrogen and formate oxidation, carbon           

fixation via the Calvin-Bensson-Bassham (CBB) cycle, and utilization of nitrate/nitrite as           

alternative electron acceptors (de-nitrification) [Cramm, 2008 ]. Several operons for substrate          

assimilation are present in multiple copies, often on different chromosomes (e.g. cbb operon,             

hydrogenases, formate dehydrogenases). A detailed reconstruction of its metabolic network          

suggested that it can metabolize 229 compounds [Park et al., 2011 ]. Interestingly, C. necator              

prefers organic acids as growth substrate over sugars. The only sugar that supports growth              

is fructose, which is metabolized via the Entner-Doudoroff (ED) pathway [Alagesan et al.,             

2018 ]. Although the metabolic versatility of C. necator is interesting from a biotechnological             

point of view, we wondered if it does not come at a considerable cost for the cell. In                  
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particular, whether the expression of various substrate assimilation pathways is efficiently           

regulated under different conditions, and if gene expression is optimal to maximize growth or              

rather another trait such as environmental readiness. The 'cellular economy' concept entails            

that an organism has a limited pool of (enzyme) resources and must re-allocate resources to               

different functions in order to meet the current environmental needs [Molenaar et al., 2009,              

Scott et al., 2014, Hui et al., 2015 ]. A prime example is the switch from energy-efficient,                

high-enzyme-cost respiration to energy-inefficient, but low-enzyme-cost fermentation during        

overflow metabolism [Basan et al., 2016, Sanchez et al., 2017 ]. The protein economy has              

been studied experimentally and with dedicated metabolic models in heterotrophic          

microorganisms like E. coli [Scott et al., 2014, O'Brien et al., 2016 ] and S. cerevisiae               

[Metzl-Raz et al, 2017, Sanchez et al., 2017 ]. More recently, resource allocation was studied              

in photoautotrophic bacteria (Synechocystis sp.) [Jahn et al., 2018, Zavrel et al., 2019 ].             

There, a large investment in the CO2-fixation (2-7% protein mass is Rubisco) and             

photosynthesis machinery (20-40% protein mass are antennae and photosystems) may          

reduce proteome space for ribosomes, resulting in lower growth rates than heterotrophs.  

Previous studies of C. necator grown in different trophic conditions have shown that             

gene expression is regulated in a condition-dependent manner [Schwartz et al., 2009,            

Kohlmann et al., 2011, Kohlmann et al., 2014 ]. For example, CBB cycle genes are strongly               

expressed during autotrophic growth but were also upregulated on fructose [Shimizu et al.,             

2015 ], prompting the question of whether such expression is of benefit or evolutionary             

advantage. To date, protein allocation and utilization has not been investigated. We            

wondered, if and how C. necator would reallocate protein resources when confronted with             

different types and strengths of substrate limitation. We also wondered to what extent a              

versatile soil bacterium would express unutilized or underutilized proteins. And finally, how            

protein allocation and enzyme utilization would scale with growth rate. To address these             

questions, we designed a multivariate set of growth experiments. C. necator was cultivated             

in bioreactors at steady state conditions using four limiting substrates and five different             

growth rates. We quantified the cellular proteome using LC-MS/MS and trained a            

genome-scale resource allocation model with our data [Bulovic et al., 2019, Goelzer et al.,              

2015 ]. We found that C. necator allocates its resources in response to the imposed              

environmental challenges, but invests more than 40% of its protein mass in genes that are               

either unlikely to be utilized or have no known function. Enzyme utilization in the central               
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carbon metabolism was markedly different between pathways, with enzymes in the proximity            

of substrate assimilation (upper glycolysis, CBB cycle) showing higher variability, higher           

absolute abundance, and higher utilization than enzymes involved in supply of biomass            

precursors (tricarboxylic acid cycle (TCA), pyruvate metabolism). CO2-assimilation enzymes         

were also expressed in heterotrophic growth regimes but were found to provide no fitness              

benefit. 

Results 

C. necator expresses most of its annotated genes 

In order to access cellular states that were optimally acclimated to a nutrient limitation, we               

cultivated C. necator in chemostat bioreactors. We selected four limiting growth substrates            

as interesting entry points to metabolism (Figure 1 A). Fructose was chosen as it is the only                 

known sugar (apart from sugar alcohols) that C. necator utilizes [Orita et al, 2012 ]. It is taken                 

up via a specific ABC transporter and metabolized in the ED pathway. Succinate was              

chosen as an entry point to the TCA cycle. Formate was chosen because C. necator has the                 

special ability to utilize it as both energy and carbon source. Formatotrophic growth closely              

resembles lithoautotrophic growth regarding the utilized enzymes [Cramm, 2008 ]. Formate          

(COOH-) is first oxidized by formate dehydrogenases (FDH) to CO2 with simultaneous            

reduction of NAD+ to NADH. The CO2 is then fixed via the CBB cycle. Finally, growth on                 

fructose with limiting ammonium was chosen as we expected a dedicated response to             

N-limitation by adjustment of gene expression and flux ratios between different pathways.            

For each limitation, four independent bioreactor cultivations were performed with dilution rate            

(equalling growth rate µ) increasing step-wise from 0.05 to 0.1, 0.15, 0.2, and 0.25 h -1               

(Figure S1 A) and subsequent sampling for proteomics. The substrate limitation in            

chemostats was verified by determining the residual carbon concentration in culture           

supernatants using HPLC (Figure S1 B). For ammonium limitation, a high concentration of             

residual fructose was determined, as expected when nitrogen is limiting. All other conditions             

showed no or very low concentration of residual substrate.  

We analyzed the proteome of C. necator for all conditions of the chemostat             

cultivations (four substrate limitations, five growth rates, four biological replicates). We           

employed a label-free quantification strategy with a feature propagation approach, allowing           

us to significantly increase the coverage of protein quantification [Weisser et al., 2017 ]. More              
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than 4,000 proteins were quantified in each individual sample (Figure S2 A). Altogether,             

5,357 proteins out of 6,614 annotated genes were quantified in at least one condition              

(81.0%), and 4,260 proteins were quantified with at least two peptides (Figure S2 B). The               

proteomics data can be accessed through an interactive web application at           

https://m-jahn.shinyapps.io/ShinyProt. Based on the distribution of protein abundance 99%         

of the proteome by mass was quantified. An analysis of sample similarity based on              

expression revealed that low growth rates are more similar to each other, and that growth on                

formate is most unlike the other conditions (Figure S2 C). Gene expression in terms of               

proteome mass fraction was unequally distributed over the genome (Figure 1 B): 78.7% of              

protein mass was encoded by chromosome 1, 16.4% encoded by chromosome 2, and 5.4%              

by pHG1. Chromosome 2 and pHG1 thus encode predominantly specialized functions, as            

predicted by in silico analyses [Pohlmann et al., 2006, Fricke et al., 2009 ]. On chromosome               

2, highly expressed genes were the cbb operon (CBB Cycle, pentose phosphate pathway             

(PPP), Figure S2 D), glycolysis related genes (pgi, zwf), and the methionine synthase metE.              

On pHG1, highly expressed were the second copy of the cbb operon as well as hox/hyp                

operons (soluble and membrane bound hydrogenases, up to 3% of proteome by mass). The              

majority of pHG1 encoded protein mass is therefore related to autotrophic growth. Note that              

the two copies of the cbb operon are 99% identical on amino acid sequence level and can                 

not be distinguished well by LC-MS/MS (abundance of ambiguous peptides was allocated to             

both copies). Promoter activity studies have shown that expression levels from both operons             

were similar [Gruber et al., 2017 ]. As we also cultivated C. necator on formate, we were                

interested in the expression of formate dehydrogenase (FDH) genes (Figure S2 E). C.             

necator is equipped with two types of FDH, soluble S-FDH (operons fds and fdw on               

chromosome 1 and 2, respectively) and membrane-bound M-FDH (fdo and fdh operons, the             

latter present in two copies on chromosome 1 and 2, respectively). In contrast to cbb genes,                

which were expressed under both fructose and formate growth, expression of FDHs was             

induced only during growth on formate, and the soluble dehydrogenase (fds) was the             

predominant form. 
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Figure 1. C. necator expresses most of its annotated genes. A) Four different limitations              
were chosen covering different entry points to central metabolism. Cells were cultivated in             
chemostat bioreactors and dilution rate (equals growth rate) was stepwise increased from            
0.05 to 0.25 h-1. The proteome was analyzed by LC-MS/MS. Enzyme abundance was used              
to constrain a resource balance analysis (RBA) model, and enzyme utilization was            
investigated for the different limitations. B) Protein mass fraction (%) of all proteins (5,357)              
mapped to their respective genes on chromosome 1, 2, and megaplasmid pHG1 (average of              
four substrate limitations, µ=0.25 h-1). Density is mean protein mass fraction for a sliding              
window of five genes. The genes of the cbb operon (arrows) are the most expressed regions                
on chromosome 2 and pHG1. 

