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Summary

Integrative analysis of multiple data sets has the potential of fully leveraging the vast amount

of high throughput biological data being generated. In particular such analysis will be powerful

in making inference from publicly available collections of genetic, transcriptomic and epigenetic

data sets which are designed to study shared biological processes, but which vary in their target

measurements, biological variation, unwanted noise, and batch variation. Thus, methods that

enable the joint analysis of multiple data sets are needed to gain insights into shared biological

∗Co-corresponding authors, ccolantu@jhmi.edu and lxiao5@ncsu.edu.

© The Author 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 15, 2022. ; https://doi.org/10.1101/2021.03.22.435728doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.22.435728


2 H.Chen., B.Caffo. and Others

processes that would otherwise be hidden by unwanted intra-data set variation. Here, we propose

a method called two-stage linked component analysis (2s-LCA) to jointly decompose multiple

biologically related experimental data sets with biological and technological relationships that

can be structured into the decomposition. The consistency of the proposed method is established

and its empirical performance is evaluated via simulation studies. We apply 2s-LCA to jointly

analyze four data sets focused on human brain development and identify meaningful patterns of

gene expression in human neurogenesis that have shared structure across these data sets.

Key words: Integrative methods; Joint decomposition; Low rank models; Multi-view data; Principal

component analysis.

1. Introduction

1.1 Background

Heterogeneous data of various types are now being collected from scientific experiments and/or

large scale health initiatives. Thus, it is of scientific interest to harness the collective discovery

potential of such complex and growing data resources. For example, in biomedical research,

high-dimensional gene expression and epigenetic data are produced to gain insight into cellular

processes and disease mechanisms (Stein-O’Brien and others, 2019). Another example is in the

study of Alzheimer’s disease where recent efforts have been focusing on combining brain imaging

data, genetic data, as well as clinical outcomes in predicting disease (Nathoo and others, 2019). A

third example is a large study profiling different states of wellness, where genetic, proteomic and

metabolic data among other types of data are collected (Gao and others, 2020). Together, the

different types of data provide a more comprehensive picture which has the potential of better

characterizing and optimizing what it is to be healthy. In addition to these examples of studies

with multimodal data collection, many public repositories are full of experimental data from
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single modalities that are related biologically. Therefore, in recent years, there has been growing

interests as well as demands for understanding and utilizing these data in an integrative way

(Lock and others, 2013; Yang and Michailidis, 2016; Li and Jung, 2017; Gaynanova and Li, 2019;

Gao and others, 2020).

1.2 Motivating Data

Advances in RNA sequencing technologies have produced a large amount of data creating un-

precedented opportunities for scientific discovery through data integration. We put together four

experimental paradigms used to study brain development: i.van de Leemput and others (2014); ii.

Yao and others (2017); iii. BrainSpan (2011); and iv. Nowakowski and others (2017). Specifically,

we use two in vitro data sets from cultured human pluripotent stem cells subjected to neural

differentiation, and two in vivo data sets of brain tissue across varying ages of human fetal de-

velopment. Within the in vitro and in vivo studies two different RNA sequencing technologies

were used: the two bulk studies extracted RNA from all the cells in tissue samples and expression

levels were measured in aggregate for each tissue sample, while in the two single-cell studies, the

RNA from each cell in a tissue sample was extracted and quantified individually. All four data

sets focus on the creation of neurons from neural precursor cells across these times and hence are

highly interrelated. However, there are sample specific details that introduce experiment specific

variation beyond the expected technical batch effects. In the van de Leemput and others (2014)

bulk data set, data were collected at 9 time points across 77 days of neural differentiation with a

total number of 24 in vitro samples. The Yao and others (2017) data set was collected to model

the production of human cortical neurons in vitro. There are about 2.7 thousand cells collected

over across 54 days during in vitro. In the BrainSpan (2011) bulk data set, there are a total of

35 in vivo brain tissue samples. The Nowakowski and others (2017) data set contains around 3.5

thousand single cells across different ages in the fetal brain. For visualization of these data sets, see
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the NeMO Analytics portal at https://nemoanalytics.org/p?l=ChenEtAl2021&g=DCX, where

the gEAR platform is leveraged to construct an integrated gene expression data viewer including

all data sets used in the report (Orvis and others, 2021).

The primary goal of assembling these different data sets together is to define molecular dynam-

ics that are common to all of them and are central in the creation of human neocortical neurons.

In addition, we are interested in learning what cellular processes during in vivo development of

the brain can be recapitulated in the in vitro systems and what processes are only present in

the in vivo data. To achieve this goal, we need a new joint model that can properly model the

two-way design exhibited by the four data sets and separate the different cellular processes.

1.3 Existing Literature

We distinguish two distinct types of data structure for multiple data sets: multi-view data and

linked data. For multi-view data, e.g., multi-omics data, different sets of features are measured

for each subject or unit with subject being the linking entity across data sets. For linked data,

e.g., gene expression data for different types of cancer patients in The Cancer Genome Atlas

(TCGA), the same set of features are measured for different groups of subjects. When data sets

are organized such that each column corresponds to one sample, the former can be called vertically

linked data as the data sets can be aligned vertically, while the latter can be called horizontally

linked data as the data sets can be aligned horizontally (Richardson and others, 2016). For

both types of data structures, a central goal of statistical analysis is to identify meaningful

decomposition of variations across data sets.

