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Figures 

 

Figure 1. Overview of metal oxidation by A. ferrooxidans.  A. Overview of A. 

ferrooxidans metabolism when growing on ores containing sulfide minerals such as 

chalcopyrite (CuFeS2). The bacterium oxidizes iron and reduced sulfur compounds, 

resulting in the solubilization of copper or other commercially valuable metal targets. 

Carbon dioxide is fixed via the Calvin cycle to 3-phosphoglycerate (PGA). B. Diagram of 

the electron transfer pathway used for extracellular iron oxidation.  Electrons are 

transferred from the extracellular matrix, through the outer membrane (Cyc2), the 

periplasmic space (Rus and Cyc1) to coxABCD in the inner membrane. This is a 

simplified model of the downhill electron transfer pathway, as other periplasmic proteins 

may also be involved in this process.  Under some conditions, electron transfer can be 

reversed, and iron reduction can also occur.  
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Figure 2. Characterization of modeled Cyc2 protein and interactions with ligands: 

A: Funnel plot for one hundred Cyc2 modeling trajectories using the modified set of 

membrane weights. The c-alpha RMSD was measured in reference to the lowest-

scoring structure. B: Lowest-scoring Cyc2 protein model. Disks of spheres represent the 

phospholipid heads on the outer membrane where the top of the protein protrudes into 

the extracellular matrix and bottom of the protein (including the heme group) is in the 

periplasm. C: Square planar iron chelating geometry for residues H119, D137, D138. D: 

Tetrahedral iron binding geometry for Y262 and D308. E. Binding interaction between 

H16 and heme c.  
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 Figure 3. Predicted protein-protein interactions supporting the electron transport 

chain: A: Docked models of the Cyc2-rusticyanin-Cyc1 pathway (where carbon 

backbone of Cyc2 is blue, rusticyanin in magenta, and Cyc1 is in yellow). Hemes, iron 

ions, and copper ions are indicated in sepia. B: Predicted electron hopping pathway for 

electron transfer from the exterior of the cell into the periplasm of A. ferrooxidans. 
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Figure 4.  Poisson-Boltzmann potential identifies possible iron binding pocket on 

the extracellular region of Cyc2: Poisson-Boltzmann potential for Cyc2, where blue 

indicates regions of positive potential (> +5 kT/e) whereas red depicts negative potential 

(< −5 kT/e).  A: labeled potential viewed from the side, where the upper disk represents 

phospholipid heads on the outer membrane facing the extracellular matrix and bottom 

disk represents the phospholipids facing the periplasm. There exists a region of high 

negative potential (circled in black) that may serve as a possible iron binding site. B: 

Labeled potential as viewed from above, showing the protein structure protruding from 

the cell.  Regions of high negative potential are circled in black. C: Labeled potential as 

viewed from below the membrane, as would be observed from inside the cell. An 

annular space exists within the protein, inside which is predicted to have a high negative 

potential 
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