 

A large fraction of the C. necator proteome is related to environmental readiness 

We next explored how the proteins of C. necator are utilized during the different growth               

modes. We created a resource balance analysis (RBA) model [Bulovic et al, 2019 ] based on               

a previous genome-scale metabolic reconstruction of C. necator (1,360 reactions) [Park et            
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al., 2011 ]. The RBA model predicts optimal flux distributions as in flux balance analysis              

(FBA), but also takes kinetic parameters and enzyme abundance into account (Methods).            

DNA replication, transcription, translation, and protein folding were included as lumped           

reactions (macromolecular machines) with protein subunit composition and rate estimates          

taken from literature (Methods, Table S1 ). Each enzyme or macromolecular machine imparts            

a protein cost, with the total protein pool being limited. RBA models can predict trade-offs               

between high- and low-enzyme cost pathways, increase of ribosome abundance with growth            

rate, and upper boundaries on growth in substrate-replete conditions [Goelzer et al. 2015,             

Sanchez et al., 2017, Salvy et al., 2020 ]. The C. necator RBA model was constrained using                

a set of parameters obtained from proteomics data, the UniProt database, and literature             

(Methods, Figure S3, Table S1 ). A critical parameter for RBA is the enzyme efficiency kapp of                

each reaction, which links the reaction rate to the abundance of its catalyzing enzyme.              

These were obtained by estimating the metabolic flux boundaries per reaction (using flux             

sampling), and then dividing maximal flux by unit enzyme allocated to the reaction [Goelzer              

et al., 2015, Davidi & Milo, 2017, Bulovic et al., 2019 ].  

We used the constrained resource allocation model to analyze the non-utilized and            

the under-utilized fraction of the C. necator proteome. The non-utilized proteome fraction            

consists of enzymes that do not carry flux in any of the tested conditions. To quantify this                 

fraction, we performed a series of RBA model simulations corresponding to the experimental             

conditions of the chemostats. The model predicted optimal flux distribution and enzyme            

abundance to maximize growth rate for each of the four different substrate limitations. The              

model was generally able to reproduce experimentally determined protein allocation using           

fitted (optimal) kapp values (Figure S4 A). However, these simulations may predict one out of               

many possible solutions to the protein allocation problem. In order to estimate the total              

number of usable reactions independent from the optimal set of kapp, we performed 200              

simulations per substrate limitation where kapp was randomly sampled from the kapp            

distribution. This converged to maximally 550 utilized reactions per condition. (Figure S4 B).             

In total, 587 of 1,360 reactions were utilized at least once in all simulations, 280 reactions                

were used in all simulations on all substrates (core reactions), and 28 reactions were used in                

only one particular limitation. We mapped the C. necator proteome quantification data onto             

RBA model reactions to categorize proteins as: 1) not included in the model, 2) included but                

non-utilized enzymes, 3) utilized enzymes, and 4) utilized machinery (Figure 2 A). The             
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non-modeled proteome fraction comprised on average 38% of the proteome mass (0.26            

g/gDCW, 4,041 proteins), and was slightly dependent on condition. Non-utilized enzymes           

were low-abundant in mass (0.03 g/gDCW, 400 proteins) compared to the utilized enzyme             

fraction (0.27 g/gDCW, 823 proteins). Macromolecular machinery averaged 0.12 g/gDCW for           

93 annotated proteins. Non-utilized enzymes were not enriched in a particular functional            

category, while the non-modeled protein fraction was enriched in functions for transport,            

transcription (factors), and post-translational modification (Figure 2 B). A large group of            

proteins has no annotated function. Taking non-modeled and non-utilized proteins together,           

43% of the C. necator proteome (by mass) is unlikely to be utilized in the tested conditions,                 

or involved in processes not covered by the RBA model. We also estimated the protein mass                

encoded by essential genes per utilization category (Figure 2 A, shaded area). Gene             

essentiality was determined by sequencing a randomly barcoded transposon library with           

60,000 mutants after growth on rich medium (RB-TnSeq workflow) [Rubin et al, 2015,             

Wetmore et al., 2015]. Transposon insertion density of a gene was used to sort it into one of                  

three different categories, 'essential' (496 genes), 'probably essential' (149), or          

'non-essential' (4,712). On average, 47% of utilized enzymes (by mass) were encoded by             

essential genes, while only 19% and 3% of the non-modeled and non-utilized protein mass,              

respectively, was essential. We conclude that a large portion of the C. necator proteome is               

associated with nutrient scavenging and regulatory adaptation to new environments. 
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Figure 2. The non-modeled and non-utilized proteome of C. necator is related to             
environmental readiness. A) A series of model simulations was conducted with randomly            
sampled enzyme efficiency kapp (n=200) to obtain the maximum number of potentially utilized             
reactions in each growth condition. The C. necator proteome (5,357 proteins) was allocated             
to each of four utilization categories and protein mass summed up per category. Protein              
mass encoded by essential genes is indicated as shaded area in bars. B) Average protein               
mass by utilization category and functional group. Alternating color (grey and yellow) for             
bubbles are used in alternating rows.  
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Highly utilized enzymes are more abundant, less variable, and often essential 

The under-utilized proteome fraction is a subset of the utilized fraction. Generally, metabolic             

flux through a reaction can be correlated to the associated enzyme abundance. The rate of a                

reaction vR is then the product of the enzyme efficiency kapp and the concentration of the                

enzyme that catalyzes the reaction ( ) [Davidi & Milo, 2017 ]. Under steady-state     E]vR = kapp · [        

conditions, optimal gene expression would adjust enzyme abundance proportional to the flux            

that it is supposed to carry (metabolic demand), keeping utilization of the enzyme constant. If               

enzyme abundance and flux do not change proportionally between different conditions or            

growth rates, utilization has changed. To estimate the degree of utilization, we compared             

experimental protein allocation to model predictions at different growth rates. The RBA            

model predicts the minimal required enzyme abundance to drive a metabolic reaction,            

assuming full substrate saturation of the enzyme. Although full saturation of all enzymes is              

not realistic [Reznik et al., 2017, Janasch et al., 2018 ], it is a useful assumption to determine                 

enzyme utilization. Utilization UE is calculated by dividing the predicted minimal enzyme            

abundance by the experimentally determined enzyme abundance [Davidi & Milo, 2017 ]: 

 [%] [E]  / [E] 00UE =  minimal measured · 1  

We first looked at utilization of the macromolecular machines (Figure S5 ). Only two of these,               

ribosomes and chaperones, had a considerable protein mass allocated to them. The            

abundance of ribosomal proteins increased linearly with growth rate, as observed in other             

bacteria [Scott et al, 2014, Peebo et al., 2015, Jahn et al., 2018 ]. The RBA model                

simulations accurately predicted expansion of ribosomes with increasing growth rate, but           

failed to predict incomplete reduction of ribosomes at low growth rate (Figure S5 B). This can                

be explained by the evolutionary benefit that cells gain from keeping a ribosome reserve for               

nutrient upshifts [Mori et al., 2017 ]. The ribosome reserve led to a decrease in utilization at                

low growth rate regardless of the limiting substrate (Figure S5 C). 

Next, we examined metabolic enzyme utilization by comparing experimental and          

simulated protein abundance. All metabolic reactions/enzymes of the RBA model that had            

associated proteins quantified by MS were included in the analysis (n=1,012). For each             

enzyme, the average utilization in the four limiting conditions (µ=0.25 h -1) was determined,             

and then used to group enzymes into three categories: low (≤33%, n=738), moderate             

(33-66%, n=134) and high utilization (>66%, n=140). Highly utilized enzymes are therefore            
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predominantly enzymes utilized in several of the four limiting conditions. There were            

significant differences between these three groups: Highly utilized enzymes were on average            

more abundant in terms of protein mass (g/gDCW) (Figure 3 A). We also calculated              

variability in enzyme abundance by determining the coefficient of variation (CV) of allocated             

protein mass across the four different conditions (Figure 3 B). For example, formate             

dehydrogenase (FDH) was strongly expressed in only one out of four conditions (growth on              

formate) and therefore showed high variability (CV=1.25), and low average utilization (23%).            

