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Abstract 
Brain-machine interfaces (BMIs) have the potential to restore independence in people with 
disabilities, yet a compromise between non-invasiveness and performance limits their 
translational relevance. Here, we demonstrate a high-performance BMI controlled by individual 
motor units non-invasively recorded from the biceps brachii. Through real-time auditory and visual 
neurofeedback of motor unit activity, 8 participants learned to skillfully and independently control 
three motor units in order to complete a two-dimensional center-out task, with marked 
improvements in control over 6 days of training. Concomitantly, dimensionality of the motor unit 
population increased significantly relative to naturalistic behaviors, largely violating recruitment 
orders displayed during stereotyped, isometric muscle contractions. Finally, participants’ 
performance on a spelling task demonstrated translational potential of a motor unit BMI, 
exceeding performance across existing non-invasive BMIs. These results demonstrate a yet-
unexplored level of flexibility of the peripheral sensorimotor system and show that this can be 
exploited to create novel non-invasive, high-performance BMIs. 
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Introduction 
Brain-machine interfaces (BMIs) can restore independence in people with sensorimotor 
disabilities, such as stroke and spinal cord injury. By estimating user intent from neural activity, 
BMIs bypass the motor system and allow people with paralysis to control assistive devices or 
navigate a computer. However, despite decades of advances, the reach of brain-machine 
interfaces within the clinical world remains relatively limited, largely caused by the current trade-
off between BMI invasiveness and performance1,2. Intracortical BMIs demonstrate outstanding 
performances but present significant associated risks3–7; while non-invasive BMIs, such as BMIs 
based on electroencephalography (EEG), have limited intrinsic risks, their poor spatial resolution 
and vulnerability to noise artifacts have limited them to a low information-transfer rate and a 
performance too slow to control complex devices1. 

Alternatively, user intent can also be accessed at the level of the muscles. For example, 
using non-invasive surface electrodes, descending motor commands can be detected from 
residual hand muscles and used to control a robotic prosthesis in hand amputees8,9. However, in 
trying to detect natural motor commands, current technologies are bound to the limits of the 
musculoskeletal system and thus can control at best as many actions as the number of functions 
naturally controlled by the targeted muscles. Therefore, although useful in some applications, 
such technologies are unsuitable for people with paralysis or with large amputations, where only 
a limited number of muscles — such as those innervated by cranial nerves in people with 
tetraplegia — remains as potential sources of control.  

The biological limit of current myoelectric interfaces is tied to the long-standing theory of 
orderly motor unit recruitment. Orderly recruitment and the Henneman’s size principle10,11 state 
individual motor units within a muscle are consistently recruited at specific intensities of a common 
descending neural drive, and as such firing rates for motor units within a single muscle should lie 
along a single-dimensional manifold12,13. Prior studies largely support the principle of orderly 
recruitment during isometric, slow-ramping contractions within controlled laboratory 
conditions10,11,14–17. However, the recruitment order of motor units within a muscle are known to 
vary depending on situational factors, such as the contraction speed, contraction isotonicity, and 
muscle fatigue, and some muscles deemed as “multifunctional” display variability based on 
movement direction18–25. In addition, pioneering studies in neurofeedback reported that people 
can learn to volitionally control individual motor units belonging to the same muscle when provided 
with visual and/or auditory feedback linked to the units’ activity26–29. For example, Harrison and 
Mortensen reported a subject that was able to learn, within an hour of training, to skillfully control 
the firing rate of 4 motor units of the tibialis anterior muscle independently26. These violations of 
strict motor unit recruitment order suggest some level of underlying flexibility in the sensorimotor 
system and, in particular, that orderly recruitment might not be an immutable constraint on the 
volitional control of individual motor units enabled by neurofeedback. 

We thus hypothesized that a neurofeedback paradigm coupled with a directed learning 
task could enable the emergence of skilled, independent control of individual motor units, outside 
of the constraints of the natural motor repertoire. This independent control could then feed into a 
BMI as multidimensional input, potentially allowing for high-fidelity, non-invasive BMI control. 
Critically, as opposed to other myoelectric interfaces, such a BMI could enable multidimensional 
control through only a single muscle and could thus even be viable in people with severe 
paralyses or where only a few muscles can be used as a source of control.  
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To test these hypotheses, here we devised a BMI that provides visual and auditory 
feedback of biceps brachii motor units in real-time using neuromuscular signals recorded from a 
high-density grid of surface EMG electrodes. We trained 8 participants over 6 consecutive days 
using this system on a center-out task requiring both individual and simultaneous control of three 
motor units. We showed that participants demonstrated improvements in performance both within 
and across days. Through comparisons to isometric, ramp-and-hold contractions, we provide 
evidence that neurofeedback enabled participants to expand their ability to control individual 
motor units outside of naturalistic movement constraints. We then tested the translational potential 
of such a motor unit BMI with a copy-typing task where participants navigated and used a virtual 
keyboard. Participants’ performances exceeded those of state-of-the-art non-invasive BMIs. 
These results highlight an unprecedented level of flexibility in the peripheral sensorimotor system 
and demonstrate a non-invasive BMI that exploits this flexibility to achieve high-throughput 
control. 
 
