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Abstract

Networks are well-established representations of social systems, and temporal networks are
widely used to study their dynamics. Temporal network data often consist in a succession
of static networks over consecutive time windows whose length, however, is arbitrary,
not necessarily corresponding to any intrinsic timescale of the system. Moreover, the
resulting view of social network evolution is unsatisfactory: short time windows contain
little information, whereas aggregating over large time windows blurs the dynamics.
Going from a temporal network to a meaningful evolving representation of a social
network therefore remains a challenge. Here we introduce a framework to that purpose:
transforming temporal network data into an evolving weighted network where the weights
of the links between individuals are updated at every interaction. Most importantly, this
transformation takes into account the interdependence of social relationships due to the
finite attention capacities of individuals: each interaction between two individuals not
only reinforces their mutual relationship but also weakens their relationships with others.
We study a concrete example of such a transformation and apply it to several data sets
of social interactions. Using temporal contact data collected in schools, we show how our
framework highlights specificities in their structure and temporal organization. We then
introduce a synthetic perturbation into a data set of interactions in a group of baboons
to show that it is possible to detect a perturbation in a social group on a wide range of
timescales and parameters. Our framework brings new perspectives to the analysis of
temporal social networks.

Introduction1

Social relationships are created and maintained through interactions between individuals2

which last and are repeated over a variety of timescales. Social networks provide convenient3

representations for the resulting human and non-human animal social structures, where4

individuals are the nodes of the networks and links (ties) are summaries of their social5

interactions [Granovetter, 1973,Hinde, 1976,Wasserman and Faust, 1994,Brent et al.,6

2011]. Since the early definition of the sociogram [Moreno, 1934], these networks have7

typically been constructed by aggregating dyadic interactions occurring over a certain8

period of time to define the links between individuals. Research on the resulting static9

networks has led to numerous insights into human and non-human societies, with the10

development and empirical verification of various social theories such as the social balance11

hypothesis [Heider, 1946,Szell et al., 2010,Gelardi et al., 2019], the “strength of weak ties”12

theory [Granovetter, 1977,Karsai et al., 2014] or Dunbar’s theory on a cognitive limit to13

the possible number of simultaneous relationships [Dunbar, 1998,Gonçalves et al., 2011].14
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By definition however, such static networks do not capture the dynamics of social15

relationships within the aggregation period. As noted by Granovetter in 1973, further16

development of social network analysis requires “a move away from static analyses that17

observe a system at one point in time and to pursue instead systematic accounts of18

how such systems develop and change” [Granovetter, 1973]. Important advances in this19

respect have been made possible by the recent availability of temporally resolved data on20

interactions between individuals, from various types of communication [Eckmann et al.,21

2004,Kossinets and Watts, 2006,Onnela et al., 2007,Karsai et al., 2011,Miritello et al.,22

2013b] to face-to-face interactions [Cattuto et al., 2010,Salathé et al., 2010,Stopczynski23

et al., 2014,Toth et al., 2015]. These data fueled the development of the framework of24

temporal networks [Holme and Saramäki, 2012,Holme, 2015], which replaces static ties25

by information on the actual series of interactions on each tie.26

Temporal data and temporal networks have allowed researchers to further the study27

of social networks in various ways. For instance, aggregating temporal information over28

successive time windows, has made it possible to follow the evolution of ties over larger29

timescales [Saramäki et al., 2014,Fournet and Barrat, 2014,Gelardi et al., 2019,Aledavood30

et al., 2015], revealing circadian interaction patterns [Aledavood et al., 2015], for example,31

or the stability of how individuals divide interaction time among their relationships, even32

in different periods of their lives and with different groups of friends [Saramäki et al.,33

2014]. The use of digital and phone communication data has yielded further insights34

into social theories, such as the various strategies individuals use to manage their social35

circle when faced with limited communication resources [Miritello et al., 2013a,Miritello36

et al., 2013b]. Taking into account the temporal features of each tie during a certain time37

window can also shed light on their strength and persistence [Navarro et al., 2017,Ureña-38

Carrion et al., 2020]. Finally, researchers have identified temporal structures with no39

static equivalent [Kovanen et al., 2011,Kobayashi et al., 2019,Galimberti et al., 2018]40

that can reveal interesting patterns of relevance to the analysis of social phenomena or41

dynamic processes in a social group [Kovanen et al., 2013,Ciaperoni et al., 2020].42