Canonical correlation analysis (CCA) is a useful method for extracting common variation

across multi-view data. Various variants of CCA for high dimensional data sets have been pro-

posed; see, e.g., Gao and others (2020) and Min and Long (2020). However, CCA ignores po-

tentially substantial variation present only in individual data sets. To remedy this, the joint and
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individual variations explained (JIVE) method (Lock and others, 2013) and subsequent variants

of JIVE, e.g., AJIVE (Feng and others, 2018), were developed to identify common variation

shared across multiple data sets as well as individual variation specific to each data set. Going

further, the structural learning and integrative decomposition (SLIDE) method (Gaynanova and

Li, 2019) also allows variations that are shared by only a subset of data sets. Other relevant works

include Li and Jung (2017), Li and others (2018) and Argelaguet and others (2018).

A pioneering method for linked data is common principal component analysis (Flury, 1984,

PCA), which can identify the same set of orthogonal eigenvectors shared across data sets. CPCA

was extended to extract shared signal subspace present across data sets (Flury, 1987) and to

determine the number of shared components (Wang and others, 2020). Another extension based

on matrix decomposition, population value decomposition (Crainiceanu and others, 2011) extends

CPCA to matrix-valued data, e.g., neuroimaging and electrophysiology data.

We mention a few other related works. Lock and others (2020) and Park and Lock (2020)

jointly analyzed multiple data sets for heterogeneous groups of objects with heterogeneous feature

sets. Kallus and others (2019) developed a data adaptive method which allows structure in data to

be shared across an arbitrary subset of views and cohorts. Gao and others (2020) and Wang and

Allen (2021) considered clustering problems for multi-view data. Li and others (2019) proposed

a regression model with multi-view data as covariates.

1.4 Our Contribution

We propose a joint decomposition model for linked multiple data sets with a general design, e.g.,

the 2 by 2 factorial design in our motivating data, thus extending the aforementioned CPCA

method which assumes the linked multiple data sets have a one-way design. The goal of the joint

decomposition is to identify signal subspaces that are either shared or not shared across data

sets. Similar in spirit to the underlying model for the SLIDE method for multi-view data, our
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model allows for common signal subspace that are shared by all data sets, partially shared signal

subspaces that are shared by only subsets of all data sets, and individual signal subspaces specific

to each data set. It is important to note that, for our method, it is fixed signal subspaces rather

than latent random scores that are shared across data sets. Another significant difference is that

the existence of partially shared signal subspaces for the proposed model is determined by design,

which is scientifically meaningful for our motivating data. While not designed explicitly for linked

data and the use case described, other methods can also be used in this setting. The BIDIFAC+

method (Lock and others, 2020), an extension of the BIDIFAC method for bi-dimensional data

(Park and Lock, 2020), could also accommodate partially shared subspaces by design for linked

data. These methods were proposed for decomposing bi-dimensional data. Specifically, the BID-

IFAC+ method decomposes data into the sum of matrices with varying structures and imposes

matrix nuclear norm penalties for model selection. Additionally, the SLIDE method, while de-

signed for multi-view data, may still be applied to linked data via transposing the data. Indeed,

existing multi-view methods (e.g., JIVE) that are based on matrix decomposition can also be

applicable for linked data. However, because SLIDE is a fully unsupervised method and due to

the specific penalty it employs to learn different types of components, it is unclear how to directly

incorporate design of components into SLIDE. Nevertheless, it is worth mentioning that SLIDE,

BIDIFAC+, and the proposed model allow partially shared components.

Our model estimation consists of a simple and intuitive two-stage procedure and is built

on existing literature in principal component analysis. From a computational perspective, it is

straightforward and avoids complex and computationally challenging optimization methods, e.g.,

large matrix decomposition and iterative optimization methods as in BIDIFAC+ and SLIDE. In

particular, the proposed method avoids joint estimation of dimensions of different types of spaces,

which can be challenging for both BIDFIFAC+ and SLIDE as is shown in the simulation study. We

also study the theoretic properties of the proposed method for a general class of decomposition
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models. Specifically, we establish the consistency of the proposed method for estimating the

signal subspaces. In particular, we prove the consistency of the proposed method for estimating

the dimensions of the signal subspaces. Note that most existing methods in the literature lack

theoretic justification for the choice of dimensions (or ranks of matrices).

The rest of the paper is organized as follows. In Section 2, we first describe our model for linked

data sets with a 2 by 2 design, as motivated by our data example, and then extend the model

for data sets with a general design. A two-step model estimation method is given in the Section.

In Section 3, we study the theoretic properties of the proposed model estimation method. In

Section 4, we carry out a simulation study to evaluate the empirical performance of our proposed

method and compare with existing methods. In Section 5, we apply the proposed method to

the motivating data and also carry out a validation study using additional data sets. Finally, in

Section 6, we discuss how our work can be extended, e.g., for high-dimensional data.