Results 
We devised a BMI capable of providing real-time visual and auditory neurofeedback of biceps 
brachii motor unit action potentials (Figure 1A). This BMI measured neuromuscular signals using 
a high-density grid of surface EMG (HD sEMG) electrodes and used blind source separation and 
classification techniques to decompose these signals into individual motor unit action potentials 
in real-time. After a brief initialization period for the decomposition model, we first instructed 
participants to use the BMI’s neurofeedback to explore covert strategies to control individual motor 
units independently from one another. The goal of participants during this exploration procedure 
was to find and sort in order of controllability the three motor units they felt had the highest 
potential for independent control (Figure 1B). We implemented a motor unit selection algorithm 
to highlight motor units with potential for independent control to guide participants in this task. 
After this exploration period, we then challenged participants’ ability to control their selected motor 
units in a center-out task (Figure 1C, D). A population-coding strategy was used to map motor 
unit activity into the 2D position of a computer cursor, and participants had to operate this cursor 
to achieve the displayed targets. We used 12 peripheral targets to evaluate whether participants 
could recruit the selected motor units exclusively of one another (T1, T2, and T3 targets) and 
simultaneously in combinations of two (T4 targets) and could regulate the firing rate of the 
recruited units (close and far targets, Figure 1C). We also designed a center target that required 
participants to coactivate all the selected units at a similar intensity (T5 target). We grouped these 
targets into 3 difficulty levels and made targets of increasing difficulties available depending on 
participants’ performance on that day (Figure 1D). We used this paradigm to train 8 participants 
over 6 consecutive days. While we did not explicitly track motor units across days, we used 
markings on skin to ensure consistent electrodes’ positioning.  
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Figure 1 | Experimental setup. A, Schematic of the brain-machine interface (BMI) used to enable individual motor unit control of the 
biceps brachii. Participants are seated on a chair wearing a sensorized orthosis constraining the elbow joint at 100 degrees and the 
wrist at its neutral position. Load sensors are used to measure the isometric elbow-flexion and forearm-supination forces. IMU sensors 
are used to track arm movements. The BMI control loop is divided in 4 steps. First, biceps brachii neuromuscular signals are measured 
using a high-density grid of 64 surface EMG electrodes. Second, an online decomposition model is used to detect motor unit action 
potentials from the measured signals. Third, a decoder transforms the detected motor unit activity into task-dependent neurofeedback 
signals. Last, auditory and visual neurofeedback signals are delivered to the participants via headphones and a computer monitor. B, 
Schematic of the user interface and neurofeedback signals used during the exploration procedure. Multi-channel waveforms of the 
detected motor unit activity are displayed and updated at 60Hz. Neurofeedback of the detected motor unit activity is also provided by 
LED-like indicators flashing when an action potential is detected. Both waveforms and unit indicators are color coded. Colored signals 
indicate the activity of a subset of selected individual motor units. Black signals indicate the activity of unselected motor units. Finally, 
light-grey signals indicate detected events that have not been categorized as motor unit activity, i.e. unsorted activity. Auditory 
neurofeedback signals followed the same categorization between selected, unselected, and unsorted units and consisted of 150 ms 
pitch-coded stimuli. C, Center-out task neurofeedback, decoder, and targets. The activity of three selected motor units is transformed 
into cursor position using a population coding schema. The cursor position is indicated by a grey arrow originating at the center of the 
screen and represents the population vector. The same unit-specific visual indicators and auditory stimuli employed in the exploration 
period are used here. A total of 12 peripheral targets (T1, T2, T3, and T4), 1 center target (T5), and 1 rest target were included. D, 
Center-out task protocol. The task is divided into trials. To start a trial participants need to hold the cursor within the rest target for a 
minimum of 2 seconds. A target is then selected from a performance-dependent pool of available targets. At first, only T1, T2, and T5 
targets are available. T3 targets and T4 are progressively added depending on participants’ performance within that day. The trial’s 
target is displayed and the participant has 60 seconds to achieve it before the trial is declared unsuccessful. 
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Evidence of independent control of individual motor units on day 1 
We found that participants displayed independent control over the selected motor units already 
at day one (Figure 2). In particular, participants successfully completed an average of 95.6% and 
79.2% of the presented T1 and T2 targets on day one, demonstrating independent control of 
motor unit #1 and #2, respectively (Figure 2A-C, p<0.001 when testing for % successful trials > 
0). All but one participant surpassed the threshold in performance required to enable T3 targets, 
and half of the participants subsequently reached sufficient proficiency to also enable T4 targets 
(Figure 2C). Participants encountered no difficulty in performing T5 targets, succeeding in all the 
corresponding trials. We also found no statistically significant difference in the percentage of 
correct trials between targets with different distances (p>0.05 for each target category, Figure 
2D). These results demonstrate that participants, without any prior training, can gain independent 
control of 2 or 3 motor units within a single session, suggesting some level of latent flexibility in 
the sensorimotor system.  
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Figure 2 | Independent control of individual motor units during the first day of training. A, Representative traces of center-out 
task signals for one participant during the first training day. First row, smoothed, normalized firing rate of the selected motor units used 
to control the cursor position. Second row, bipolar surface EMG signals from the three channels that best discriminate the activity of 
the selected motor units and relative raster plot of the detected motor unit firings. Third row, cursor position (r and θ, black traces) and 
targets (colored boxes) displayed in polar coordinates. Bottom, arm position and angular velocity about the two axes of largest variation 
(PC #1 and #2). Grey-shaded areas crossing the different plots indicate ongoing trials and the relative target; empty spaces between 
these areas indicate rest targets. B, Median (lines) and 95th confidence interval (shaded areas) of the selected motor unit waveforms 
measured from the EMG channels in A. C, Summary statistics of the first training day. Left, box-plots representing the percentage of 
correct trials for each of the performed targets and participants. * indicate a significant difference from 0, p<0.0001. Middle, box-plots 
representing the number of trials performed for each of the performed targets and participants. Right, medians (black lines) and 95th 
confidence intervals (shaded areas) of the number of participants that successfully performed at least one trial for each target category. 
D, Effect of target distance on percentage of correct trials. Colored point plots indicate the medians and 95th confidence intervals of 
the percentage of correct trials for close and far targets, for each color-coded, target category. Light-grey scatter plot and box-plots 
report the raw data points and their distribution, respectively. No significant difference was found between targets of the same category 
but different distance (p>0.5, n for each target category is indicated in C). 
 
Learning over time 
We next evaluated how participants’ performance evolved over time. For this, we first computed 
a trial performance metric that embeds information regarding the average distance of the cursor 
from the target, trial duration, and participants’ ability to selectively recruit target-specific motor 
units (Figure 3A and B). We then used a linear mixed-effect model to predict trial performance 
as a function of a time, while controlling for possible variations between participants, days, and 
targets. We found that participants’ performance increased both within (p<0.001) and across days 
(p<0.006), with fixed effects equivalent to an increase in performance of 1.4 standard deviations 
over 100 trials and of 0.4 standard deviations over the 6 days, respectively (Figure 3C and D). 
The fixed-effect for the interaction between the within- and the across-day time variables was 
non-significant (p=0.094). The model intercept corresponded to an average successful trial rate 
of roughly 95% (standardized performance of -0.44, Figure 3A), confirming our previous analyses 
indicating successful task performances already at day 1.  