Despite this wealth of studies and results, moving from a stream of interactions within43

a group of individuals, represented by a temporal network, to a meaningful representation44

of the evolution of their social relationships remains a challenge. Indeed, the temporal45

network seen at any specific time t contains by definition only the interactions taking46

place at t and a number of properties of the networks obtained by temporal aggregation on47

successive windows depend on the window length and placement [Sulo et al., 2010,Krings48

et al., 2012,Psorakis et al., 2012,Kivelä and Porter, 2015]. Aggregating over increasing49

time window lengths also averages out relevant temporal information and no single50

natural time scale for aggregation can be defined, as relevant dynamics occur on multiple51

timescales [Holme, 2013,Saramäki and Moro, 2015,Darst et al., 2016,Masuda and Holme,52

2019].53

Here, we address this issue by putting forward a new systematic way to transform the54

stream of interactions between individuals (the temporal network data) into a continuously55

evolving representation of the social structure, i.e., a network with time-varying weights.56

In other words, the evolving weight wij(t) of the tie between nodes i and j should57

give information on the status of their relationship at t. To date, few such dynamic58

network models have been proposed [Ahmad et al., 2018,Zuo and Porter, 2019,Jin et al.,59

2001,Palla et al., 2007], mainly based on the idea that the weight of a tie between two60

individuals strengthens when they interact, and that in the absence of interaction, the61

tie’s weight decays exponentially with time (the timescale of the decay is the model’s62

parameter). However, these rules of evolution assume that the links between distinct pairs63

of individuals are independent, while the interdependence of social relationships is often64

well justified, especially for primates. Compared to most other animals, humans and other65

primates form complex social groups characterized by long-term relationships that are66
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both structured and flexible [Dunbar and Shultz, 2007,Mitani, 2009,Silk et al., 2010]. The67

creation and maintenance of these relationships require specific cognitive skills [Cheney68

et al., 1986], for instance in helping others [Burkart et al., 2014] or understanding others’69

intentions [Tomasello et al., 2005], and there is now strong evidence that the evolution of70

brain sizes in primates has been driven, at least in part, by the corresponding demands71

of social life [Dunbar and Shultz, 2007,Dunbar and Shultz, 2017,Lewis et al., 2011,Kwak72

et al., 2018,Noonan et al., 2018,Taebi et al., 2020,Meguerditchian et al., 2021]. Thus,73

in primates, investing in a social relationship is a costly strategic decision, controled by74

evolved cognitive mechanisms. The quality of an individual’s social relationships depends75

on the time invested in them [Dunbar, 2020,Dunbar et al., 2009] and has important life76

consequences. For instance, finite communication capacities can imply that the activation77

of a new social tie occurs at the expense of a previously existing one [Miritello et al.,78

2013a]. It is therefore crucial to take into account the finite capacities of each individual79

in establishing and maintaining social ties in order to represent the evolution of the weight80

of these ties. In particular, the occurrence of a social interaction between two individuals81

not only reinforces their mutual relationship, but it also weakens the relationships they82

have with others: the time and energy spent to maintain the tie with an individual is83

taken from a finite interaction capacity and thus is time that is not spent with others.84

The framework that we put forward here uses this type of interdependence of social85

relationships to transform a stream of interactions into an evolving weighted network:86

with each interaction between two individuals, the weight of their tie increases, while87

the weight of the ties they have with other individuals decreases. In contrast to other88

recent temporal network representations [Ahmad et al., 2018,Zuo and Porter, 2019], time89

itself is not explicit, and the weight of a tie remains unchanged if the corresponding90

individuals do not interact with anyone. Our framework is therefore linked to the Elo91

rating method [Elo, 1978] used to rank chess players and analyze animal hierarchies: the92

dynamics of the system are determined by the pace of interactions between individuals,93

not by the absolute time between events.94

In the following, we define a parsimonious model for the evolution of social ties based95

on these concepts, with two parameters quantifying respectively the increase in the weight96

of a tie i� j when an interaction occurs between i and j, and its decrease when another97

interaction involving either i or j (but not both) takes place. We then show the relevance98

of the model by applying it to several data sets describing interactions in groups of human99

and non-human primates and by using it to automatically detect naturally occurring100

changes in the groups’ dynamics and artificially generated perturbations in the data.101