Altogether, variability was significantly lower for moderately and highly utilized enzymes.           

These observations support the notion that C. necator optimizes the cost-benefit ratio of             

gene expression by keeping utilization high for highly abundant enzymes. Similarly, low            

variation in gene expression of highly-utilized enzymes could provide a fitness benefit in             

conditions changing on a short time scale. Constitutive expression of such genes can buffer              

substrate and metabolite surges. Finally, we wondered if utilization of enzymes is also             

correlated to essentiality of the associated gene(s) as determined by RB-TnSeq from our             

transposon mutant library. Enzymes were sorted into, 'essential', 'probably essential', or           

'non-essential' based on the essentiality of their associated genes (Methods, Figure 3 C).             

We found that enzymes with intermediate and high utilization were more likely to be encoded               

by an essential gene compared to lowly utilized enzymes.  

A closer inspection of the central carbon metabolism of C. necator revealed that             

enzyme abundance, variability, and utilization was markedly different between major          

pathways. The enzymes of lower glycolysis (PGM, ENO, PYK, PDH) showed moderate to             

high utilization but low variability (Figure 3 D), clearly distinct from the enzymes in upper               

glycolysis and the CBB cycle. The average abundance of lower glycolysis enzymes was also              

lower. This trend continued with reactions down-stream of glycolysis/gluconeogenesis, such          

as the reactions of pyruvate metabolism and the TCA cycle. In contrast, reactions of the ED                

pathway and particularly CBB cycle were marked by much higher variability and moderate to              

high abundance. This supports the conclusion that gene expression regulation in C. necator             

is hierarchically organized: Enzymes close to the entry point of substrates into central             

metabolism are expressed 'on demand', and therefore show high variability, high absolute            

abundance, and high utilization, at least in some growth regimes. Enzymes downstream of             

substrate assimilation show lower expression and variability, perhaps owing to their           

universal role in providing biomass precursors (TCA, pyruvate metabolism). A lower protein            
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investment per catalytic activity allows for larger reserves of these enzymes. The low             

utilization of TCA and pyruvate metabolism may provide a benefit for robustness, by             

avoiding full saturation. 
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Figure 3. Highly utilized enzymes are more abundant, less variable, and often essential. A)              
Protein mass in g/gDCW allocated to enzymes with low, moderate, and high utilization.             
Enzymes with moderate and high utilization are significantly more abundant (p=2.4x10-31 and            
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7.5x10-18, respectively. Student's t-test, two-sided). B) Coefficient of variation (CV) as a            
measure of variability in enzyme abundance. Enzymes with moderate and high utilization            
have significantly lower variability (p=2.0x10-6 and 2.1x10-9, respectively. Student's t-test,          
two-sided). C) Number of reactions associated with at least 1 essential gene, or at least 1                
probably essential gene, or no essential gene at all, broken down by utilization. D) Map of C.                 
necator's central carbon metabolism. Inset figures show mean enzyme abundance,          
variability, and mean utilization over the four limiting conditions (µ=0.25 h-1). Values were             
rescaled from the respective minimum and maximum to a range of 0 to 1. Enzyme               
abbreviations are colored according to essentiality as described in C). 

 

Autotrophy-related enzymes are largely underutilized 

The high average abundance and variability of the CBB cycle enzymes is particularly             

interesting. While phosphoribulokinase (PRUK) and Rubisco (RBPC) are specific for the           

purpose of CO2-fixation, the other enzymes overlap with sugar phosphate metabolism           

(glycolysis/gluconeogenesis, pentose phosphate pathway) providing precursors that are        

essential for growth. We wondered if the expression of these enzymes is optimally regulated              

based on the metabolic demands of the four different substrate limitations. We compared the              

predicted (optimal) abundance with the experimentally measured abundance for important          

enzymes of the CBB cycle (Figure 5 A). On formate, the protein concentration of these               

enzymes increased with growth rate and therefore estimated flux, correlating with RBA            

model predictions. A positive correlation was also found for fructose-limited growth, but a             

negative correlation for succinate and ammonium limitation. Rubisco was highly abundant           

even during growth on fructose where the model did not predict flux through the CBB cycle                

(up to 0.02 g/gDCW or 3% of the proteome by mass). With the exception of Rubisco and                 

PRUK, the CBB cycle enzymes are encoded by three different copies on the C. necator               

genome. Two of these are arranged in the cbb operons on chromosome 2 and pHG1, while                

the respective third copy on chromosome 1 is the evolutionarily most ancestral [Pohlmann et              

al., 2006, Fricke et al., 2009 ]. Expression of the ancestral enzymes is regulated differently              

than the cbb operons, with lower average protein abundance that is independent of             

substrate and growth rate (Figure S6 ). 

When estimating the utilization of cbb enzymes, we found that utilization was high for              

formate due to the obligatory flux through the CBB cycle, but low for other conditions (Figure                

5 B). It was not zero for some reactions that are required to drive lower glycolysis for                 
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catabolism of fructose (PGK, GAPDH), or the non-oxidative PPP for the purpose of             

nucleotide synthesis (transketolase reactions TKT1/2). We conclude that C. necator keeps           

large amounts of underutilized CBB enzymes (0.024 to 0.04 g/gDCW, or 3.5 to 5.9% of the                

proteome depending on substrate) whose abundance is not warranted by the expected            

fluxes from glycolysis/gluconeogenesis or nucleotide biosynthesis. The underutilized enzyme         

mass may be in preparation for autotrophic or formatotrophic growth, even when such             

substrates are not in reach. 

 

Figure 4. Autotrophy-related enzymes are largely underutilized. A) Experimentally         
determined and model-predicted protein concentration for the seven most abundant          
enzymes of the CBB cycle. PGK, phosphoglycerate kinase; GAPD,         
glyceraldehyde-3-phosphate dehydrogenase; FBA, fructose bisphosphate aldolase; FBP,       
fructose bisphosphatase; TKT1, transketolase; PRUK, phosphoribulokinase; RBPC, ribulose        
bisphosphate carboxylase. B) Total utilization of the enzymes in A). Utilization was            
calculated as the sum of predicted (optimal) enzyme abundance divided by the sum of              
experimentally measured abundance. 

Reassimilation of CO 2 does not provide a fitness benefit for C. necator 

C. necator appears to keep large amounts of Rubisco (and other CBB cycle enzymes)              
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under-utilized in heterotrophic conditions. This assumption was based on RBA model           

simulations where flux through the CBB cycle was absent on any substrate other than              

formate. However, the RBA model only finds optimal solutions to maximize growth while             

other objectives are conceivable. It was recently reported that C. necator does fix CO2 via               

the CBB cycle during heterotrophic growth on fructose [Shimizu et al., 2015 ]. The authors              

speculated that reassimilation of CO2 by Rubisco could provide a benefit for carbon yield              

(13C labeled CO2 was enriched in PHB granules). The additional protein burden of CBB              

enzymes could come at the cost of lower growth rate, representing a yield-growth rate              

trade-off. To test if reassimilation of emitted CO2 improves carbon yield, we performed RBA              

model simulations with fructose as primary energy and carbon source and forced flux             

through Rubisco (Figure 5 A). We simulated five different CO2 fixation rates (0 to 5 mmol                

gDCW-1 h -1) at a fructose uptake rate of 3.2 mmol gDCW-1 h -1. However, neither biomass               

yield nor growth rate was improved in any of the simulations (Figure 5 B, C). The metabolic                 

flux was diverted from the ED pathway towards the non-oxidative PPP in order to provide               

ribulose-5-phosphate precursors for CO2 fixation (Figure 5 D). Simultaneously, the high           

energy requirement for CO2 fixation led to higher flux through the TCA cycle in order to                

generate additional NADH and ATP. Respiration and O2 consumption was also predicted to             

increase, while no net reduction of CO2 emission was found. Simulations suggested instead             

that the cells emit more CO2 when CO2 fixation is enforced, an apparent paradox caused by                

the lack of additional energy.  