We then built unit-specific models to better evaluate the effect of training on participants’ 
ability to control the three selected motor units exclusive of one another (T1, T2, T3 targets). 
Results showed significant across-day learning for all units, but only significant within-day learning 
for the first two motor units, highlighting the importance of multi-day training to enable the 
emergence of skilled control of multiple individual motor units (Figure 3E). We also found a 
significant interaction between learning within and across days for T1 targets (p=0.028), but not 
for T2 and T3 targets (p=0.2 and p=0.67, respectively). 
 We finally analyzed how participants’ performance on the simultaneous targets (T4) 
evolved over time. Since every participant did not reach these targets every day, we only analyzed 
across-day learning. Specifically, we used a generalized linear mixed-effect model to evaluate 
how the rate of successful trials evolved across days (Figure 3E). We found a significant fixed-
effect, indicating an overall increase in the success rate across all participants (p=0.016).  
 These analyses demonstrate the emergence of skilled independent control over individual 
motor units through neurofeedback training. The increase in performance across days also shows 
that learning is robust to changes in recording setups, suggesting a strong potential for a BMI that 
would exploit this strategy to extract volitional control signals.  
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Figure 3 | Learning to control individual motor units independently. A, pair-plots showing the relationship between the holistic 
performance metric used to evaluate participants’ proficiency in the center-out task and 4 metrics measuring specific behavioral 
characteristics: trial duration, mean and sum of the normalized cursor distance from target center, and mean specificity. White dots 
indicate 5 examples where the trial duration metric fails to discriminate differences in trial performance. B, Scatter plots representing 
the temporal distribution of cursor position during the 5 trials depicted in A. Color alpha and square dimensions are proportional to the 
time spent in a given position. Trial #1 and #2 are both examples of unsuccessful trials. While the trial duration is the same for both 
(60 seconds), the holistic metric indicate better performance for trial #2, properly capturing differences in cursor trajectories between 
these two trials. Similarly, trials #3 and #4 are similar in duration but different in performance. Trial #5 reports an example of a high 
performance trial. C, Regression lines of the linear mixed-effect model used to evaluate overall learning within- and across-day (n 
samples = 5249). Thick black lines represent the regression lines of the within- and across-day fixed-effects, i.e., the effects that are 
generalized across participants, sessions, and targets; shaded grey areas indicate the 95th confidence intervals. Thinner, colored 
lines represent the fitted regression lines for each participant and target category. D, Fixed and random effects for key model 
parameters. The intercept indicates the performance at day #1. The interaction is between the within- and the across-day time 
variables. E, Fixed and random effects for key parameters of the models used to evaluate unit-specific learning behaviors (n samples 
= 1311, 1230, 1050, for the T1, T2, and T3 models, respectively). F, Success rate of T4 targets across days fitted using a Poisson 
generalized linear mixed-effect model (n samples = 48, fixed effect p=0.013). The thick line indicates the fixed-effect regression line; 
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the thinner lines indicate the regression lines for each participant; dots indicate the raw values. Stars indicate a statistically significant 
difference from 0: * indicates a p<0.05, ** indicates a p<0.01. 
 
Emergence of independent control of individual motor units  
We then evaluated the role of the exploration period (Figure 1B) in the emergence of independent 
motor unit control. Due to the unstructured nature of the exploration period, we first decomposed 
motor unit firing rates into separate components via non-negative matrix factorization (NMF) to 
identify groups of units that were often mutually active. We fixed this number of components to 3, 
aligning with the instructions given to the participant to ultimately select 3 representative motor 
units. Then, we computed the cumulative independent firing time (CIFT) as the fraction of time a 
component was independently active relative to the overall time in which it was active (Figure 
4A, B). The three components were then ordered in descending order by the CIFT value 2 
minutes into the exploration period, and CIFTs were compared between this initial point and their 
final values (Figure 4B). 

We found that the CIFT increased significantly over the course of the exploration period 
(Figure 4B-C). The overall mean CIFT across the three components increased from 0.40 after 
the second minute of exploration to 0.51 at the end (p<0.0001, Figure 4C). The first component 
(C1) is activated nearly completely independently at the beginning of the exploration period, 
emphasizing the level of ease in attaining independent control in one set of motor units. However, 
C1 then begins to co-activate more throughout the exploration period as the participant explores 
strategies for activating other sets of units, indicated by a decreasing CIFT (p<10-5; Figure 4C). 
On the other hand, the other two components (C2 and C3) increased in independent activation 
over time (p<0.05; Figure 4C), suggesting a control strategy for these components that required 
refinement over time.  

We next asked whether participants’ motor unit control in the exploration period improved 
across days. For this, we first compared the mean CIFT for exploration periods across each 
participant’s 6 days of training. We found that the mean CIFT significantly increased over these 6 
days for each participant (p=0.017; Figure 4D). Taken in conjunction with the above results, 
participants thus demonstrated across-day improvements in independent motor unit control in 
both the center-out task and the exploration period. Finally, we evaluated the significance of the 
mean CIFT displayed during the exploration period for the center-out task. We found that the 
mean CIFT showed a strong correlation to the mean center-out task performance of the same 
day (p<10-6; Figure 4E). These results highlight the importance of the exploration period in both 
the learning and the execution of independent motor unit control. 
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Figure 4 | Emergence of independent control of individual motor units. A, Representative, 8-second example for the extraction 
of components via non-negative matrix factorization (NMF) and the computation of CIFT. Three components are extracted from firing 
rates (center, grayscale heatmaps; white = 0, black = max) via NMF, yielding component-wise weights for each motor unit (left) and 
their corresponding projected activities (top). Then, CIFT is computed for each of the 3 components as the fraction of time spent 
independently active versus time spent active (displayed in the 3 bottom rows). In this example, C2 (red) has periods where it increases 
in CIFT (red shaded blocks) since it was independently active and where it decreases when C1 or C3 are also active. B, Data from 
the full, 20-minute exploration period from which data from A originated. For comparison of time courses for CIFT, we take values at 
an initial point (dotted line, left; 2 minutes into period) and at the period’s final point. Black trace represents the mean CIFT across the 
three components. C, Changes in CIFT between initial and final points for the mean CIFT, C1, C2, and C3 (left to right). Faded black 
dots and lines are individual exploration periods, Stars indicate: * p<0.05, **** p<0.0001 from a paired t-test, n=48. D, Mean CIFT at 
the end of the exploration period compared across 6 days of training and relevant regression lines from a linear mixed model fit on 
this data. Thin gray lines indicate participant-specific regression lines, while the thick black line represents the regression line for the 
fixed effect (linear mixed model, p=0.017, n=48). E, Mean center-out task performance correlates strongly with the mean CIFT at the 
end of the preceding exploration period. Definitions of dots and lines are the same as in D. Fixed-effect regression line from a linear 
mixed model has p<10-6, n=48.  
 