Results102

Framework103

The framework and concepts highlighted above can be translated in various ways into104

modeling rules to transform a stream of dyadic interactions into evolving weights on each105

tie of an evolving network G(t). The nodes of the network represent the individuals and106

the weight wij(t) of tie i� j represents the strength of their social relationship at time t.107

More specifically, we here use a model in which G(t) is directed, i.e., wij(t) represents108

the strength of the relationship seen from i, which is not necessarily equal to the strength109

seen from j, wji(t). This reflects the fact that a relationship does not necessarily have110

the same importance for both individuals involved.111

The model depends on two parameters, ↵ and �, and evolves according to the following112

rules:113

• We start from an empty network with uniform weights initialized to zero, i.e.,114

wij(0) = 0 8i, j;115
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• For each interaction between nodes i and j at time t, the weights of the ties in116

which i and j are involved are updated according to117

wij(t
+) = wij(t

�) + ↵(wmax � wij(t
�))

wji(t
+) = wji(t

�) + ↵(wmax � wji(t
�)) (1)

and118

wik(t
+) = (1� �)wik(t

�) 8k 6= j

wjk(t
+) = (1� �)wjk(t

�) 8k 6= i . (2)

Here, t� and t+ stand respectively for the times immediately before and after the119

interaction. The parameter 0 < ↵ < 1 quantifies how much a tie strength is reinforced by120

each interaction, while 0 < � < 1 accounts for the weakening of the strength of the ties121

with other individuals. wmax > 0 represents the maximum possible value of the weights,122

which we set to wmax = 1 without loss of generality. These rules ensure that the weights123

all remain bounded between 0 and wmax. They also mean that if a tie’s weight is zero,124

it remains so unless there is an interaction involving that tie, and that individuals who125

interact often see the weight of their tie increase towards wmax.126

It is important to stress once again that while instantaneous interactions may be127

undirected, i.e., there are no source nor target individuals (e.g. in face-to-face interaction128

data), the evolution rules (1)-(2) naturally result in a directed network. For instance129

in an interaction between i and j, the weight wik between i and an individual k 6= j130

decreases because i devotes time to j but not to k, while the weight wki does not change.131

The evolution rules could easily be modified in the case of directed interactions, such132

as in an exchange of text messages or on online social media: for instance, if i sends a133

message to j, the weights wij and wik could be affected more strongly than the weights134

wji and wjk. However, this would require the introduction of additional parameters.135

Finally, we note that the evolution rules can be applied to temporal network data136

expressed either in continuous time (i.e., an interaction between two individuals can occur137

at any time) or in discrete time (when the data itself has a finite temporal resolution).138

Application to empirical data139

Let us first consider the application of the framework described above to empirical data140

describing interactions in close proximity (as collected by wearable devices) in two schools,141

namely a French elementary school [Stehlé et al., 2011b] and a US middle school in142

Utah [Toth et al., 2015,Leecaster et al., 2016], with a temporal resolution of approximately143

20 seconds in both cases (see Materials and Methods for more details on the data sets).144

Although both cases involve school contexts, the classes were organized very differently,145

as described in [Stehlé et al., 2011b,Leecaster et al., 2016]: the elementary school students146

remained in the same classroom for their different classes, while the middle school students147

changed classrooms between classes.148

In each case, we transformed the temporal network data into a network of ties149

G(t) between individuals, with the weights evolving according to the rules (1)-(2). For150

simplicity, we used ↵ = � and considered various values of ↵. We then stored the network151

G(t) and the tie weights every � time steps (i.e., we store G(n�) for n = 0, 1, 2, · · · ) and152

computed the similarity between each pair of the stored networks G(n�) and G(n0�)153

(see Materials and Methods). We thus obtained a matrix of similarity values [Masuda and154

Holme, 2019,Gelardi et al., 2019] for each value of ↵, shown in Figure 1 for ↵ = 0.1 (see155

Figure S1 of the Supplementary Material for other values of ↵). These matrices clearly156

highlight that the two contexts correspond to different schedules and organizations of157
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(a) (b)