Finally, we tested experimentally if expression of CBB genes conveys a fitness            

benefit during heterotrophic growth. To this end, the barcoded transposon library (pool of             

60,000 mutants) was cultivated in fructose-limited chemostat bioreactors. Two different          

feeding regimes were designed to select for different growth characteristics: Continuous feed            

with a dilution rate of 0.1 h -1, and pulsed feed with a growth interval of 24 h between medium                   

additions. The continuous feed fixes the growth rate and selects cells with higher substrate              

affinity or biomass yield [Wides & Milo, 2018 ]. The pulsed regime selects cells with higher               

maximal growth rate during the exponential (substrate-rich) phase. The average dilution rate            

was identical between the two conditions. The composition of the mutant pool was probed              

after 8 and 16 generations of growth using next generation sequencing. The fitness             

contribution of each gene was estimated by the degree of enrichment or depletion from the               

library over time [Wetmore et al., 2015 ]. We found that fitness of cbb mutants was on                
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average slightly reduced in the continuous regime compared to the pulsed regimes (after 16              

generations, Figure 5 E). Most of the cbb knockout mutants did not have a significant effect                

on strain fitness with several notable exceptions (Figure 5F). CbbR, regulator of the Cbb              

operon, had the strongest effect; mutants showed lower fitness in the continuous regime and              

higher fitness in the pulsed regime. Knockout of cbbR leads to a 100 fold down-regulation of                

cbb gene expression [Shimizu et al., 2015 ]. CbbP, encoding phosphoribulokinase, and           

cbbS/L encoding the two subunits of Rubisco showed lower fitness in the continuous and              

higher fitness in the pulsed condition, respectively. The knockout of genes with functional             

overlap between glycolysis and CBB cycle was either neutral to fitness, or caused a slight               

disadvantage in the continuous regime. We note that the observed absolute fitness scores             

did not exceed 2 after 16 generations, a small effect on fitness compared to e.g. strictly                

essential genes (fitness of ≤ -3 after 8 generations). These results suggest that expression of               

cbb genes in toto confers a slight advantage regarding substrate affinity or yield (continuous              

condition), likely by enabling higher flux through glycolysis/gluconeogenesis. In the growth           

rate-selective pulsed condition, cbb expression was either neutral or deleterious to strain            

fitness. Knock-out/knock-down of the highly abundant enzymes PRUK and Rubisco, specific           

for CO2-fixation, enabled the largest growth benefit among the genes of the cbb operon              

(cbbR, cbbP, cbbL in pulsed condition Figure 5 F). We conclude that (re-) fixation of CO2                

during heterotrophic growth is unlikely to convey a fitness benefit without additional energy             

(e.g. from H2 oxidation). We hypothesize that the up-regulation of Rubisco on fructose is a               

'byproduct' of up-regulation of other glycolysis related genes of the cbb operon. 
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Figure 5. Reassimilation of CO2 is unlikely to provide a fitness benefit for C. necator. RBA                
model simulations were performed for a fixed fructose uptake rate combined with five             
different CO2 fixation rates. A) Example metabolic flux map for a fructose uptake rate of 3.2                
mmol gDCW-1 h-1 and CO2 fixation rate of 3 mmol gDCW-1 h-1. Blue - uptake of fructose and                  
CO2, red - emission of CO2. B) Predicted growth rate µ. C) Biomass yield Y in gDCW g                  
fructose-1. D) Net flux through selected reactions for the same simulations as in B) and C).                
For the TCA cycle, flux through citrate synthase was used as a proxy. For the               
Entner-Doudoroff (ED) pathway, flux through 6-phosphogluconolactonase (EDD) was used         
as a proxy. E) Fitness of cbb genes determined by growth competition of a barcoded               
transposon knockout library. The library was cultivated for 16 generations with continuous or             
pulsed dilution (24 h intervals). F) Fitness over time for selected cbb genes of the pHG1                
encoded operon, except cbbR which is located on chromosome 2. Other chromosome 2             
encoded cbb genes were excluded due to low transposon insertion frequency. Grayscale            
labels indicate role in CBB pathway: dark gray - transcriptional regulator, moderate gray -              
specific for CO2 fixation, light gray - overlapping role in glycolysis/CBB cycle. 
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Discussion 

A characteristic feature of all Burkholderiales, to which C. necator belongs, is their             

fragmented genome organisation (2-4 replicons) [Fricke et al., 2009 ]. Comparative genome           

analysis suggested different evolutionary origins of the C. necator chromosomes, with           

chromosome 1 being more conserved among related species than chromosome 2 and            

pHG1 [Fricke et al., 2009 ]. We found that the largest fraction of protein mass (78.7%) can be                 

attributed to chromosome 1, while chromosome 2 and the pHG1 megaplasmid only show             

strong expression at a few selected loci responsible for alternative lifestyles (lithoautotrophy,            

denitrification). Chromosome 1 also showed predominantly constitutive expression across         

different trophic conditions, while the few highly expressed loci on chromosome 2 and pHG1              

were transcriptionally regulated. This supports the hypothesis that C. necator may have            

acquired chromosome 2 and pHG1 at a later stage of its evolutionary history and highlights               

the 'accessory' character of both replicons [Fricke et al., 2009 ]. 

Of the 5,357 quantified proteins only 1,223 are associated with enzymes and another             

93 with central dogma machinery in the C. necator RBA model. Yet, utilized enzymes and               

machinery summed up to 57% of the protein mass, while 43% of the proteome was               

non-utilized, including all proteins not covered by the RBA model. Our estimate for the              

non-utilized protein mass in C. necator is higher than a previously reported estimate for E.               

coli of 26-39%, particularly regarding the non-modeled protein fraction (39% in C. necator             

compared to maximally 26% in E. coli) [O'Brien et al., 2016 ]. Another estimate for the               

proportion of non-utilized enzymes for E. coli obtained about 30% of the proteome [Davidi &               

Milo, 2017 ]. We conclude that C. necator not only has a larger genome compared to e.g. E.                 

coli, but also expresses many genes without utilizing them in the controlled, homogeneous             

environments that are typical in biotechnology applications. The large non-utilized protein           

fraction is related to environmental readiness and likely increases fitness of C. necator in the               

variable and mixed substrate conditions typical of soil [Hewavitharana et al., 2019 ].  

It is important to note that estimation of protein utilization is not straight-forward and              

prone to several sources of error. For example, many proteins in C. necator are not               

functionally annotated but could be catalytically active, eventually leading to underestimation           

of the utilized protein fraction. On the other hand, enzymes can have 'moonlighting' activities              
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so that the calculated utilization is underestimated for some enzymes and overestimated for             

others [Cotton et al., 2020 ]. Proteins involved in cell motility, cell cycling, sensing of and               

responding to environmental changes are generally not a part of the metabolic model, yet              

have vital functions for cellular fitness and are thus utilized in some way. Another challenge               

is to accurately assign enzyme abundance to reactions that have several annotated proteins,             

or a protein that is assigned to several enzymatic reactions. In these cases we divided               

protein abundance between different enzymes and vice versa. 

Bearing these limitations in mind, we used the RBA model to investigate the             

underutilization of enzymes. Underutilization as used in this study serves as a proxy for the               

relation between maximum attainable reaction rate (Vmax) and actual reaction rate, with the             

latter being shaped by substrate saturation, reverse flux as well as potential allosteric             

effectors. The estimated enzyme efficiency kapp is influenced by these factors and can             

deviate from in vitro measured maximum turnover kcat [Davidi et al., 2016 ]. A general              

observation regarding utilization is the dependency on growth rate. Flux of metabolic            

enzymes is directly proportional to growth rate, given that all other cultivation parameters are              

kept constant. At low growth and low flux through metabolism, bacteria optimize fitness by              

reallocating protein resources from growth functions (ribosomes) to substrate assimilation          

(transporters) [Scott et al., 2014, Hui et al., 2015, Jahn et al., 2018 ]. However, this               

reallocation is only a gradual response and neither results in full reduction of superfluous              

proteome sectors, nor the shrinking of the protein pool (g protein/gDCW). The consequence             

is that enzyme utilization becomes low at low growth rates (O'Brien et al., 2016 ). C. necator                

also shows this pattern: ribosomal proteins are incompletely reduced at low growth rates,             

and enzymes of central metabolism generally remain highly abundant (Figure 4 , Figure S5 ),             

effectively creating an underutilized enzyme reserve. 