Muscle activity dimensionality 
Participants’ success in the center-out task required independent motor unit control, indicating 
that the activity of the selected motor units lay along a multi-dimensional manifold. To evaluate 
how this differed from natural motor behaviors, each day we tested participants with isometric 
contractions in a “force-control” task, while using the same experimental setup as the rest of the 
session. Here, participants were instructed to match displayed force profiles by performing 
isometric, ramp-and-hold contractions in the two primary movement directions of the biceps, 
elbow flexion and forearm supination30 (Figure 5A). Participants accurately reproduced the target 
forces (mean normalized r > 0.95, Figure 5B).  
 To analyze the dimensionality of motor unit activity between tasks, we computed the 
participation ratio of motor unit firing rates (Figure 5C). We found that motor unit firing rates had 
a higher average participation ratio during the center-out task than during the force-control task 
(p<0.0001; Figure 5D-E). We found similar across-task increases in the participation ratio of the 
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integrated EMG — a commonly used feature for EMG decoding — though participation ratio 
increased more for firing rates than for iEMG (p<0.01; Figure 5E-F). 

We then analyzed how firing rate dimensionality changed both for the units selected for 
center-out and for the unselected units. A significant increase in participation ratio between tasks 
appeared whether considering solely the 3 selected motor units or the remaining unselected 
motor units, signifying an increase in dimensionality across the entire population of motor units 
(p<0.0001; Figure 5G). In addition, selected units’ firing rates could predict the concurrent firing 
rates of the unselected motor units fairly well (mean R2 > 0.56 for both tasks) through a linear 
transform, indicating strong correlations between activities of the two groups (p<10-10 different 
than zero; Figure 5H-I). However, for the same population of units, the R2 metric was lower in the 
center-out task, indicating an increase in variability in the unselected units unexplainable by the 
selected units’ activity (Figure 5I; across-task mean R2 different with p<10-10). 

Taken together, these results reveal the center-out task enabled both a significant, 
population-level increase in dimensionality relative to during stereotyped, isometric contractions 
and an increase in unexplained variability in the unselected motor unit population. 
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Figure 5 | EMG dimensionality increases relative to stereotyped isometric contractions. A, Overview of force-control task. 
Participants matched trapezoidal force profiles shown to them on-screen in varying amplitudes and in various combinations of elbow 
flexion and wrist supination. B, Example set of 8 control task trials (gray highlights) in one representative session. Participants 
performed various trial types (top row) and matched target forces fairly accurately (second row; blue flexion and orange supination). 
Two features were extracted: iEMG (third row) and motor unit activity (fourth row; each tick is a detected firing of its row’s motor unit). 
C, Representative joint distributions of firing rates of 3 motor units during the force-control task (top) and center-out task (bottom) and 
their corresponding participation ratios. 3 units are shown here for illustration purposes; all computation was performed with the 
indicated number of units. Dotted lines: principal component vectors, with percentages of explained variance as annotated. Gradient 
of color indicates distance from origin for visualization purposes. D, Participation ratios (PR) for each session’s force-control (x axis) 
and center-out (y axis) tasks. Different colors represent different participants; faded dots represent actual sessions while highlighted 
dots represent medians within participants. Circles represent participation ratios of firing rates; triangles for iEMG. Dotted line 
represents line of equal PR between the two tasks, i.e. y=x. E, Participation ratios for firing rates (left) and for iEMG (right) across the 
two tasks. Faded dots represent individual sessions. Both features show significant increases (p<0.0001; paired t-test, n=48) across 
tasks. F, Changes in participation ratio between force-control and center-out tasks for iEMG (left) and firing rates (right). PR for iEMG 
also increased (p=0.004 different than zero, n=48) but this increase in PR was less than the across-task increase in PR for firing rates 
(p=0.003, paired t-test, n=48). G, Changes in participation ratio for firing rates of motor units selected for the center-out task (left) and 
unselected motor units (right). Differences across tasks for both populations were significant (p<0.0001; paired t-test, n=48). H, 
Representative example of simultaneous firing rates for the 3 selected motor units (top) and 2 unselected motor units (middle and 
bottom rows). Dotted lines indicate the predicted firing rates of the unselected motor units from the select units’ firing rates. I, 
Coefficients of determination (R2) between optimal linear transformation of selected motor units’ firing rates and unselected motor 
units’ firing rates. Left: force-control task; right: center-out task. Force-control’s R2 had a mean of 0.815, while the center-out’s mean 
was 0.567 (p< 10-10 different than zero for both, n=48). The center-out task had a lower mean than the force-control task (p<10-10, 
n=48). 
 
Selective recruitment vs orderly recruitment in motor units 
Our results suggest that recruitment order of biceps brachii motor units might be more flexible 
than previously thought and that neurofeedback can enable motor unit recruitments that expand 
beyond those observed in natural motor behaviors. To evaluate this divergence from motor 
behaviors, we analyzed the stability of motor unit recruitment order across tasks. 

We first assessed recruitment thresholds of selected and unselected motor units during 
the force-control task. Flexion and supination recruitment thresholds for all units spanned a wide 
range, distributed in agreement with the common model of motor unit frequency distribution 
skewing towards more lower-threshold units within a muscle12,17 (Figure 6A). We found that 97% 
of motor units selected for the center-out task were also detectable during isometric muscle 
contractions; the remaining 3% were not recruited during flexion or supination contractions 
possibly due to small changes in postures that often occurred between tasks, and were excluded 
from the following analysis. 14% of selected motor units were recruited exclusively during either 
flexion or supination contractions, and 30% had categorically different recruitment thresholds 
between flexion and supination contractions. This varied recruitment order is in support of existing 
studies reporting biceps motor units can be recruited selectively for flexion or supination15,25 
(Figure 6A). 

We then compared the pairwise activities of the selected motor units during isometric 
contractions and during the center out task to assess their adherence to relative recruitment 
orders. Taking each possible pair within the 3 selected motor units in a given day, we determined 
which of the 2 motor units fired less independently during the force-control task, i.e. the motor unit 
with the lower CIFT metric. We then compared the CIFT for this motor unit between the force-
control task and center-out trials requiring exclusive motor unit control (T1, T2, T3 targets; Figure 
6B). In this manner, the CIFT represents the fraction of time one motor unit violates its recruitment 
order relative to another motor unit. Pairs of motor units generally obeyed the assumed 
recruitment order during the force-control task, as indicated by a low mean CIFT of 0.05 (Figure 
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6C). However, the pairwise CIFT metric significantly increased across tasks (p<10-10; Figure 6C), 
suggesting a substantial amount of unordered recruitment during the center-out task. Despite 
prior studies reporting variability in recruitment order as negatively correlated with differences in 
recruitment thresholds18, we found no relationship between the absolute difference in recruitment 
threshold between two units and their center-out CIFT: even pairs of units with large threshold 
differences achieved highly independent activity during the center-out (p>0.05; Figure 6D). 