Figure 1. Similarity matrices and school schedules between the evolving networks
built from the first day of data collected in the French elementary school (a) and the US
middle school (b). Here we use ↵ = � = 0.1, and the evolving networks are observed every
� = 20 minutes for the French school and every � = 5 minutes for the US school. The
horizontal bars at the top of the figures give information about the schedule of a school
day. The different colors in the bar correspond to the different class times (indicated
by the letter C in (a) and with different numbers in (b)) and lunchtimes (indicated
by the letter L), the length of each colored interval representing the duration of the
corresponding period. In (b) there are two bars because the students were split into two
groups for their lunchtime and fourth class period and therefore have slightly different
schedules. The vertical red lines indicate the beginning and the end of lunchtime in (a)
and the starting times of the different classes and lunch periods in (b).

interactions. Moreover, in each case they reflect the temporal organization and reveal158

the various periods of importance in the school schedules.159

In the case of the French elementary school, the similarity between the networks at160

various times during each half-day is relatively high. The networks obtained during the161

lunch period (highlighted in the figure) are dissimilar to the networks obtained during162

class times, and a transition between two periods can be observed during lunch, in163

agreement with the description in [Stehlé et al., 2011b], which notes that students ate164

lunch in two successive groups. The networks obtained in the afternoon are similar to165

the ones from the morning, which is consistent with the fact that students returned to166

the same classrooms with the same seating arrangements.167

The similarity matrix obtained for the networks representing the US middle school is168

strikingly different: here a strong similarity can be observed between networks during169

successive periods of time (yellow blocks along the diagonal, indicating high similarity170

and hence stable networks), with a very low similarity between networks observed in171

different periods. By examining the class schedules detailed in [Leecaster et al., 2016],172

we observe that each period of network stability indeed corresponds to a class or lunch173

period (see the colored bar at the top of Figure 1b). Note that the stability of the network174

in these periods is not due to a lack of interactions, as Figure S2 in the Supplementary175

Material makes clear. Moreover, the low similarity between different class periods can be176

understood from the fact that students switched classrooms between classes, in contrast177

with the elementary school students.178
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Examining the similarity matrices obtained from the weighted evolving networks179

thus provides important insights into the evolution of the systems under scrutiny and180

makes it possible to distinguish the occurrence of moments of stability and change in the181

structure of the network. While we used ↵ = 0.1 in Figure 1, we considered other values182

in Figure S1 in the Supplementary Material, revealing that the distinction between the183

various periods is blurred for small values of ↵ but becomes more and more apparent as184

↵ increases. In this figure, we show the similarity matrices corresponding to the full two185

days of data. For ↵ = 0.1 the data highlight how the two lunch periods at the French186

elementary school are different from each other, while the class periods during the two187

days are similar. For the US middle school, we also observe a similarity between class188

periods during the two different days, reflecting the similarity of class schedules during189

these two days and indicating that the seating arrangements in each classroom were190

probably similar on different days. Finally, Figure S3 in the Supplementary Material191

displays the similarity matrices between temporal networks aggregated over time windows192

of different lengths, similarly to the procedure in [Masuda and Holme, 2019], where the193

distinction between lunch and class periods in the elementary school (see also [Masuda194

and Holme, 2019]) and between the middle school class periods is also observable.195

Detection of a perturbation196

To go beyond a mere visual inspection of the similarity matrices, we considered a more197

systematic analysis of the capacity of a temporal network representation, obtained either198

by temporal aggregation or through our framework, to detect perturbations in a social199

group’s interaction patterns.200

To this aim, we first introduced a synthetic perturbation of controled intensity and201

duration in the temporal network data, for instance by switching the identity of some202

nodes for a certain duration. We then followed the steps outlined in Fig. 2. First, we used203

our framework to transform the perturbed temporal network into an evolving weighted204

graph according to the evolution rules (1)-(2). This weighted graph was observed every p205

time steps (if the real time duration of one time step is �, this means that we observed206

the graph every � = p�). As a baseline, we also aggregated the temporal network data207

on successive time windows of duration � (Fig. 2a). We then followed Masuda et al.’s208

procedure for detecting states in a temporal network [Masuda and Holme, 2019]. Namely,209

we computed the cosine similarity matrix between graphs observed at different times (Fig.210

2b) and transformed it into a distance matrix. We then applied a hierarchical clustering211

algorithm (see Material and Methods) in order to detect discrete states of the network.212

As the ground truth perturbation is known, we added a validation step to the procedure213

to compare the states obtained by the clustering algorithm to the perturbation timeframe.214