2. Models

2.1 Model Formulation

First, consider a 2 by 2 factorial design, as in our motivating data, but later generalize the model

for more generic designs. Let i be the index for the cells’ system, with i = 1 for in vivo and

i = 2 for in vitro. Similarly, let j be the index for the RNA sequencing technology, with j = 1

for single cell and j = 2 for bulk. Let Yij ∈ Rp×nij be the (i, j)th data set consisting of nij

tissue samples or cells of dimension p. For simplicity, hereafter we shall use sample to refer to

either tissue sample or cell. Denote by yijk ∈ Rp the kth sample for the (i, j)th data set so that

Yij = [yij1, . . . , yijnij
]. Thus, the samples are of the same dimension for all data sets and they

are assumed independent between the data sets and from each other.
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Consider a two-way latent factor model,

yijk = Afijk +Bigijk +Cjhijk +Dijℓijk + ϵijk, (2.1)

where A ∈ Rp×rA , Bi ∈ Rp×rBi , Cj ∈ Rp×rCj and Dij ∈ Rp×rDij are fixed orthonormal

matrices of components with associated random scores fijk ∈ RrA , gijk ∈ RrBi , hijk ∈ RrCj

and ℓijk ∈ RrDij , respectively. The vector ϵijk ∈ Rp consists of uncorrelated, mean zero error

terms, with variance σ2
ij . We assume that all random scores have zero means and cov(fijk) =

Σfij , cov(gijk) = Σgij , cov(hijk) = Σhij
, cov(ℓijk) = Σℓij , with positive diagonal elements in

all covariances. In particular, we assume without loss of generality that Σf11 , Σgi1(i = 1, 2),

Σh1j
(j = 1, 2), and Σℓij (i = 1, 2, j = 1, 2) are diagonal matrices so that the matrices can be

identified. The other covariance matrices can be non-diagonal, implying that components do not

have to align component-wisely across the data sets, but the space spanned by them are the same.

Finally, the random terms {fijk, gijk, hijk, ℓijk, ϵijk} are assumed uncorrelated across i, j, and k.

For model identifiability, we impose the condition that the orthogonal matricesA,B1,B2,C1,

C2, Dij (1 ⩽ i, j ⩽ 2) are also mutually orthogonal. This condition ensures that the components

are not movable, e.g., components in A can not be transferred to other matrices without changing

the model.

Model (2.1) can be interpreted as a multivariate ANOVA model. To elaborate, we use the

notation col(·) to denote the column space of a matrix. Then, col(A) is the space of common

components, the space of variation that is shared by all data sets. Next, col(B1) is the space of

partially shared components specific to in vivo system, i.e., the two in vivo data sets. Thus, it

is orthogonal to both the common components, i.e., col(A), and the space of variation specific

to the in vitro system, i.e., col(B2). Third, col(C1) is the space of partially shared components

specific to the single cell sequencing technology and col(C2) is for the bulk sequencing method.

Finally, col(Dij) are the individual components specific to each data set.

For data set (i, j), model (2.1) is a latent factor model with the signal space being the column
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space of Uij = [A,Bi,Cj ,Dij ], which can be denoted by col(Uij).

2.2 Model Estimation

We propose a two-stage estimation method, called 2s-LCA. The first stage is to estimate the signal

space from each data set separately using principal component analysis (PCA). The second stage

combines the signal spaces to extract the common subspace, the partially shared subspaces and

the individual subspaces, also using PCA. Note that the first stage of 2s-LCA is essentially the

same as the first step of AJIVE (Feng and others, 2018), which first extracts signal spaces from

each data set and then decomposes the variations of the obtained latent scores into common

variation and individual variation.

For the first stage, the key is to estimate the number of components in each data set, i.e.,

the dimension of col(Uij). We use the BEMA method (Ke and others, 2021) (see supplementary

material for detail), which fits a distribution to the eigenvalues (putatively) arising from noise

using the observed bulk eigenvalues and then determines the number of eigenvalues arising from

signals via extrapolation of the fitted distribution. This method yields consistent estimation

and worked well in our simulations. Denote by Ûij the matrices of the estimated eigenvectors

associated with the top eigenvalues from the sample covariance of data set (i, j).

For the second stage, we extract the common subspace, the partially shared subspaces, and

the individual subspaces, sequentially. Assume that we extract the subspaces in the following

order: A → B1 → B2 → C1 → C2 → D11 → D12 → D21 → D22. Here, to simplify notation, we

use the matrices to denote the subspaces.

The estimation of the common subspace is based on the following observation. Let H =

U11U
T
11 + U12U

T
12 + U21U

T
21 + U22U

T
22. Then it is easy to show that for any eigenvector of

H, aTHa equals 4 if a ∈ col(A) and is at most 2 otherwise. Thus, there exists a natural gap

of eigenvalues associated with the common subspace and those of other subspaces for H. From

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 15, 2022. ; https://doi.org/10.1101/2021.03.22.435728doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.22.435728


10 H.Chen., B.Caffo. and Others

a theoretical perspective, any cut-off value between 2 and 4 for the eigenvalues may lead to

consistent estimation. In practice, a scree plot of the eigenvalues of Ĥ =
∑

i,j Û
T
ijÛij can be

used to determine the dimension of the common subspace, i.e. considering the relative amount

of variation explained among the top eigenvalues. Once the dimension of the common subspace

is determined, the eigenvectors of Ĥ associated with these top eigenvalues give us an estimate

of the space of common components. Let Â be the matrix with columns corresponding to the

retained eigenvectors of Ĥ. Note that Â may not be a good estimate of A elementwise, rather,

the notation is used to represent that col(Â) is an estimate of col(A) and Â is one of many

matrix representations of the former.