Taken together, these results imply the recruitment order for motor units during a 
stereotyped, isometric contraction may not remain valid during a neurofeedback task such as our 
center-out task, even in instances where differences in recruitment threshold are large. 
 

 
Figure 6 | Motor units display significant violations of recruitment order during neurofeedback tasks. A, Motor unit recruitment 
thresholds for both elbow flexion (x-axis) and forearm supination (y-axis) for all recorded motor units across all sessions and 
participants. Dots displayed in grayed areas below y=0 represent units that were only activated during flexion; dots left of x=0 represent 
units only activated during supination. Blue dots represent motor units that were selected for the center-out task; gray dots otherwise. 
The bottom table shows the distribution of these selected motor units in particular recruitment threshold categories: NR: “not recruited”; 
LO: motor units with thresholds less than 0.1; HI: remaining motor units with valid thresholds. Motor units selected for the center-out 
task had a lower average recruitment threshold for both flexion (0.23 for selected units vs 0.33 for unselected units, p<10-5) and 
supination (0.18 for selected units vs 0.26 for unselected units, p<0.001) than unselected motor units. B, Representative data 
demonstrating the use of pairwise CIFT to quantify recruitment order violations. Smoothed firing rates for two selected motor units are 
shown in the top row, both during a flexion trial in the force-control task (left) and during two center-out trials (right). The bottom row 
shows the joint distributions of those two same units during the entirety of the two tasks, where the particular firing rates shown in the 
top row contribute to the regions outlined in black. The CIFT metric is then computed for that pair of motor units such that the CIFT is 
minimized during the force-control task, i.e. for unit #1 in this example. Regions outlined in yellow annotate the instances in which unit 
#1 is independently active and thus contributes to an increase in CIFT. In this example, there is substantial density present within the 
yellow region during the center-out task, leading to a high CIFT score of 0.93. C, CIFT increases dramatically between force-control 
(FC) and center-out (CO) tasks for all pairs of selected units with valid recruitment thresholds (p<10-10, n=136). D, Correlations between 
absolute differences in recruitment thresholds between the pair of units and the center-out’s pairwise CIFT. If both units had flexion 
and supination thresholds, we used the minimum difference of the two. No linear model could be found that significantly correlated 
difference with the center-out CIFT (p>0.05). 
 
Confound analyses  
While participants' elbow and wrist joints were constrained by the orthosis, gross movements at 
the level of the shoulder or the spine could have affected motor unit detection quality. To control 
for this potential confound, in addition to instructing participants to only use covert strategies to 
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control motor unit activity, we recorded arm kinematics and analyzed arm movements throughout 
the center-out task. We first aligned the rotational axis of the kinematic sensors to the axis of 
largest variation and found that 87% of movement occurred around a single rotational axis (Figure 
7A). We then used data along this axis to evaluate whether participants used gross movement 
strategies to independently control the selected units within the experiments. We computed the 
mean absolute velocity (MAV) during trials and inter-trial periods to measure the overall 
movement observed across the different task conditions. For each target, we then computed the 
within-day median and used this statistic to evaluate possible movement strategies. Results 
highlight minimal movements across all conditions, with a grand median value of approximately 
0.48 deg/s (Figure 7A). When comparing the statistics of active targets to the rest targets (i.e. 
the inter-trial periods), we found a statistically significant increase in median MAV during T5 
targets (p<0.001, Figure 7A), highlighting how the nonspecific motor unit recruitment required by 
these targets pushed participants to perform vigorous muscle contractions to obtain the target as 
quickly as possible. We also found a significant movement reduction between T1/T2 trials and 
the rest targets (p<0.001 and p<0.01, respectively). These results provide compelling evidence 
that the independent control of single motor units observed throughout the center-out task was 
not based on gross motor strategies.  

Another confound that could have facilitated independent motor unit control is the 
presence of crosstalk from neighboring muscles in the recorded neuromuscular signals. Aside 
from the biceps brachii, the brachialis is the next most likely muscle to be recorded by our 
electrodes due to its proximity; however, while the biceps brachii is known to participate in both 
flexion and supination, the brachialis participates only in elbow flexion20,31. In order to assess our 
recordings for brachialis contamination, we computed the correlation of each channel’s iEMG to 
flexion and supination forces during periods in the isometric contraction task where these task-
oriented contractions were tested separately (Figure 7B). Correlations for flexion and supination 
were averaged within the three groups of channels most vulnerable to brachialis contamination: 
the lateral column, medial column, and distal row of channels. Mean correlations for all channel 
groups remained relatively high (> 0.7) across both flexion and supination. While spatial 
differences in correlations are expected even within the biceps brachii, channels primarily 
recording from the brachialis should display a marked drop in supination correlation31. The high 
correlations for both flexion and supination suggest brachialis contamination in our recordings 
was minimal and that the recording grid was primarily placed over the biceps brachii. Taken 
together, these results suggest that movement artifacts and crosstalk contaminations are unlikely 
to have significantly affected the validity of our results. 
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Figure 7 | Confound analyses. A, Arm kinematic during the center-out task. Left, fraction of variance explained by the first three 
principal components of the recorded kinematic data. Right, scatter-plot representing the median values of the trials mean absolute 
value (MAV) velocity for each participant, session, and target. Box-plots represent these statistics’ distribution for each target. *** and 
** indicate a significant difference between a given target category and the rest target (p<0.01 and p<0.001, respectively, bootstrapping 
with n=10000 iterations, n samples = 48, 48, 47, 39, 48 for T1, T2, T3, T4, and T5 targets, respectively). Lines indicate data for a 
single participant in a given day. B, Left: representative correlations between iEMG for each of the 56 channels to elbow flexion (blue) 
or forearm supination (orange) forces during one session. Channels are arranged according to physical position: the cells marked with 
“x” represent the most lateral and proximal channels recorded on the bicep. Right: The mean correlations to flexion (blue) or supination 
(orange) forces within 3 different channel groupings. Each dot is a session’s correlation. All correlations exceed 0.7. 
 