In this step we quantified the detection performance through two indicators (Fig. 2d),215

namely the Jaccard index between the sets of timestamps of the actual perturbation and216

the timestamps of the perturbed state detected, and the delay between the start time217

of the actual perturbation and the corresponding value obtained through the clustering218

algorithm (see Material and Methods).219
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Detection performance

Clustering 
Algorithm

Detected states

Known states

time

Delay 

(a)

(b)

(c)

(d)

Figure 2. Workflow used to detect discrete states and change points in tem-

poral networks (see also [Masuda and Holme, 2019]) and to estimate the

performance of the detection. (a) Creation of a sequence of networks, either by
temporal aggregation over successive time windows of p time steps, or by transforming
the data into an evolving network observed every p time steps. (b) Computation of the
similarity between all pairs of networks using the global cosine similarity (see Methods).
(c) Classification of the networks into discrete states using a hierarchical clustering algo-
rithm on the distance matrix (the distance between two graphs being simply defined as 1
minus their similarity). (d) Estimation of the performance of the classification obtained
by the clustering by comparison with the ground truth perturbation time window using
the Jaccard index between the actual and detected time frame of the perturbation and
the shifts between actual and detected start times of the perturbation.

To illustrate the procedure, we considered proximity data from a group of 13 Guinea220

baboons (Papio papio), collected from June to November 2019 using wearable sensors221

with a temporal resolution of 20 seconds (see Material and Methods). We introduced a222

small perturbation in the data, namely the exchange of two individual’s identities in the223

data during a certain period. In Figure 3 we use a perturbation duration of 2 hours and224

show the resulting similarity matrices between the weighted evolving networks obtained225

for three values of ↵ = � and observed every 30 minutes. We also measure and show226
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the detection performance as a function of ↵. Strikingly, even such a small and short227

perturbation is well detected over a wide range of ↵ values, excepting the smallest and228

largest. The perturbation is not detected for small ↵ values, as the resulting network229

dynamics is too slow: Fig. 3(a) shows that the network remains very similar to itself230

during the whole explored time range. However, we observe a sharp increase in detection231

performance as soon as the resulting dynamics are fast enough. At very large ↵ values,232

the detection becomes impossible again because each single interaction induces large233

changes in the weights, leading to rapidly changing dynamics with no stable period for234

the weighted evolving network. Overall, the perturbation is well detected over a wide235

range of ↵ values. Notably, the perturbation is instead not detected when using temporal236

aggregation over successive windows of 30 minutes.237

We also considered other time scales of perturbation and observation of the evolving238

networks (or aggregation of the temporal network): in Supplementary Figures S5 and S6,239

we illustrate these results for the same data set and for two different timescales. In Figure240

S5, we studied the evolution of the system over 20 days, observing the evolving network241

on a daily basis. We simulated a perturbation by switching the same two individuals as242

for Figure3 for 3 days. At such a timescale our framework results in a perfect or almost243

perfect detection of the perturbation for a wide range of values of the parameter ↵ (i.e.,244

values of the Jaccard index close or equal to 1), while the perturbation was not detected245

when using daily aggregated networks (Jaccard index equal to 0). In Figure S6, we used246

the entire period of data collection (from June to November 2019), and observed the247

evolving weighted network on a weekly basis. We perturbed the network, switching the248

same individuals as in the previous cases, for a period of 15 days, affecting weeks 6 to249

8 (the perturbation started exactly in the middle of week 6; the networks were affected250

for 3 successive weeks). In this case, using a weekly aggregated network also made it251

possible to detect the perturbation, but the detection performance of our framework was252

higher for values of the parameter ↵ larger than 0.001. Overall, even when the simple253

temporally aggregated networks are able to detect the perturbation, there is always a254

range of values of the model’s parameter ↵ such that the evolving network representation255

provides a better detection performance.256
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(a) (b)

(d)(c)