Next we estimate the partially shared subspaces. We first project Ûij onto the orthogonal

complement of Â, i.e., (I− ÂÂT )Ûij . For simplicity, we still denote it by Ûij , but the common

subspace has been removed. We now consider estimation of col(B1), the space of partially shared

components corresponding to the in vivo system. With similar arguments as before, now the

matrix Û11Û
T
11 + Û12Û

T
12 has one set of eigenvalues close to 2 and another set of eigenvalues

close to or smaller than 1. Indeed, the theoretic counterpart of the above matrix has two sets of

non-zero eigenvalues: one set of eigenvalues of 2 with associated eigenvectors forming the space

col(B1) and another set of eigenvalues of 1 with associated eigenvectors from the individual space

of either col(D11) or col(D12). Therefore, another scree plot of eigenvalues of Û11Û
T
11 + Û12Û

T
12

will determine the dimension of col(B1) and also give an estimate of the space.

Similar analysis can be used to estimate the other partially shared subspaces. For example, a

spectral analysis of Û21Û
T
21+Û22Û

T
22 can be used to estimate col(C1). Further steps follow simi-

larly and thus are omitted. To ensure the estimated spaces are orthogonal, orthogonal projection

is always used after each estimation of the partially shared subspaces. After the projection of Ûij

onto the complement of estimates of col(Bi) and col(Cj), the remaining space is an estimate of

the individual space col(Dij).
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A remaining problem lies in the determination of the order which subspaces are estimated.

First, it is clear that components shared by more data sets should be prioritized, and estimated

first. The problem then lies in the order to follow to extract the partially shared components.

While this is not a problem in our theoretical analysis, in real data analysis, different orders

produce different estimates, because of the orthogonal condition imposed on the model and the

orthogonal projection used in model estimation. A reasonable method considers the quality of

the data sets (e.g., the sample size) and the spaces of shared components with higher perceived

quality prioritized in the estimation order.

2.3 Model and Estimation for General Design

We extend the above model for a two-way factorial design to a model with a general design. To

accommodate the more general setting, the notation here is slightly different from the previous

sections. Assume that there are I data sets each containing ni samples. Denote by yij ∈ Rp the

jth sample for the ith data set. We consider a latent factor model with general design as follows:

yij = Θi1V1f1ij +Θi2V2f2ij + . . .ΘiKVKfKij + ϵij . (2.2)

The orthonormal matricesVk ∈ Rp×rk correspond to the kth space of components with associated

scores, fkij ∈ Rrk . So the kth space is of dimension rk, which is unknown and needs to be

determined. The indicator variables, Θik, denote if the ith data set contains the kth space of

components, and ϵij ∈ Rp are random errors. Here the number of spaces, K, and the indicator

variables are determined by design. For example, for the two-way factorial design considered

above, K = 9. Two clear restrictions on the indicator variables are: (1) for each k, there exists

at least one i such that Θik = 1; (2) there does not exist k ̸= k′ with identical indicator values

across all data sets. Let ηk =
∑

i Θik, which is the number of data sets sharing the kth space of

components. Without loss of generality, we assume that η1 ⩾ · · · ⩾ ηK .

We assume that all random scores have zero means and cov(fkij) = Σki ∈ Rp×p with positive
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diagonal elements in the covariance. In particular, for each k, there exists a pre-determined Θik =

1 such that Σki is a diagonal matrix, i.e., the corresponding random vector fkij has uncorrelated

elements. We also assume that all random terms are uncorrelated from each other and across i

and j. For model identifiability, we impose that V1,V2, . . . ,VK are mutually orthogonal. Let

Ki =
∑K

k=1 Θikrk, the total dimension of signal subspaces in data set i.

We now extend the model estimation proposed in the previous subsection. The first step

remains the same and denote by Ûi the matrices of estimated eigenvectors. Consider the second

step where the critical issue is the order of components to be extracted. The key idea is that spaces

shared by more data sets should be extracted before those shared by fewer data sets. For each k,

denote by Ik the index set for which if k′ ∈ Ik, then Θik′ ⩽ Θik and for at least one i the inequality

is strict. Then let αk be the smallest element in Ik. If Ik is empty then let αk be 0. Obviously,

αk < ηk for all k. Suppose we have estimated the first k spaces of shared components and have

projected Ûi onto the orthogonal space of the previously extracted spaces. For simplicity, still

denote those spaces by Ûi. To estimate the (k+ 1)th space, compute
∑

i:Θi(k+1)=1 ÛiÛ
T
i and its

eigendecomposition. Let V̂k+1 consists of the resulting eigenvectors with associated eigenvalues

larger than (ηk+1 + αk+1)/2. Then col(V̂k+1) is our estimate of col(Vk+1).

The above estimation procedure is unique if ηk are all distinct. When there exists ties, then

the order of estimation can be determined similarly as in the two-way design. One note is that

our theoretical derivation remains valid no matter what order of estimation taken within the ties.