Speller task 
We finally evaluated the translational potential of the proposed motor unit BMI as an alternative 
to current BMI technologies. To demonstrate a clinically relevant application, we tested 
participants on a commonly used copy-typing speller task6,32,33. This speller task utilized the same 
selected motor units from the center-out task but, as opposed to the center-out’s position 
decoding, instead translated the normalized motor unit firing rates into the velocity of an on-screen 
cursor (Figure 8A). Navigating this cursor on a virtual OPTI-II keyboard displayed on the 
computer monitor, participants copied sentences by controlling motor units independently for both 
cursor movement and cursor clicking6,34 (Figure 8A). The keyboard featured wraparound borders, 
which in combination with the cursor’s velocity control allowed for full 2D navigation even with a 
single motor unit. We reasoned this more permissive control strategy to be better suited for 
translational applications compared with the control strategy used in the center-out task. Cursor 
clicking was triggered by simultaneously recruiting all the selected motor units, similar to achieving 
the center-out T5 target. Participants performed the speller task after at least 30 minutes of center-
out task execution on the last 3 days of training, plus on any prior days in which they felt confident 
with their performance and completed a minimum of 60 minutes of recording. 
 We assessed information throughput with the achieved bitrate, a conservative estimate of 
the true throughput of an assistive device32. Average and peak bitrates on the speller task were 
promising: the mean average bitrate on the last day was 0.43 bits/s, with a peak bitrate of 0.55 
bits/s (Figure 8C). Participants significantly increased their average speller bitrates over days of 
training, echoing similar across-day learning as seen in the center-out tasks and exploration 
periods (p=0.005; Figure 8D).  

Dimensionality as measured by the participation ratio significantly increased (p<0.0001) 
during the speller task relative to the isometric contraction task and was not significantly different 
than that of the center-out task (p>0.05), indicating participants used a strategy based on 
multidimensional independent motor unit control (Figure 8E). Participants’ strategies for moving 
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the cursor leaned more towards recruiting the 3 individual motor units exclusively than 
simultaneously (p<0.001), agreeing with the increased difficulty observed during the center-out 
task for targets requiring simultaneous unit activation (Figure 8F). 

Taken together, these results show impressive rates of information throughput and 
demonstrate the translational potential of this motor unit BMI system. 
 

 
Figure 8 | Participants demonstrate high performance in a spelling task.. A, Overview of the speller. Left: the user interface 
displayed on a computer monitor. Participants navigated their cursor (black dot) via the activities of the same 3 selected motor units 
from the center-out task. The sentence to be typed was displayed at the top, with untyped letters grayed out. Any mistakenly typed 
characters had to be deleted with the “<” key before participants could proceed. Right: motor unit activities were translated into 
changes in velocity of the cursor, allowing the user to smoothly move the cursor across the screen. Keys were selected by co-
contracting all three motor units in the same manner as the “T5” target from the center-out task; instances of this key selection 
highlighted in gray bars at top. B, Smoothed bitrates for one participant’s 3 days of speller task. Dotted lines indicate average bitrate 
across that day’s speller task. C, Bitrates on the last day of training for all participants (dots). D, Participants increased their 
performances in the speller task over days of training. Each line represents a participant-specific regression line, while the bold black 
line indicates the fixed-effect slope from the linear mixed model for this data (p=0.005, n=24). E, The participation ratio of firing rates 
during the speller task significantly increased relative to that day’s force-control task (paired t-test; p<0.0001, n=24) but was not 
statistically different than that of the center-out task (paired t-test; p>0.05, n=24). F, CIFT metric computed within the 3 selected motor 
units for each speller task period increased relative to the CIFT during the center-out task (paired t-test; p<0.0001, n=24), suggesting 
participants preferred utilizing their motor units more independently than as required in the center-out task. 
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Discussion 
We have developed a non-invasive BMI that uses neurofeedback to enable volitional control of 
individual motor units within the biceps brachii. Using this BMI over 6 days of training, participants 
steadily improved performance in a center-out task requiring both exclusive and simultaneous 
control of three motor units. We found that the dimensionality of motor unit activity during this task 
exceeded that measured during stereotyped, isometric muscle contractions and provided 
compelling evidence that this increase in dimensionality was associated with changes in motor 
unit recruitment order. Finally, we showed that participants could use this acquired abstract skill 
to operate a speller and achieve bitrates superior to existing non-invasive BMI implementations. 
Here we discuss the significance of these results for motor control theories and clinical 
applications. 
 
Skilled independent control of individual motor units 
Volitional control of individual motor units was first reported in pioneering neurofeedback studies 
in the 1960s and 1970s26–29. In these studies, the raw electrical signals measured from 
intramuscular electrodes were used to provide participants with visual and/or auditory 
neurofeedback signals on the underlying motor unit activity. Using this neurofeedback system in 
tasks similar to our exploration procedure, authors reported that participants were able to 
selectively activate individual motor units in the abductor pollicis brevis27, extensor digitorum28, 
and the tibialis anterior muscles26. Despite this initial interest in individual motor unit control, 
research on this topic has been surprisingly limited in the last 50 years and the extent to which 
individual motor units can be controlled independently remained largely unclear. Here, we found 
that individual motor units can be controlled independently from one another and that control 
proficiency can be improved with training. In particular, we showed that over 6 days of training in 
a center-out task, participants progressively acquired skilled independent control of three motor 
units of the biceps brachii. This skilled control was evidenced by participants’ ability to control 
each of the selected units’ firing rate both exclusive of (T1, T2, and T3 targets) and in combination 
with other units (T4 and T5 targets) to achieve targets at different distances from the center of the 
screen. These results demonstrate an unprecedented level of control over individual motor units 
belonging to the same muscle and greatly expand on the observations of selective motor unit 
activation documented in previous studies.  
 
Mechanisms of independent motor unit control 
Independent control of individual motor units can appear at odds with the long-standing model of 
orderly recruitment of spinal motoneurons first described by the Henneman’s size principle10. 
Indeed, a strict interpretation of this model would imply that the activity of motor units belonging 
to the same muscle should reside in a one-dimensional manifold. However, an increasing number 
of studies supports a more permissive view, in which orderly recruitment applies not to 
anatomically defined motor neuron pools but to function-specific motoneuron populations that can 
innervate multiple muscles and/or compartments within a single muscle18–25. In particular, the 
biceps brachii, used in this study, is known to have multiple anatomical neuromuscular 
compartments, with separate subdivisions even within the gross anatomical divide of the short 
and long head35. Biceps brachii motor unit recruitment has been shown to vary depending on the 
contraction levels in the flexion and/or supination directions, with motor units distributed across 
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the biceps with no clear spatial distribution relevant to function15,25,36,37. Other muscles have been 
shown to have similar task-dependent recruitment order differences, such as in the first dorsal 
interosseus muscle when performing flexion versus abduction of the index finger and in a variety 
of non-multifunctional arm muscles20,38. 
 In agreement with this existing body of literature, we found that biceps motor unit 
recruitment significantly differed between elbow-flexion and forearm-supination isometric 
contractions, qualitatively correlating with an average firing rate dimensionality of 1.5 in the force-
control task. Despite this, motor unit activity dimensionality further increased during the 
neurofeedback experiments. When considering only the three selected motor units each day, the 
increase in dimensionality was significant already throughout the first day and further increased 
over the 6 days of experiments as the participants learned independent control (Supplementary 
Figure 1).  