Figure 3. Detection of a simulated perturbation in a temporal network data set. Here we
consider one day of proximity data collected from a group of 13 baboons (see Material and
Methods). The data, with a temporal resolution of 20 seconds, are artificially perturbed
by exchanging the identity of two nodes for 2 hours. The resulting perturbed temporal
network is transformed into a weighted evolving network as described in the text, and
this network is observed here every 30 minutes. Panels (a), (b), (c) represent the resulting
cosine similarity matrices for values of ↵ = � = 0.001, 0.1, 0.5, respectively. The black
and red lines correspond to the (known) start and end times of the perturbation. Panel
(d) shows the performance detection of network states (see Fig. 2), computed from the
hierarchical clustering analysis applied to the distance matrices, with the number of
clusters fixed to C = 3. The blue line represents the relative delay in the detection of
the perturbation, i.e. the difference between the known beginning of the perturbation
(black line) and the detection of a new network state, divided by the total length of
the perturbation. The orange line indicates the Jaccard index between the known
perturbation timestamps and the perturbation detected by the clustering algorithm. The
detection performance relative to the aggregated network is not presented because no
cluster detected by the algorithm could correspond to the simulated perturbation.

We further investigated whether using different values for the parameters ↵ and �257

could lead to an improvement in the detection performance. We show the results in Figure258

4 for the same data and perturbation as for Figure 3 (see also Supplementary Figure259

S7). We found that the detection performance worsened for � < ↵, while it increased for260

� > ↵. The faster decay of ties induced by the larger value of � was indeed then able261

to compensate for dynamics which were too slow when obtained with small values of262

↵: the change in interactions due to the perturbation were translated very quickly into263
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the evolving weights. For instance, if a node i was repeatedly interacting with a node j264

before the perturbation, but interacts more with another one, k, during the perturbation,265

wij decreases quickly as soon as the perturbation starts, and this can be easily detected266

even if wik only increases slowly.267

(a)

(c) (d)

(b)

Figure 4. Performance of the detection of simulated changes when varying

�. Panels (a), (b), (c) represent the cosine similarity matrices for ↵ = 0.1 and values of
� = ↵/5,↵, 5↵, respectively, using the same simulated perturbation as in Fig. 3. Panel
(d) shows the performance detection, namely the Jaccard index between the real and
detected perturbations, as a function of ↵ and for different values of �.

Discussion268

How can we represent a temporal network, beyond a representation as a stream of inter-269

actions? This question can be answered differently depending on the system considered270

and on the goal of the representation.271

For instance, recent proposals include static lossless representations of temporal272

networks, notably the supra-adjacency representation method [Valdano et al., 2015] and273

the event-graph [Kivelä et al., 2018], in which nodes and interactions are suitably mapped274

onto the nodes and links of static networks. These representations have shown to be275

useful for embedding and prediction tasks [Sato et al., 2019,Torricelli et al., 2020].276

Temporal aggregation procedures, on the other hand, lose temporal information but277

have provided in-depth knowledge on the dynamics of social networks at various timescales278

[Aledavood et al., 2015,Saramäki et al., 2014,Fournet and Barrat, 2014,Saramäki et al.,279
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2014]. Aggregated networks are also used for data-driven numerical simulations of dynamic280

processes of networks [Stehlé et al., 2011a], possibly with aggregation schemes adapted to281

the specific process under study [Holme, 2013].282

Here, we consider an alternative type of representation: namely, a transformation of283

the temporal network stream into an evolving weighted network, which aims at providing284

a representation of the social system at any time and a description of its dynamics.285

Crucially, this transformation takes into account the interdependence of ties and the286

limited resources of any individual through the following ingredients: any interaction287

between two individuals reinforces their common tie and weakens the ties they have with288

other individuals not involved in the interaction.289

While these ingredients can be translated in various ways into specific rules of evolution,290

here we have focused on a parsimonious two-parameter model rather than on more complex291

alternatives. We have applied this model to several data sets of interest, showing its292

ability to highlight changes in the dynamics of the networks and differences between293

data representing interactions in different contexts. Moreover, we have systematically294

tested its ability to detect a perturbation in the network at different timescales. Notably,295

our results show that this simple model yields a high detection performance even for296

small and short perturbations that cannot be detected by the dynamics of successive297

aggregated networks. Overall, our framework is able to detect perturbations in a broad298

range of conditions spanning different data sets and various timescales and perturbations.299

This point is particularly important as real-world variations in social relationships can300

occur on a broad range of timescales, from hours to days to months. For instance, despite301

decades of research, the timescale of the exchange of favors in primates (e.g., grooming in302

exchange for other commodities) is still very uncertain [Sánchez-Amaro and Amici, 2015].303