Underutilization of enzymes represents an 'efficiency sacrifice' for host fitness.          

Expression of excess non-metabolic proteins such as LacZ or YFP reduces bacterial growth             

rate [Hui et al., 2015, Jahn et al., 2018 ]. However, several recent experimental studies have               

shown that enzyme underutilization in E. coli central metabolism, such as in the OPP              

pathway and amino acid biosynthesis, provides a buffer against perturbations in           

environmental conditions or gene expression [Davidi & Milo, 2017, Christodoulou 2018,           

Sander et al., 2019 ]. The importance of underutilized enzymes for metabolic stability has             

also been shown for metabolic networks such as the CBB cycle [Barenholz et al., 2017 ,               
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Janasch et al., 2018 ]. We observed that highly abundant enzymes are better utilized and              

less variable across conditions. This is most likely a result of the evolutionary pressure on               

enzyme reserve costs, which increase proportionally with the abundance of enzymes. 

It is of interest to compare enzyme utilization in C. necator to E. coli, a model                

bacterium with a different environmental niche. The central carbon metabolism pathways of            

C. necator showed differences in enzyme abundance, variability, and utilization. Abundance           

of enzymes for the upper EMP pathway, PPP, and CBB cycle was on average higher than                

for the enzymes of the ED pathway, pyruvate metabolism or TCA. This is similar to E. coli,                 

where higher abundance of glycolysis enzymes was explained by high flux demand and low              

thermodynamic driving force [Noor et al., 2016 ]. But enzymes of the upper EMP pathway              

and PPP also showed strong transcriptional regulation (variability in gene expression), which            

is a marked difference to E. coli, where enzyme levels show low variation across multiple               

growth conditions [Schmidt et al., 2016 ], and flux is mainly regulated through allosteric             

interactions [Reznik et al., 2017 ]. Of all central carbon metabolism, the TCA cycle enzymes              

showed on average lowest abundance, variability and utilization. This is similar to E. coli,              

where the sole flux capacity demand suggested lower enzyme abundance than what was             

measured experimentally [Noor et al., 2016 ]. Only when reverse flux (reactions with low             

thermodynamic driving force) and low enzyme saturation, estimated from metabolite levels,           

was taken into account, was the calculated enzyme demand similar to the measured levels              

[Noor et al., 2016 ]. 

How was the regulatory network in central carbon metabolism in C. necator shaped             

by its native environment? E. coli is adapted to regular nutrient upshifts every 2-3 hours               

[Mori et al, 2017 ]. It therefore evolved allosteric regulation to deal with quickly changing              

fluxes through the EMP pathway, its prime catabolic route [Reznik et al., 2017 ]. For C.               

necator, hexose sugars are only one out of many possible substrate classes and the flux               

through the (upper) EMP pathway is lower as it uses the ED pathway to catabolize sugars. A                 

slow but more resource efficient transcriptional regulation of glycolysis could therefore           

provide a fitness benefit for an environment with limited and irregular substrate supply.             

Interestingly, only the glycolysis/PPP enzymes located on the phylogenetically young cbb           

operons are transcriptionally regulated, while the ancestral enzymes on chromosome 1 are            

constitutively expressed (Figure S6 ). These enzymes are also scattered over the           

chromosome and therefore not collectively regulated. The diverging regulation for          
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glycolysis-related genes could mark a branching point in the evolutionary history of C.             

necator. The pHG1 plasmid was likely acquired recently, based on its transmissibility and             

proven ability to confer hydrogenotrophic metabolism [Friedrich et al., 1981 ]. Cbb genes            

could either get lost or take over the function as main glycolysis enzymes from their               

chromosome 1 orthologs. 

The two copies of the cbb operon in C. necator are of hybrid nature as CBB cycle                 

enzymes functionally overlap with EMP glycolysis and PPP. Expression of the cbb operon             

depended on the supplied substrate and was highest for growth on formate, where CBB              

cycle genes are essential. However, a more complex picture emerged for cbb expression             

during other substrate limitations (increasing with µ on fructose, decreasing with µ on             

succinate). The cbb operon is transcriptionally regulated by two systems, CbbR [Bowien &             

Kusian, 2002 ] and RegA/B [Gruber et al., 2017 ]. RegA/B guarantees a basic level of              

constitutive expression, while CbbR senses the intracellular PEP concentration [Gruber et           

al., 2017 ]. PEP is an important allosteric regulator responsible for the switch between             

glycolytic and gluconeogenic flux in E. coli [Reznik et al., 2017 ]. In C. necator, growth on                

fructose leads to low PEP concentration, triggering cbb expression, while it is the other way               

around for succinate. This prompts the question which evolutionary benefit cells gain from             

cbb expression during heterotrophic growth? It has been proposed that reassimilation of the             

emitted CO2 by Rubisco improves carbon yield [Shimizu et al., 2015 ]. Model simulations             

however suggested that CO2-reassimilation is unlikely to provide a benefit as long as there is               

no additional energy source (Rubisco activity even causes a higher net CO2 emission).             

Probing the fitness contribution of the cbb genes using a barcoded transposon mutant library              

generally confirmed this picture. Knockout of the genes directly involved in CO2 fixation             

(PRUK and Rubisco) resulted in a fitness increase in a substrate pulse regime, a              

growth-competitive environment. This is possibly owing to the relief of protein burden as the              

same effect was observed for knockout of cbbR, which leads to a down-regulation of the               

entire cbb operon. However, knock-out of cbbR caused a slight fitness decrease in a              

continuous substrate-limited growth regime, selective for substrate affinity. The most likely           

cause is that the additional expression of glycolytic enzymes encoded by cbb operons             

enables higher flux through the EMP pathway, unrelated to CO2 fixation. The conserved             

PEP-dependent transcriptional regulation of cbb leads to a collateral expression of Rubisco            

in conditions where it is not required, such as fructose. This is a remarkable example of                
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suboptimality, where one benefit could be readiness for lithoautotrophic growth when           

hydrogen or formate become available. Recent comparison of microbial genomes showed           

that the CBB cycle is accompanied by a metabolism-wide range of adaptations            

[Asplund-Samuelsson and Hudson, 2021 ]. Considering a possibly recent acquisition of the           

CBB cycle e.g. via pHG1, it is likely that C. necator is currently evolving to make best use of                   

the cbb genes. Therefore, in addition to a readiness imperative, metabolic conflicts arising             

from the adaptation process may help explain the observed suboptimal use of the CBB              

cycle. 

Our results also open up avenues for genetic engineering of C. necator in order to               

exploit its biotechnological potential. C. necator is of high relevance as a strain that can               

produce biochemicals from CO2, low molecular weight organic acids like formate, or the             

biodiesel waste product glycerol. Its large genome and complex regulation of gene            

expression seems, however, highly adapted to environmental flexibility instead of one           

particular niche, resulting in inefficient gene expression. Engineering of its proteome budget            

for a particular substrate could result in strains with lower unutilized enzyme reserves and              

higher productivity [Lastiri-Pancardo et al., 2020 ]. A second avenue is to optimize the             

balance of energy and carbon for formatotrophic or mixotrophic growth. The reassimilation of             

CO2 could provide a product yield benefit and reduction of CO2 emission in a production               

setting, if additional energy for example in the form of hydrogen is supplied. And lastly, the                

use of barcoded transposon libraries will allow rapid investigation of gene fitness to guide              

such engineering. 