After obtaining the spaces of components, to further analyze or visualize the data, we project

the data sets onto the estimated subspaces to obtain scores; see, e.g., our real data analysis.

3. Theoretical Properties

We establish the consistency of the proposed estimation methods for the general design proposed

in (2). Specifically, we prove the consistency of col(V̂k) for estimating the signal space col(Vk),
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for each k, which implies the consistency of dimension estimation for each signal subspace as well.

We use the following notation. For a square matrix A, denote by tr(A) the sum of diagonals

in A and ∥A∥2 the operator norm of A. Let re(A) = tr(A)/∥A∥2, the effective rank of A.

Consider the following assumptions.

Assumption 3.1 p/n → γ, γ > 0 is a constant.

Assumption 3.2 The minimal nonzero eigenvalue ofΣki, denoted by σki, satisfies σki ⩾ σ2(
√
γ+

τ), for a positive constant τ and γ in Assumption 3.1, for all k and i.

Assumption 3.3 Assume that for each signal subspace Vk, the random scores fkij ∼ N(0,Σki),

and the noise vector ϵij ∼ N(0, σ2
i I), and that the random scores and noises are independent

from each other and across subjects.

Assumption 3.4 Let Σi = E[yTijyij ] for i = 1, . . . , n. Assume that these covariance matrices

have bounded effective ranks, i.e., re(Σi) ⩽ C, for all i and some fixed positive constant C.

Assumptions 3.1 and 3.2 are needed for the consistency of the BEMA method (Ke and oth-

ers, 2021) for estimating the dimension of the signal space for each data matrix in the first step

of model estimation. Assumption 3.2 means the signals can be separated from the noises. As-

sumptions 3.3 and 3.4 are needed to establish the consistency of the sample covariance matrix

estimators (Bunea and Xiao, 2015). Assumption 3.4 means the signals have to be sufficiently

strong so that they can be consistently estimated. When Assumption 3.4 is invalid, such as in

the instance of a high dimensional spiked covariance matrix, additional sparsity assumptions are

needed and then the sample covariances have to be replaced by sparsity-inducing estimators in

our estimation method; see the discussion section for more details.

Let V, V̂ ∈ Rp×d both have orthonormal columns, then the vector of d principal angles

between their column spaces is given by (cos−1σ1, . . . , cos
−1σd)

T , where σ1 ⩾ · · · ⩾ σd are the
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singular values of V̂TV. Let Θ(V̂,V) denote d× d diagonal matrix whose jth diagonal entry is

the jth principal angle, and let sinΘ(V̂,V) be defined entry-wise. Then, for two signal subspaces

V and V̂, define convergence in space as V −−−−−→
in space

V̂ ⇐⇒ sinΘ(V̂,V) → 0.

Theorem 3.5 Under Model (2.2), if Assumptions 3.1 - 3.4 hold, then V̂k
P−−−−−→

in space
Vk, for all k.

The proof of Theorem 3.5 is provided in Section S.3 of the supplementary material. Note that

this theorem also implies the consistency of the estimated dimension of each signal subspace.

4. Simulation Studies

4.1 Settings

Consider the two-way model (2.1) for which the spaces of common components, partially shared

components, as well as individual components are all of dimension 2. We sample the orthonormal

matrices (A,Bi,Cj ,Dij) from a Stiefel manifold and generate the random scores and noises from

normal distributions. For the diagonal covariance matrices (Σf11 ,Σg11 ,Σh11
,Σℓ11 ,Σℓ12 ,Σℓ21 ,Σℓ22),

we sample the diagonals uniformly from the interval [1, 2] and then multiply them by the dimen-

sion p. To ensure desired signal to noise ratio as defined below, a scale parameter is multiplied to

the diagonals. For the other covariance matrices, we randomly rotate Σf11 to Σfij with a rotation

angle π/3. Similarly, we randomly rotate Σg11 and Σh11 to Σgij and Σhij respectively with a

rotation angle π/2. We generate noises ϵijk for each data set from N(0, σ2) with σ2 = 1.

We set the sample sizes nij = n for all data sets and consider two cases. Case 1 is a high

dimensional setting with p = 500, n = 500 and case 2 is a low dimensional setting with p =

50, n = 500. Finally, we define the signal to noise ratio (SNR) for the (i, j)th data set as SNRij =

tr(cov(yijk))/(pσ
2) − 1. We set the same SNR for all data sets and use three different values of

SNR, {0.2, 1, 5}. Therefore, there are a total number of 6 model conditions. Under each model

condition, we conduct 1000 simulations in a cluster computing environment.
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We compare 2s-LCA with several existing methods. First, we fix the dimensions of all sub-

spaces at their true values, i.e., 2, and compare 2s-LCA with JIVE (Lock and others, 2013),

AJIVE (Feng and others, 2018), SLIDE (Gaynanova and Li, 2019), BIDIFAC (Park and Lock,

2020), and BIDIFAC+ (Lock and others, 2020) for subspace estimation. Then, we do the same

as above except that the data are generated such that the variances of scores associated with

individual subspaces are much larger than those for common and partially shared subspaces.