Our framework does not require an a priori specification of the timescale of changes to304

be detected, but a scan of the parameters can help find the natural timescale(s) of the305

system under scrutiny. To investigate this point in more detail, further research will use306

a collection of temporal network models with tunable parameters and different levels of307

complexity and realism [Perra et al., 2012,Laurent et al., 2015]. Introducing perturbations308

of various types (e.g., changes in the community structure over time, changes in activity,309

etc), and of tunable intensity and duration, will allow us to systematically explore the310

detection capacities and limitations of the evolving weighted graph framework that we311

have introduced here.312

An interesting property of our framework is that, starting from a stream of undirected313

interactions, it yields directed ties, because individuals do not invest in their mutual314

relationship in the same way: for instance, one individual may spend 80% of her time with315

another, while the other spends only 50% of her time with the first). The weights on each316

tie can therefore be more or less symmetric, and it would be interesting to investigate the317

significance of this (a)symmetry with respect to the social relationships under study. To318

this aim, one would need to compare the directed network obtained from our framework319

to other independent measures, such as friendship surveys in a human group or grooming320

behavior in non-human primates.321

While we have limited our current study to a simple version of the model, several322

extensions could be of interest. In particular, directed interactions between individuals323

(such as phone or online messages) could be taken into account, with different impacts324

on the ties originating from the source of the interaction and on the ties originating from325

the interaction target. Moreover, one could take into account individual characteristics326

that are often important in relationships by introducing ↵ and � coefficients that depend327

on individual characteristics such as age, sex, kinship or rank. This would be appropriate328

for instance when the costs and benefits of interactions differ between low ranking and329

high ranking individuals [Silk et al., 1999].330

It is also worth mentioning the concepts of social contagion, consensus formation331
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and social influence as potential application fields of our framework [Guilbeault et al.,332

2018,Rosenthal et al., 2015]. Social influence and contagion models are typically considered333

either on static aggregated networks or on temporal networks, each interaction conveying334

a potential event of social contagion. However, interactions with different individuals are335

in fact not equivalent, and our framework could provide a natural way to dynamically336

weigh these interactions: an interaction along a currently strong tie could weigh more337

than along a weak tie. This could provide a social contagion counterpart to the concept338

of epidemiologically optimal static networks to feed data-driven models of infectious339

diseases [Holme, 2013].340

Finally, our focus here has been on social relationships of primates in particular, but341

our conceptual contribution lies in taking into account the interdependence of ties in342

evolving networks. Thus, our framework may well apply to other systems where such343

interdependence is relevant, possibly with changes in the rules of evolution. In particular,344

we have considered that an interaction between two nodes reinforces the tie between345

them at the expense of ties with other nodes, but in other contexts, the increase of a346

tie’s weight may in fact increase the importance of related ties. For instance, if a new347

flight route is created between two airports, passengers may take other flights to connect348

to other destinations, increasing the traffic on the corresponding routes [Barrat et al.,349

2004]. Taking these interactions into account might open up new perspectives to study350

the evolution of these types of infrastructure networks [Sugishita and Masuda, 2020].351

Materials and Methods352

Data Description and Aggregation353

We used three datasets of time-stamped dyadic interactions between individuals corresponding354

to physical proximity events:355

• A dataset of contacts between students in an urban public middle school in Utah (USA)356

measured by an infrastructure based on wireless ranging enabled nodes (WRENs) [Toth357

et al., 2015, Leecaster et al., 2016]. The data, available in reference [Leecaster et al.,358

2016], involve 679 students in grades 7 and 8 (typical age range from 12 to 14 years old).359

Participants were recorded over two consecutive days.360

• A data set gathered by the SocioPatterns collaboration (http://www.sociopatterns.org/)361

using radio-frequency identification devices in an elementary school in France. These362

sensors record face-to-face contacts within a distance of about 1.5m. The data were363

aggregated with a temporal resolution of 20 seconds (for more details see [Cattuto et al.,364

2010]): two individuals were defined as being in contact during a 20s time window if their365

sensors exchanged at least one packet during that interval, and the contact event was366

considered to be over when the sensors no longer exchanged packets over a 20s interval.367