 

Supplemental Information 

Supplemental Information includes six figures and two tables and can be found with this              

article online. 
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Methods 

Contact for reagent and resource sharing 

Further information and requests for reagents may be directed to and will be fulfilled by Lead                

Contact Elton P. Hudson (paul.hudson@scilifelab.se). 
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Method details 

Strains and cultivation 
Cupriavidus necator H16 was obtained from the German Collection of Microorganisms and            

Cell Cultures, strain number DSM-428. Cells were cultivated on complete (LB) medium, or             

minimal medium depending on experimental setup. Minimal medium was composed of 0.78            

g/L NaH2PO4, 4.18 g/L Na 2HPO4x2H2O, 1 g/L NH4Cl, 0.1 g/L K2SO4, 0.1 g/L MgCl 2x6H2O,              

1.6 mg/L FeCl 3x6H2O, 0.4 mg/L CaCl 2, 0.05 mg/L CoCl 2x6H2O, 1.8 mg/L Na 2MoO4x2H2O,            

0.13 g/L Ni 2SO4x6H2O, 0.07 mg/L CuCl 2x2H2O. Depending on the experiment, 0.5 g/L            

D-fructose, 0.5 g/L succinate, or 1.5 g/L pH-neutralized formic acid was added as carbon              

source. For nitrogen limitation, the concentration of D-fructose was increased to 2 g/L and              

concentration of NH4Cl was reduced to 0.025 g/L. All components were added to autoclaved              

sodium phosphate buffer from filter-sterilized stock solutions. Batch cultures were grown in            

100 mL shake flasks at 30°C and 180 RPM. Precultures of the barcoded C. necator               

transposon library were supplemented with 200 µg/mL kanamycin and 50 µg/mL gentamicin            

to suppress growth of untransformed C. necator recipient or E. coli donor cells. 

 

Chemostat bioreactors 
C. necator H16 (wild type) or the C. necator H16 transposon mutant library was cultivated in                

an 8-tube MC-1000-OD bioreactor (Photon System Instruments, Drasov, CZ). The system           

was customized to perform chemostat cultivation as described previously [Jahn et al., 2018,             

Yao et al., 2020 ]. Bioreactors (65 mL) were filled with minimal medium supplemented with              

the respective carbon and nitrogen source, and inoculated with an overnight preculture to a              

target OD720nm of 0.05. Bioreactors were bubbled with air at a rate of 12.5 mL/min and a                 

temperature of 30°C. The OD720nm and OD680nm were measured every 15 min. Fresh medium              

was continuously added using Reglo ICC precision peristaltic pumps (Ismatec, GER). For            

pulsed chemostat experiments, a volume corresponding to the continuous addition of           

medium over a given time period was added in a single pulse, either every 2 h or every 24 h.                    

In order to ensure the same number of generations for the 24 h pulsed regime, 60 of the 65                   

mL culture volume was removed before addition of fresh medium. For proteomics, 40 mL              

samples were taken after five retention times of continuous growth at a fixed dilution rate (tR                

= 1/D; for example tR(D = 0.1 h -1) = 1 / 0.1 = 10 h). For transposon library competition                   

experiments, 15 mL samples were taken after 0, 8 and 16 generations of growth (population               
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average). Cells were harvested by centrifugation for 10 min at 5,000 xg, 4°C, washed with 1                

mL ice-cold PBS, transferred to a 1.5 mL tube, and centrifuged again for 2 min at 8,000 xg,                  

4°C. The supernatant was discarded and the pellet frozen at -20°C. 

 

Determination of biomass yield 
Substrate uptake rate q S was determined using the dilution rate D, the culture volume V, the                

biomass concentration cbm in gDCW L -1, and the initial and residual substrate concentrations             

Si and Sr, respectively, in the following equation: . The biomass yield YX/S for        qS = cbm
V  · D · (S  −S )i r       

all substrates was determined by fitting a linear model to the growth rate-substrate uptake              

rate relationship. The biomass yield YX/S for fructose, succinate, formate, and ammonium            

chloride was 0.45, 0.46, 0.09 and 1.6 g DCW g S
-1, respectively. 

 

Dry cell weight determination 
Dry cell weight (DCW) was determined from OD720nm using a premade calibration curve. A              

log 2 serial dilution of a C. necator H16 overnight culture (minimal medium with 2 g/L fructose,                

1 g/L ammonium) was made with a volume of 10 mL per dilution. OD720nm was measured for                 

all dilutions using a photospectrometer (SpectraMax M5, Molecular Devices), and cells were            

harvested by centrifugation at 5,000 xg for 10 min, washed with 1 mL mqH2O, transferred to                

preweighed 1.5 mL tubes and dried for 4 h at 70°C. Dried cell mass was measured on a                  

precision scale and a relation of gDCW = 0.518 x OD720nm - 0.01 was determined. 

 

Residual substrate measurement with HPLC 
Culture supernatant was obtained after centrifugation of cell samples. A volume of 1 mL              

supernatant was transferred to an LC glass vial using Millex-HV PVDF syringe filter tips              

(Merck Millipore). The HPLC column (Aminex 300-mm HPX-87H) was equilibrated with 5            

mM H2SO4 as mobile phase for 1 h, at a flow rate of 0.5 mL/min. The column was heated to                    

60°C. A volume of 20 μL per sample was injected to the HPLC followed by a run time of 30                    

min. UV-absorption was constantly detected at 210 nm wavelength. Standards with four            

different concentrations, 10, 50, 100 and 200 mg/L, were used for quantification of each              

residual substrate (succinate, formate, fructose, ammonium chloride). Calibration curves         

were obtained by fitting a linear equation to the concentration-absorbance relationship.           

Residual substrate concentration was then determined by solving the equation with the            
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obtained absorbance measurements. 

 

Statistical analysis 
Bioreactor cultivations, LC-MS/MS measurement for proteomics, and library competition         

experiments ('BarSeq') were performed with four independent biological replicates. HPLC          

measurement of supernatants was performed with three biological replicates. If not           

otherwise indicated, points and error bars represent the mean and standard deviation. All             

analyses of proteomics, modeling, and fitness data are documented in R notebooks            

available at https://github.com/m-jahn/R-notebook-ralstonia-proteome . 

 

Sample preparation for LC-MS/MS 

Frozen cell pellets were resuspended in 125 µL solubilization buffer (200 mM TEAB, 8 M               

Urea, protease inhibitor). 100 µL glass beads (100 µm diameter) were added to the cell               

suspension and cells were lysed by bead beating in a Qiagen TissueLyzer II (5 min, f = 30/s,                  

precooled cassettes). Cell debris was removed by centrifugation at 14,000 xg, 30 min, 4°C,              

and supernatant was transferred to a new tube. Protein concentration was determined using             

the Bradford assay (Bio-Rad). For reduction and alkylation of proteins, 2.5 µL 200 mM DTT               

(5 mM final) and 5 µL 200 mM CAA (10 mM final) were added, respectively, and samples                 

incubated for 60 min at RT in the dark. Samples were diluted 8x with 700 µL 200 µM TEAB.                   

For digestion, Lys-C was added in a ratio of 1:75 w/w to protein concentration, and samples                

were incubated at 37°C and 600 RPM for 12 h. Trypsin was added (1:75 w/w) and samples                 

incubated for 24 h at the same conditions. Samples were acidified with 100 µL 10% formic                

acid (FA) and insoluble compounds were removed by centrifugation (14,000 xg, 15 min, RT).              

Peptide samples were then cleaned up using a solid phase extraction (SPE) protocol in              

96-well plate format (Tecan Resolvex A200) according to the manufacturer's          

recommendations. Briefly, the 96-well plate with SPE inserts was equilibrated with 200 µL             

acetonitrile (ACN) and 2x200 µL 0.6% acetic acid. A lysate volume corresponding to 40 µg               

protein was loaded on the plate and washed twice with 200 µL 0.6% acetic acid. Peptides                

were eluted from the column in 100 µL elution buffer (0.6% acetic acid, 80% ACN) and dried                 

in a speedvac for 2 h, 37°C. Dried peptides were frozen at -80°C and dissolved in 10% FA to                   

a final concentration of 1 µg/µL before MS measurement. 
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LC-MS/MS analysis of lysates 
Lysates were analyzed using a Thermo Fisher Q Exactive HF mass spectrometer (MS)             

coupled to a Dionex UltiMate 3000 UHPLC system (Thermo Fisher). The UHPLC was             

equipped with a trap column (Acclaim PepMap 100, 75 μm x 2 cm, C18, P/N 164535,                

Thermo Fisher Scientific) and a 50 cm analytical column (Acclaim PepMap 100, 75 μm x 50                

cm, C18, P/N ES803, Thermo Fisher Scientific). The injection volume was 2 µL out of 18 µL                 

in which the samples were dissolved in the autosampler. Chromatography was performed            

using solvent A (3% ACN, 0.1% FA) and solvent B (95% ACN, 0.1% FA) as the mobile                 

phases. The peptides were eluted from the UHPLC system over 90 min at a flow rate of 250                  

nL/min with the following mobile phase gradient: 2% solvent B for 4 min, 2 to 4% solvent B                  

for 1min, 4 to 45% solvent B for 90 min, 45 to 99% solvent B for 3 min, 99% solvent B for 10                       

min and 99% to 2% solvent B for 1 minute following re-equilibration of the column at 2%                 

solvent B for 6 min. The MS was operated in a data-dependent acquisition mode with a Top                 

8 method. The MS was configured to perform a survey scan from 300 to 2,000 m/z with                 

resolution of 120,000, AGC target of 1x10 6, maximum IT of 250 ms and 8 subsequent               

MS/MS scans at 30,000 resolution with an isolation window of 2.0 m/z, AGC target of 2x10 5,                

maximum IT of 150 ms and dynamic exclusion set to 20 s. 