Third and most importantly, we compare SLIDE, BIDIFAC+, and 2s-LCA without pre-fixing

dimensions of the subspaces.

To evaluate the performance of methods, we use a metric called space alignment (SA), to

measure the alignment of two spaces. For instance, if Â is the estimated common subspace and

A is the population common subspace, then the SA between them is

SA(A, Â) =
∥ÂTA∥∗

max{rank(A), rank(Â)}
.

Here ∥ · ∥∗ denotes the nuclear norm, which is invariant to matrix rotation. Note that SA always

lies in [0, 1], with 1 indicating that the two spaces are identical, while a 0 indicating that the two

spaces are orthogonal to each other. We also compare the computational times of the proposed

method and a few existing methods.

4.2 Simulation Results

We first summarize simulation results when the dimensions of the subspaces are fixed at their

true values with further details provided in Section S.4.1 of the supplementary material. Because

JIVE, AJIVE and BIDIFAC do not consider partially shared components, they do not perform

well in this settings. On the contrary, SLIDE, BIDIFAC+, and 2s-LCA all perform well and have

comparable values of SA across all model conditions.

However, when the variance of individual components are much larger than the common

and partially shared components, both SLIDE and BIDIFAC+, can have difficulty recovering
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common and partially shared spaces. In contrast, 2s-LCA is capable of accurately estimating

these spaces (Section S.4.2 of the supplementary material). A likely explanation is that both

SLIDE and BIDIFAC+ focus on recovering the overall signal space, in this case dominated by

the individual components, in the data while 2s-LCA prioritizes and first estimates common and

partially shared components.

Now we compare SLIDE, BIDIFAC+, and 2s-LCA for model estimation without knowing

the dimension of each space. As discussed in the Introduction, SLIDE does not allow direct

specification of types of spaces and hence might be slightly disadvantaged compared with 2s-

LCA and BIDIFAC+, as the latter two methods accommodate the specification of types of

subspaces. Fig. 2 summarizes the performance of the methods under two model conditions. First,

BIDIFAC+ tends to overestimate the dimensions of common and partially shared spaces, which

negatively impacts SA. Second, SLIDE underestimates the dimensions of these spaces in low

dimensional settings with small signal to noise ratios. Under both model conditions, 2s-LCA

yields an accurate estimation of the dimensions of the subspaces, and results in high values for

SA. Similar numerical results were found for the other four model conditions (Section S.4.3 of

the supplementary materials). In particular, 2s-LCA seems capable of accurately estimating the

dimensions of spaces correctly for most settings, except the high dimensional setting with a low

SNR (Fig. S.16 of the supplementary material). However, it still has overall higher SA values

than SLIDE and BIDIFAC+.

Lastly, we simulate the data as above except for setting the sizes of data as the same as that

of the motivating data. We assume that the dimensions of spaces are known and fixed and run

SLIDE, BIDIFAC+ and 2s-LCA. The proposed 2s-LCA takes about 32s (s.d. 16s) on average for

one run while SLIDE takes about 6.5 hours (s.d. 3.0 hours) on average to reach convergence. We

are unable to obtain convergent result for one single run after running the BIDIFAC+ code for 24

hours. We believe that the computational time of SLIDE can be potentially reduced by utilizing
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the inherent low rank property of the estimated signal matrix. As for BIDIFAC+, we believe its

computational difficulties arise because it relies on eigendecompositions, which are difficult for

high dimensional matrices. Consequently, BIDIFAC+ has a large RAM requirement, which may

slow it down substantially if disk swapping becomes required. Finally, the iterative nature of both

SLIDE and BIDIFAC+ may increase their computational time substantially.

5. Experimental Data Analysis

5.1 Analysis of Four Data Sets

We apply 2s-LCA to the four brain tissue data sets focused on brain development. As described

in Section 1, the data sets were collected using two technologies, bulk and single cell RNA

sequencing, and under two cellular environments, in vivo and in vitro. Thus, this exhibits a two-

way design as in model (2.1), which includes one subspace of common components, four subspaces

of partially shared components, and four subspaces of individual components. As two dimensional

visualizations of the data are of interest, a natural choice of the number of components for each

subspace is 2.

For 2s-LCA, normalization within each data set is needed to mitigate technical effects. For

each data set, we center the expression value for each gene, center and scale expression level of

each sample by its standard deviation across genes. For the second stage of 2s-LCA, we first

estimate common components and then the partially shared components sequentially in the

following order: in vitro, in vivo, single cell, and bulk.

Fig. 3 (a) shows the projection of every data set onto its top two eigenvectors–a separate

analysis. We then apply 2s-LCA to jointly analyze the four data sets and obtain common, partially

shared, and individual subspaces, each of which is of dimension 2. Then, we project every data

set onto these subspaces to investigate biological processes associated with the scores; see Fig. 3

(b) for plots of the scores for common and partially shared subspaces. Note that the axes in each
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plot have different ranges and to facilitate interpretation, we have rotated the scores associated

with the common subspace (top panel of Fig. 3 (a)) simultaneously for all four data sets.