According to the orderly-recruitment model, these results would suggest that the biceps 
motor pool is divided into a minimum of 3 functional compartments receiving independent neural 
drives. This hypothesis would imply that the learning process can be reduced to first finding the 
right set of natural motor tasks to perform and then learning how to use these strategies to control 
the cursor in the center-out task. This process would likely be characterized by a sudden increase 
in performance as soon as the participants find the right motor task required to recruit the selected 
units, followed by weaker, more gradual increases associated with participants refining how to 
perform the center-out task. We observed this learning profile when analyzing participants’ 
performance in controlling the first motor unit in the center-out task: participants’ learning rate 
over motor unit #1 targets (T1) significantly decreased over the course of the 6 days of 
experiments. However, this was not the case for motor unit #2 (T2) and #3 (T3) targets, for which 
participants showed a steady learning rate across days. We observed a similar pattern in the 
exploration period: one component typically began as controllable exclusively of others, while 
gaining control of the other 2 components required learning over the exploration period. In 
addition, we found that the dimensionality of selected motor unit firing rates during the center-out 
task increased throughout the 6 days of experiments. Since motor unit dimensionality is more 
closely linked to independent motor unit recruitment rather than proficiency in the center-out task, 
this result suggests that learning to recruit different motor units independently was not as simple 
as finding a gross motor task to perform. Taken together, these observations suggest that the 
interactions between neuromuscular compartments and their independent neural drives may not 
be as clearly defined by behavioral or anatomical conditions nor as static as previously thought. 

In contrast to orderly recruitment, the selective recruitment hypothesis advances that 
under certain conditions motoneurons can be recruited in an unordered manner39, as for example 
during ballistic40 or lengthening41 muscle contractions. This selective motor unit activation may 
arise from heterogeneously distributed excitatory input to the spinal motoneuron pool and/or 
through excitatory or inhibitory synaptic currents that bias pools of motor units42,43. In particular, 
in support of this hypothesis, Garnett and Stephens used cutaneous stimulation to show the 
presence of pathways that can selectively excite large motoneurons while inhibiting small 
motoneurons44. However, there is a lack of empirical evidence supporting selective recruitment 
during the motor behaviors typically studied in laboratory settings. While this suggests that 
selective recruitment is hardly a key mechanism of control, only studies performed in ecological 
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settings will be able to evaluate whether selective recruitment is present during natural 
movements39.  

Our results support a selective recruitment hypothesis. Indeed, even for motor units with 
strict adherence to orderly recruitment during forearm-supination and elbow-flexion isometric 
contractions, neurofeedback enabled participants to discover — and seemingly re-define — novel 
groupings of motor units within the biceps brachii. However, this should not be interpreted as a 
lack of orderly recruitment. On the contrary, the population-level increases in firing rate 
dimensionality during the center-out task allude to the existence of network-level constraints 
between motor units that could impose an anatomical upper bound to the maximum number of 
motor units controllable independently. We, therefore, propose that both these mechanisms 
influence motor unit recruitment and that the orderly recruitment of subgroups of motor units 
observed during isometric contractions may not be an immutable constraint of unit activation but 
rather be an emergent mechanism for motor control. In this perspective, our artificial 
neurofeedback task might have allowed participants to bias motor unit recruitment via volitional 
modulation of selective recruitment mechanisms.  

While orderly recruitment of motor units maximizes the computational efficiency of the 
central nervous system during the production of a known output11, additional flexibility in motor 
unit recruitment can enable the neuromuscular system to cope with the wide range of movement 
conditions needed for everyday life42,43. Our study sheds additional light on the ongoing debate 
on the generalization of orderly recruitment principles to everyday life and the ultimate flexibility 
of the sensorimotor system39. 
 
A high-throughput non-invasive motor unit BMI 
The proposed BMI provides an augmented sensitivity to motor unit activity that enables the 
emergence of activity that expands beyond the typical motor repertoire, as we showed both 
through relative increases in dimensionality and through the recruitment de-ordering of motor 
units relative to isometric contractions. In contrast, current myoelectric technologies use 
neuromuscular signals to decode motor commands from patterns of muscle activity, but make no 
attempt at expanding the palette of natural commands. Because of this difference, the proposed 
BMI is conceptually and operationally closer to abstract BMIs than to current myoelectric 
technologies: similar to other abstract BMIs45–54, our system creates an arbitrary mapping 
between the recorded neural activity and the action to be controlled, with no strict relation to the 
natural function of the selected motor units.  

Despite being initially less intuitive, abstract BMIs are not limited by the function of the 
targeted neural populations47,53 and have been shown to achieve a similar level of performance 
and intuitiveness as more biomimetic BMIs55,54,52. In particular, an increasing amount of evidence 
suggests that BMI learning exploits the same neural circuitry involved in motor skill learning and 
that long-term training enables the emergence of readily recallable, robust cortical maps 
underlying skilled BMI control55–57. Our results suggest similar learning behaviors occur when 
learning to control individual motor units. As indicated by significant across-day learning in the 
center-out task, participants were able to acquire and retain strategies to independently control 
individual motor units. Since our setup did not allow for motor unit tracking across days, this 
suggests that the acquired strategies were likely robust to the particular set of selected units. The 
significant across-day increases in CIFT during the exploration period echo similar evidence of a 
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broader strategy for independent motor unit control. In addition, while most participants were able 
to describe the motor strategies used to recruit each motor unit independently — often reporting 
subtle combinations of flexion and supination biceps contractions — some participants reported 
to use more abstract strategies that were not able to verbally describe, suggesting some level of 
internalization. Finally, unselected motor units displayed increases both in dimensionality and in 
variance unexplainable by selected motor units, mimicking the changes in cortical dynamics 
observed during the initial, exploratory period of learning a BMI58,59. Taken together, these 
considerations suggest that a motor unit BMI has great potential to feel naturalistic and to exploit 
the mechanisms for motor skill learning.  
 The proposed motor unit BMI and current myoelectric devices also differ in terms of 
applications. The performance and bandwidth of current myoelectric technologies is defined by 
the number of functions of the targeted muscles. In case of severe paralyses or large amputations, 
where only a few muscles can be used as a source of control, these technologies can only provide 
limited benefits. In contrast, our motor unit BMI could enable high-throughput control even through 
a single muscle, thereby taking full advantage of residual muscle functions and enabling 
applications similar to those of classic BMIs. Indeed, even in the case of complete cervical spinal 
cord injury, people retain control of muscles innervated by cranial nerves, which could thus be 
potentially used to power such a motor unit BMI. 