 

Protein identification and quantification 
Thermo raw spectra files were converted to the mzML standard using Proteowizard’s            

MSConvert tool. Peptide identification and label-free quantification were performed using          

OpenMS 2.4.0 in KNIME [Röst et al., 2016 ]. The KNIME pipeline for MS data processing               

was deposited on https://github.com/m-jahn/openMS-workflows    

(labelfree_MSGFplus_Percolator_FFI.knwf). MS/MS spectra were subjected to sequence       

database searching using the OpenMS implementation of MS-GF+ and Percolator          

[Granholm et al., 2014 ] with the Cupriavidus necator H16 reference proteome as database             

(NCBI assembly GCA_000009285.2, downloaded 07 January 2019). Carbamidomethylation        

was considered as a fixed modification on cysteine and oxidation as a variable modification              

on methionine. The precursor ion mass window tolerance was set to 10 ppm. The              

PeptideIndexer module was used to annotate peptide hits with their corresponding target or             

decoy status, PSMFeatureExtractor was used to annotate additional characteristics to          

features, PercolatorAdapter was used to estimate the false discovery rate (FDR), and            
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IDFilter was used to keep only peptides with q-values lower than 0.01 (1% FDR). The               

quantification pipeline is based on the FeatureFinderIdentification workflow allowing feature          

propagation between different runs [Weisser et al., 2017 ]. MzML files were retention time             

corrected using MapRTTransformer, and identifications (idXML files) were combined using          

the IDMerger module. FeatureFinderIdentification was then used to generate featureXML          

files based on all identifications combined from different runs. Individual feature maps were             

combined to a consensus feature map using FeatureLinkerUnlabelledKD, and global          

intensity was normalized using ConsensusMapNormalizer (by median). Protein quantity was          

determined by summing up the intensities of all unique peptides per protein. Abundance of              

ambiguous peptides (peptides mapping to two different proteins) were shared between           

proteins. 

 

Creation of barcoded C. necator transposon library 
The transposon library was prepared according to the RB-TnSeq workflow described in            

Wetmore et al., 2015 . Briefly, C. necator H16 wild type was conjugated with an E. coli                

APA766 donor strain containing a barcoded transposon library. The strain is auxotrophic for             

DAP, the L-Lysin precursor 2,6-diamino-pimelate, to allow for counter selection. Overnight           

cultures of E. coli APA766 and C. necator H16 in 10 mL LB medium in shake flasks were                  

prepared. The APA766 culture was supplemented with 0.4 mM DAP and 50 µg/mL             

kanamycin. 2 L of LB medium (APA766 with 0.4 mM DAP and 50 µg/mL kanamycin) in                

shake flasks was each inoculated with the respective pre-cultures and incubated overnight at             

30°C and 180 RPM. Cells were harvested during exponential growth phase by centrifugation             

for 10 min, 5000 xg, RT. Supernatant was discarded, cell pellets were resuspended in              

residual liquid, transferred to 2 mL tubes, washed twice with 2 mL PBS, and finally               

resuspended in a total amount of 500 µL PBS. Cell suspensions from both strains were               

combined and plated on 25 cm x 25 cm large trays (Q-tray, Molecular Devices) with LB agar                 

supplemented with 0.4 mM DAP. For conjugation, plates were incubated overnight at 30°C.             

Cells were then harvested from mating plates by rinsing with 200 µL PBS. The cell               

suspension was plated on selection plates with LB agar supplemented with 100 µg/mL             

kanamycin, without DAP. After colonies of sufficient size appeared, transformants were           

harvested by scraping all cell mass from the plate and collecting the pooled scrapings in 1.5                

mL tubes. The mutant library diluted tenfold and was then immediately frozen at -80°C. For               
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competition experiments, a 1 mL 10-fold diluted aliquot (pool of all conjugations, ~1 M CFU)               

was used to inoculate pre-cultures. 

 

Mapping of transposon mutants (TnSeq) 
A 1 mL aliquot of the diluted pooled library scrapings was used to inoculate a 50 mL LB                  

culture (with 200 µg/mL kanamycin) and grown overnight at 30°C, 200 RPM. DNA was              

extracted from 1 mL of this outgrown culture using a GeneJet Genomic DNA Purification Kit               

(ThermoScientific) and the concentration of genomic DNA was quantified using a Qubit            

dsDNA HS Assay Kit (Invitrogen). A 1 µg aliquot of genomic DNA was suspended in 15 µL                 

of 10 mM Tris buffer, placed in a microTUBE-15 AFA Beads tube (Covaris) and fragmented               

into 300 bp fragments using an ME220 focused ultrasonicator (Covaris) with waveguide            

500526 installed. Cycle time was increased to 60 seconds, all other settings were taken from               

manufacturer's recommendation for generating 350 bp fragments. Fragment end repair and           

adaptor ligation was performed using an NEBNext Ultra II DNA Library Prep Kit (New              

England Biolabs) following the manufacturer's protocol. Size selection of NEB adaptor           

ligated fragments was carried out using SPRISelect magnetic beads (Beckman Coulter)           

following the method in the NEBNext Ultra II DNA Library Prep Kit User manual. To               

selectively enrich transposon-containing sequences, a 30 cycle PCR amplification was          

performed using the Biotin_Short_pHIMAR and NC102 primers (Table S2 ) using Q5           

mastermix (New England Biolabs). Cycle conditions were 30 seconds 98°C followed by 30             

cycles (15 seconds 98°C, 75 seconds 72°C) and a 5 minutes 72°C final extension. The               

biotinylated transposon-containing sequences were purified using MyOne Streptavidin T1         

Dynabeads (Invitrogen) according to the manufacturer’s instructions. The transposon         

containing DNA was then stripped from the beads by resuspending the beads in 25 µL of                

MilliQ water followed by incubation at 70°C for 10 minutes. The beads were separated by               

incubation on a magnetic stand at room temperature for 1 minute and the supernatant was               

recovered. Adaptors for Illumina sequencing were added via PCR amplification using           

Nspacer_barseq_pHIMAR (Wetmore et al., 2015) and NEBNext Index 3 Primer for Illumina            

(New England Biolabs). Cycle conditions were 30 seconds 98°C followed by 4 cycles (15              

seconds 98°C, 75 seconds 72°C) and a 5 minutes 72°C final extension. PCR products were               

separated on a 1% agarose gel and gel extraction was performed on the band between               

300-600 bp using a Gel Extraction Kit (ThermoScientific). The DNA concentration of the             
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samples were quantified using a Qubit dsDNA HS Assay Kit (Invitrogen) and diluted to 2 nM.                

The 2 nM library was diluted, denatured and sequenced using a NextSeq 500/550 Mid              

Output Kit v2.5 150 Cycles, (Illumina) run on a NextSeq 550 instrument (Illumina) according              

to the manufacturer's instructions. Library loading concentration was 1.8 pM with a 10% phiX              

spike. Reads containing barcodes and genomic DNA fragments were mapped to the C.             

necator genome following the protocol from Wetmore et al., 2015 . Briefly, the scripts             

MapTnSeq.pl and DesignRandomPool.pl from    

https://bitbucket.org/berkeleylab/feba/src/master/ were adapted to map reads to the        

reference genome, and to summarize read counts per barcode, respectively. Only barcodes            

mapping to the same region with at least two reads were included. The automatic pipeline               

for TnSeq data analysis is available at https://github.com/m-jahn/TnSeq-pipe . 