To evaluate and interpret results, we shall use the DCX gene, which is turned on as neural

progenitors transition to being neurons. According to Liu (2011), “The DCX gene provides in-

structions for producing a protein called doublecortin. This protein is involved in the movement

of nerve cells (neurons) to their proper locations in the developing brain, a process called neuronal

migration.” The log2 transformed expression level of the DCX gene is used to color the cells, with

the dark color indicating low expression level corresponding to neural progenitors and the yellow

color indicating high expression level corresponding to neurons.

We first focus on the comparison of the separate components with the common components;

see Fig. 3 (a) and the top row of panels in Fig. 3 (b). For the separate analysis, the plots

show that cells with different expression levels of the DCX gene are clustered and separated;

however, the extent to which the scores and gene loadings align across the data sets is unclear. In

contrast to the separate analysis, 2s-LCA produces jointly derived components, allowing direct

assessment of how effects across the different data sets align. The plots for common components

show that cells with similar expression levels in the DCX gene tend to cluster together, which

means that the local structure of the cells is preserved. In addition, by projecting the data sets

onto the same subspace shared among them, a similar pattern can be observed among data

sets, indicating shared global structure across the data sets. For example, the x-axis along which

DCX expression increases during fetal development as neural progenitors become neurons (blue

arrows) can be seen precisely aligned across the common components in each of the four data

sets. Moreover, a visual comparison of the separate components with those of the proposed joint

method suggests that some of the order defined in the separate components is preserved in the

joint analysis (in the sense of the overall shape of the distribution of cells and clustering of cells

with similar expression levels), consistent with the knowledge that these four diverse experiments
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capture common molecular elements of neurogenesis. In addition to the visual comparison, we also

compute the ratio of the variances explained by the common components versus those explained

by the separate analysis for each data set. The ratios are: (1) van de Leemput: 0.195; (2) Yao:

0.524; (3) BrainSpan: 0.382; and (4) Nowakowski: 0.538. The values indicate strong presence of

common spaces shared by all data sets.

We have also evaluated the common components using the time of the samples: days of neural

differentiation for the in vitro data sets and age (years) for the in vivo data sets; see Fig. 4 which

is a recoloring of Fig. 3. Interestingly the y-axis (red arrows) appears to be a common temporal

dimension orthogonal to the DCX expression component, which is along the x-axis in Fig. 3. As

developmental time progresses, it appears that the cellular identities of the neural precursors and

their post-mitotic neuronal progeny become less distinct, i.e. the clusters of low and high DCX

expressing cells begin to merge. The cellular basis underlying this dimension is not known and

might be of significant biological interest to explore further. In the top 50 gene specific loadings

for the first common component, we identify, in addition to the DCX gene, many markers of

nascent neurons, e.g., MYT1L and NRXN1, synaptic components, e.g., PSD2 and SYT1, and

the channels SCN2A, SCN3A and SCN3B. Many of these identified genes have been implicated

in human neurodevelopmental disorders (see supplementary table), which further demonstrates

that this component parallels neurogensis in each of the four data sets.

We next evaluate the partially shared components and focus on the components shared only

by the two in vitro data sets; see the left two plots on the second row of Fig. 3 (b). In both plots,

those few cells circled in blue are pluripotent cells, which are present only in the in vitro data sets

as they would have disappeared prior to the developmental time points measured in the in vivo

system. This result demonstrates that the proposed joint decomposition method captures known

biological effects unique to the in vitro experimental paradigm and not represented in the in vivo

data sets. The top 10 gene specific loadings for the first in vitro component identifies pluripotent
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stem cells in the in vitro systems, as desired. Specifically, we find pluripotency markers: POU5F1,

PRDM14, and CDH1, demonstrating the identification of a pluripotency transcriptional program

common to the two in vitro data sets.

Finally, we also applied the BIDIFAC+ and SLIDE methods to the data sets. In a shared

cluster computing environment, it took SLIDE about 1 day to yield convergent result. The results

from SLIDE are are provided in the supplementary material. The results have similar apparent

scientific validity as 2s-LCA. The results for BIDIFAC+ are unavailable, as we could not obtain

convergent results in several days, again likely due to the requirements of the eigenvalue decom-

position. We believe the computational efficiency of 2s-LCA is a key aspect to the model. For

example, for this data convergence took only a two minutes.

5.2 A Validation Study

To validate the common components defined by the joint 2s-LCA decomposition (top row of panels

in Fig. 3 (b) and Fig. 4 (b), we use 8 additional single cell RNA-seq data sets from 5 studies,

see the supplementary material for details about these studies and the data sets. We project

the additional data sets on the found common and in vitro components through the “projectR”

package (Sharma and others, 2020). Projection of these data onto the common components clearly

demonstrates recapitulation of the biological effect captured in the first component that is aligned

with DCX expression and neurogenesis, and to a lesser extent the second that is aligned with

time (Fig. 5 (a) and (b), blue and red arrows, respectively).