Contacts between 242 participants (232 elementary school children and 10 teachers) were368

recorded over two consecutive days [Stehlé et al., 2011b]. The data are publicly available369

at http://www.sociopatterns.org/datasets.370

• Data of proximity contacts within a group of Guinea baboons (Papio papio), collected371

from June to November 2019 using an ad-hoc system of wearable devices. A subgroup of372

13 baboons consisting only of juveniles and adults (all individuals were at least 6 years old)373

were equipped with leather collars fitted with the wearable proximity sensors developed374

by the SocioPatterns collaboration (see [Gelardi et al., 2020] for details).375

Similarity between networks376

To compare the weighted evolving networks (or aggregated networks) observed at different times,377

we chose the global cosine similarity between the two vectors formed by the list of all the weights378

in each network (using a weight 0 if a link was not present).379
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A cosine similarity measure is generally defined between two vectors and is bounded between380

�1 and +1. It takes the value 1 if the vectors are proportional with a positive proportionality381

constant, a value of �1 if the proportionality constant is negative, and 0 if they are perpendicular.382

For positive weights, as in our case, it is bounded between 0 and 1.383

In the case of two networks, G1 and G2, the global cosine similarity is precisely defined as:384

GCSG1,G2 =

P
i>j w

(1)
ij w(2)

ijr
P

i>j

⇣
w(1)

ij

⌘2
r

P
i>j

⇣
w(2)

ij

⌘2
, (3)

where the subscripts
(1)

and
(2)

denote the weights of the links in the networks G1 and G2,385

respectively.386

Clustering method387

To obtain discrete system states by hierarchical clustering, we used the ”fcluster” function of the388

scipy.hierarchy library from the SciPy module in Python. The function is applied directly389

on the tmax ⇥ tmax distance matrix d, obtained by transforming the cosine similarity matrix390

elements for each pair of timestamps (t, t0): d(t, t0) = 1 � CS(t, t0). To define the distance391

between clusters, we used the ”average” method in the ”linkage” function of the library. We392

set the number of clusters to C = 3, corresponding to the periods before, during and after the393

perturbation.394

Detection performance395

Once we obtained the discrete states, we quantified the ”quality” of the partition in order to396

decide which network representation (i.e. which value or set of values of the parameters) would397

be more appropriate to describe the system’s dynamics.398

Our rationale was that the temporal network representation should allow us to detect changes399

in the social structure of the system under study, and the quality of the detection entails two400

aspects: it has to be detected (i) without delays and (ii) clearly, i.e., social changes have to be401

distinguished from the noise represented by ”ordinary” variations in social activity. In particular,402

a perturbation is said to be well detected if one of the states found by the clustering algorithm403

includes all the timestamps of the perturbation and only those.404

We first verified that one of the detected clusters could be associated with the perturbation405

in the data. To this end we determined that each cluster would correspond to a set of contiguous406

timestamps (thus forming an interval), with the smallest time equal to or larger than the initial407

timestamp of the perturbation, and largest time equal to or larger than the final timestamp of408

the perturbation. A first measure to evaluate the quality of the detection was then given by the409

”delay” between the actual and the detected perturbation (the number of timestamps between410

the actual starting time of the perturbation and the smallest timestamp of the second cluster411

detected; see Figure 2d). The second measure was given by the Jaccard index J between the set412

of time steps during which the actual perturbation takes place, Tgroundtruth, and the set of time413

steps of the state detected as a perturbation by the clustering procedure, Tdetected:414

J =
|Tgroundtruth \ Tdetected|
|Tgroundtruth [ Tdetected|

(4)

Acknowledgments415

Many thanks to Yousri Marzouki for planting the seed of the idea for this article and to416

Clément Sire for interesting discussions and the suggestion of studying case � 6= ↵ in the417

model. A.B. was supported by the ANR project DATAREDUX (ANR-19-CE46-0008)418

and JSPS KAKENHI Grant Number JP 20H04288.419

13/25

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2021. ; https://doi.org/10.1101/2021.03.22.436267doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.22.436267
http://creativecommons.org/licenses/by-nd/4.0/


References

Ahmad et al., 2018. Ahmad, W., Porter, M. A., and Beguerisse-Dı́az, M. (2018). Tie-
decay temporal networks in continuous time and eigenvector-based centralities.

Aledavood et al., 2015. Aledavood, T., Lehmann, S., and SaramÃ€ki, J. (2015). Digi-
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