 

Gene essentiality analysis 
TnSeq data from two different iterations of the transposon library were combined to obtain              

high insertion frequency per gene (72,443 and 57,040 mutants, respectively). Of the 129,483             

transposon insertions, 23,339 mapped to intergenic regions and were excluded from           

essentiality analysis. Of all insertions mapping to a gene, 78.7% were localized within the              

central 80% of the ORF and were considered as true knockouts. Following the method from               

Rubin et al., 2015 , a metric for essentiality was calculated, the insertion index II ; II is the                 

number of transposon insertions n of a gene i with length k divided by insertions per region r                  

(average of 100 genes around the target position): 

 

 (n  / k ) / (n  / k )II i =  i i r r  

 

The II is bimodally distributed, one set of genes is hit by transposons at an average rate                 

while other genes are hit with lower frequency. To determine an II threshold for essentiality,               

two gamma distributions were fitted to the assumed populations of 1) essential and 2)              

non-essential genes. For all possible II , the probability of falling into the essential and              

non-essential distribution was determined and a five-fold difference defined as lower and            

upper thresholds to count a gene as essential or non-essential, respectively. Genes with II              

between the two thresholds were flagged as ambiguous (p denotes the probability density             

function of II  for essential and non-essential genes): 
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I  II  [(p  5·p ) (p  5·p )]I ambiguous =  ess <  non−ess ⋃  non−ess <  ess  

 

To estimate essentiality of enzymes/reactions instead of genes, each enzyme with at least             

one associated gene being essential was counted as essential, and each enzyme            

associated with at least one probably essential gene was counted as probably essential; all              

other enzymes were marked as non-essential. 

 

Gene fitness analysis (BarSeq) 
Frozen cell pellets from the pulsed and continuous competition experiments were           

resuspended in 100 µL of 10 mM Tris and genomic DNA was extracted from 10 µL of the                  

resuspension using a GeneJet Genomic DNA Purification Kit (ThermoScientific).         

Amplification of the barcodes from genomic DNA was conducted using one of the custom              

forward indexing primers (BarSeq_F_i7_001 - BarSeq_F_i7_036, Table S2 ) and the reverse           

phasing primer pool (BarSeq_R_P2_UMI_Univ - BarSeq_R_P2_UMI_Univ_N5). For each        

sample 9 µL of genomic DNA extract (≥10 ng/µL) was combined with 3 µL of a forward                 

indexing primer (100 nM), 3 µL of the reverse phasing primer pool (100 nM) and 15 µL of Q5                   

Mastermix (New England Biolabs). Cycle conditions were 4 minutes at 98°C followed by 20x              

(30 seconds at 98°C, 30 seconds at 68°C and 30 seconds at 72°C) with a final extension of                  

5 minutes at 72°C. Concentrations of each sample was quantified using a Qubit dsDNA HS               

Assay Kit (Invitrogen). Samples were then pooled with 40 ng from up to 36 different samples                

being combined and run on a 1% agarose gel. Gel extraction was performed on the thick                

band centered around 200 bp and the concentration of the purified pooled library was              

quantified again via Qubit assay and diluted down to 2 nM. The 2 nM library was then                 

diluted, denatured and sequenced using a NextSeq 500/550 High Output Kit v2.5 (75             

Cycles) (Illumina) run on a NextSeq 550 instrument (Illumina) according to the            

manufacturer's instructions. Library loading concentration was 1.8 pM with a 1% phiX spike.             

Gene fitness was calculated from read counts per barcoded mutant based on the method              

from Wetmore et al., 2015 . Briefly, scripts from        

https://bitbucket.org/berkeleylab/feba/src/master/ were adapted to trim and filter reads,        

extract barcodes, and summarize read counts per barcode. Fitness score calculation based            

on the log fold change of read count per barcode over time was implemented as an R script.                  
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The automatic pipeline for BarSeq analysis is available at         

https://github.com/Asplund-Samuelsson/rebar. Altogether, fitness for 5,441 genes was       

quantified with an average of 6.4 insertion mutants per gene. The remaining 1,173 genes              

were either essential (no viable insertion mutant), probably essential (number of transposon            

mutants in the surrounding region too low to determine essentiality), or fitness could not be               

quantified with sufficient confidence (low read count).  

 

Resource Balance Analysis model 
The resource balance analysis (RBA) model for C. necator H16 was generated using the              

RBApy package [Bulovic et al., 2019 ]. The model and a detailed description of its generation               

is available at https://github.com/m-jahn/Bacterial-RBA-models/. The main input was the         

curated genome scale model for C. necator in SBML format (1,360 reactions, excluding             

exchange reactions), available at https://github.com/m-jahn/genome-scale-models. Amino      

acid sequence, subunit stoichiometry and cofactor requirements for all proteins associated           

with model reactions were automatically retrieved from uniprot (organism ID: 381666). Fasta            

files detailing the composition of the ribosome (3 rRNA and 68 proteins), chaperones (8              

proteins), DNA polymerase III (8 proteins), and RNA polymerase II (9 proteins) were added              

manually. Rates for these macromolecular 'machines' were adopted from published values           

for E. coli (Table S1 ). Rates for ribosome and chaperone were taken from [Bulovic et al.,                

2019 ], rate of RNA polymerase was taken from [Epshtein et al., 2003 ], and rate of DNA                

polymerase was the average of several published values obtained from          

https://bionumbers.hms.harvard.edu (IDs 102052, 104938, 109251, 111770). Biomass       

composition of C. necator H16, growth- and non-growth associated maintenance were all            

taken from [Park et al., 2011 ]. A growth rate dependent flux towards PHB was added (3                

mmol gDCW-1) to obtain biomass yields corresponding to experimentally determined values.           

The model was calibrated by adding estimates for kapp, the apparent catalytic rate for each               

metabolic enzyme, following the procedure in [Bulovic et al., 2019 ]. For each model reaction              

and substrate limitation, flux boundaries were obtained from flux sampling analysis (FSA)            

using COBRApy [Ebrahim et al., 2013 ], and enzyme abundance in mmol gDCW-1 was             

obtained from proteomics measurements. kapp was determined by calculating the maximum           

flux per unit enzyme over all conditions. For enzymes without estimated kapp (no flux, or no                

protein abundance available), the median of the kapp distribution was used (6,296 h -1, Figure              
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S3 A). The average protein fraction of cell dry weight was taken from Park et al., 2011 . The                  

reported concentration of 0.68 g protein gDCW-1 was converted to mmol amino acids             

gDCW-1 by assuming an average molecular weight per amino acid of 110 g mol -1: 

  6.18 mmol gDCW  c =  gDCW  · 110 g
0.68 g · mol · 1000 =  −1  

 

Proteome fraction per cellular compartment (cytoplasm, cytoplasmic membrane) was         

estimated based on proteomics measurements and predicted protein localization (psortb          

algorithm) as input. Growth rate dependent fractions for cytoplasmic and membrane proteins            

were obtained by correlating growth rate and the respective mass fractions and fitting a              

linear model (Table S1, Figure S3 B). The same procedure was applied to estimate the               

non-enzymatic protein fraction per compartment. Proteins not contained in the model were            

categorized as non-enzymatic as they have no catalytic function in the model (Table S1,              

Figure S3 C). 

Data and software availability 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange           

Consortium via the PRIDE (Vizcaino et al., 2016 ) partner repository with the dataset             

identifier PXD024819. Protein quantification results can be browsed and interactively          

analyzed using the web application available at https://m-jahn.shinyapps.io/ShinyProt. All         

sequencing data for TnSeq and BarSeq experiments are available at the European            

Nucleotide Archive with accession number PRJEB43757. The data for competition          

experiments performed with the transposon mutant library can be browsed and interactively            

analyzed using the web application available at https://m-jahn.shinyapps.io/ShinyLib/. 

The openMS/KNIME workflow for MS data processing is available at          

https://github.com/m-jahn/openMS-workflows. The revised genome scale model of C.        

necator H16 is available at https://github.com/m-jahn/genome-scale-models. The resource        

balance analysis (RBA) model of C. necator H16 is available at           

https://github.com/m-jahn/Bacterial-RBA-models. The code used to process TnSeq data        

from raw fastq files (read trimming, filtering, mapping to genome) is available at             

https://github.com/m-jahn/TnSeq-pipe . The code used to process BarSeq data from raw          

fastq files is available at https://github.com/Asplund-Samuelsson/rebar. All analyses of         
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proteomics, modeling, and fitness data were performed using the R programming language            

and are documented in R notebooks available at        

https://github.com/m-jahn/R-notebook-ralstonia-proteome . 
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