The in vitro components generated by 2s-LCA (first 2 panels in the second row of Fig. 3 (b)

and Fig. 4 (b)) were validated by projecting data from another bulk RNA-seq study of neural

differentiation onto these components. This replicated the segregation of pluripotent stem cells

with high values for the first component, away from other cells in this study that proceeded

through neural progenitor and neuronal states, validating the identification of this cell type

specific to the in vitro studies (see supplementary material, black circles).
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6. Discussion

In this paper, we proposed two-stage linked component analysis (2s-LCA) for the joint analysis

of multiple data sets that are independent but have shared underlying structure resulting from

common biological processes and/or shared measurement technologies. The proposed method

extracts signal spaces that can be characterized as common, partially shared or individual, which

enhances the understanding of the underlying biology between the data sets. Our experimental

data results indicate that the 2s-LCA joint decomposition can be a useful tool to define shared

molecular dynamics across biologically related data sets, while avoiding unwanted artifacts.

The proposed method remains valid for high dimensional data, as long as the sample covari-

ance matrices are consistent. For the four experimental data sets, we found that the trace and

top eigenvalue of the sample covariance matrix for each data set comparable. Hence, it is not

unreasonable to assume that the population covariance matrices are of reduced effective ranks,

for which the sample covariance matrices are consistent.

The proposed method can be easily extended to high dimensional data sets, where sparsity is

necessary or desired. In such cases, the sample covariance matrix estimator used in the proposed

method can be replaced by any consistent covariance estimator (e.g., Bickel and others (2008);

Bien and others (2016)).Then the consistency of the proposed 2s-LCA can still be established.

The proposed 2s-LCA depends on a general, but fixed, design. It might also be of interest to

extend 2s-LCA to situations without a fixed design or where the design is only partially fixed.

There the existence and estimation of subspaces would have to be empirically determined.

7. Software

The code to conduct 2s-LCA can be found in the SJD package (https://github.com/CHuanSite/SJD).

The four experimental data sets in this paper can be explored at the individual gene level through

the NeMO Analytics portal at https://nemoanalytics.org/p?l=ChenEtAl2021&g=DCX.
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8. Supplementary Material

Supplementary material is available online at https://www.biorxiv.org/
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Figures and Tables

(a) SA, p = 50, n = 500, SNR = 0.2

(b) SA, p = 500, n = 50, SNR = 5

Fig. 1: Comparisons between JIVE, AJIVE, BIDIFAC, SLIDE, BIDIFAC+ and 2s-LCA with
known dimensions of spaces. (a) and (b) are both under the low dimensional setting with p =
50, n = 500, SNR = 0.2; (c) and (d) are under high dimensional setting with p = 500, n =
50,SNR = 5. For each setting, 1000 simulations are run.
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(a) SA, p = 50, n = 500, SNR = 0.2

(b) Selected dimension, p = 50, n = 500, SNR = 0.2

(c) SA, p = 500, n = 50, SNR = 5

(d) Selected dimension, p = 500, n = 50, SNR = 5

Fig. 2: Comparisons between SLIDE, BIDIFAC+ and 2s-LCA. (a) and (b) are both under the
low dimensional setting with p = 50, n = 500, SNR = 0.2; (c) and (d) are under high dimensional
setting with p = 500, n = 50, SNR = 5. For each setting, 1000 simulations are run.
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(a) separate analysis

(b) joint analysis by 2s-LCA

Fig. 3: (a) Scatterplots of scores corresponding to the top two principal components of each
data set by separate PCA and (b) Scatterplots of scores of each data set corresponding to com-
mon components (top panel), partially shared components associated with environments (middle
panel: in vitro on the left two plots and in vivo on the right two plots), and partially shared
components associated with technologies (bottom panel: bulk on the left two plots and single cell
on the right two plots) by the proposed 2s-LCA. The 4 columns in both parts correspond to the
data sets: (1) van de Leemput: in vitro + bulk; (2) Yao: in vitro + single cell; (3) BrainSpan:
in vivo + bulk; and (4) Nowakowski: in vivo + single cell. Each point corresponds to either one
tissue sample or one cell and is colored by the log2 transformed expression level of the DCX gene.
Blue arrows indicate alignment of the first common component (x-axis in top row of panels in
(b) with DCX expression (neurogenesis) in all four data sets. Black circles indicate pluripotent
stem cells, which are present only in the in vitro data sets.
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(a) separate analysis

(b) joint analysis by 2s-LCA

Fig. 4: This figure is a re-coloring of the data shown in Fig. 3, in order to show effects across time.
Each point corresponds to either one tissue sample or one cell and is colored by days of neural
differentiation for the in vitro data sets and age in years or gestational weeks for the in vivo
data sets. Red arrows indicate alignment of the second common component (y-axis in top row
of panels in (b) with developmental time in all four data sets. Black circles indicate pluripotent
stem cells, which are present only in the in vitro data sets.
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(a) common: DCX

(b) common: time

Fig. 5: Biological validation by projecting additional data sets onto common components obtained
from 2s-LCA. (a) Projection of 8 additional scRNA-seq data sets onto the common components
with cells colored by the log2 transformed expression level of the DCX gene. Blue arrows indicate
alignment of the first common component with DCX expression (neurogenesis). (b) Projection
of the same data sets onto the common components with cells colored by time: days of neural
differentiation for the in vitro data sets and age in years or gestational weeks for the in vivo data
sets. Red arrows indicate alignment of the second common component with developmental time.
The Darmanis and others (2015) prenatal study did not specify the exact age of the 4 fetal tissue
donors used in their prenatal study, indicating only 16-18 gestational weeks for all samples.
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