With this perspective, we compared performances between our study’s motor unit BMI 
and state-of-the-art BMIs through the speller task, a commonly used task for measuring the 
capacity of a device to restore digital communication for patients with disabilities3,6,33,60 (Table 1). 
Our results indicate that participants’ performances exceed state-of-the-art EEG BMI 
performances, exceeding bitrates of recent top-performing EEG BMI studies by 7.17x61 and 
2.00x62. The best intracortical BMI performance from Pandarinath et. al demonstrated an 
impressive average bitrate of 2.4 bits/s6, though prior incarnations of intracortical BMIs had 
comparable results to our study here60. Participants in our study demonstrated significant 
improvements in the speller task over days, and so it is possible performances can continue 
improving with more days of training. In addition to the throughput measured during the speller 
task, participants demonstrated simultaneous and proportional control of three control signals 
throughout the center-out task. BMIs that have demonstrated similar levels of control in such 
artificial tasks have been shown to generalize to real-world situations, from point-and-click 
situations for digital interfacing to control of multi-DoF arms4,6.  

This degree of control is in stark contrast with the prevailing implementations across EEG 
BMIs. The vast majority of self-paced EEG BMIs rely on pattern classifiers based on motor 
imagery and utilize a discrete control strategy, both of which can hinder a device’s generalizability 
and scalability63. Fixed-pace EEG devices based on error-related potentials can perform better in 
digital communication tasks, but they are inherently limited to discrete signals and their fixed-pace 
nature can increase cognitive demand, making them less suitable for extended use32,63. 
Additionally, while intracortical BMIs perform superiorly, recent surveys indicated 40% of surveyed 
patients with tetraplegia or paraplegia would not undergo implantation even if the implant restored 
daily function2,64. Although there is extensive ongoing research to minimize surgical risk and 
footprint of intracortical devices, our study suggests that a motor-unit BMI may provide throughput 
sufficient for some level of functional restoration for patients that do not want implantation. Taken 
together, the results across our spelling and center-out tasks strongly position our system as a 
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performant non-invasive BMI solution suitable for high-throughput control and thus as a potential 
alternative to intracortical BMIs. 

 
 

Paper Modality Motor Impairment 
Etiology 

Average Bitrate 
(bits/s) 

Bitrate Multiplier 

This study Non-invasive motor 
units 

N/A 0.43 1x 

Pandarinath et al., 
20176 

Intracortical ALS; SCI 2.4 0.18x 

Jarosiewicz et al., 
201560 

Intracortical ALS; brainstem 
stroke 

0.59 0.73x 

Townsend et al., 
201065 

EEG P300 ALS 0.05-0.22 1.95x 

Bhagat et al., 
201661* 

EEG self-paced Stroke 0.035 - 0.06* 7.17x 

Tonin et al., 202062** EEG self-paced N/A  0.2155** 2.00x 

Speier et al., 
201366*** 

Subdural ECoG 
P300 

N/A 0.63*** 0.68x 

Table 1. Comparison of speller task performances between our study and several other selected studies. While our mean average 
bitrate across 8 participants is shown, it should be noted the top performer in this study achieved an average bitrate of 0.97 bits/s and 
peak bitrate of 1.10 bits/s on their last day. *Computed bitrate not initially reported in paper. Study reports median performances of 7-
12 intents per minute in a two-class go/no-go classifier; mean online classification accuracies are 65% true positives and 28% false 
positives. Ignoring false positives to determine an upper bound, this results in (0.65 - 0.35) * (7 OR 12) / 60 = 0.035 - 0.06 bits per 
second. **Computed bitrate not initially reported in paper. Study reports on participants performing a 2-class classification “BMI task”; 
using the better performing model of the two reported, mean accuracy was 93.1% accuracy with mean trial time 4.0 secs, resulting in 
(0.931 - 0.069)/4 = 0.2155 bits per second. ***Bitrate in original study was defined differently, so we recomputed it here. We use the 
better performing of two participants: 11.32 selections per minute with accuracy of 82.77% on a 36-key keyboard. 
 
Limitations and future directions 
Stable, online detection of motor unit activity using non-invasive recording technologies remains 
challenging in ecological settings. The waveform of recorded motor unit action potentials and 
consequently their detection in surface EMG recordings are known to be sensitive to movement 
artifacts and to relative positioning of skin to muscle, which can be especially deleterious in 
anisometric conditions67,68. In our study, we overcame these limitations through physical 
constraints imposed by the orthosis and by instructing participants to avoid performing overt 
movements when trying to control the selected motor units. We confirmed these relative static 
recording conditions through kinematics recordings. In more dynamic settings, improved 
algorithms for motor unit detection may be required to increase reliability. Notably, while global 
EMG features are often used as a proxy for motor unit activity in non-invasive recordings, their 
lower information content is likely to hinder BMI performance69,70, as also suggested by our results 
showing dimensionality increases that are greater in motor unit firing rates than in iEMG. 
Alternatively, minimally-invasive intramuscular electrodes could enable individual motor unit 
recordings during anisometric contractions71. 
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The population-level dynamics across motor units observed in neurofeedback tasks 
suggest each dimension of the system can be driven by sets of motor units, as opposed to a 
single motor unit. This can increase robustness to experimental instabilities such as unit drop-out 
and can facilitate a finer-grained measurement of a dimension’s amplitude by incorporating 
multiple units’ firing rates. Similarly, the decoder can periodically be tuned to optimize for 
performance or for similarity to previously learned decoders, leveraging the fact that neural activity 
resides in a persistent, low-dimensional manifold72. 

Additionally, this current study did not explicitly identify nor target selection of motor units 
that had been selected in previous days of training. The presence of within-day learning in our 
study and the intracortical BMI literature55,73 both suggest that retaining similar sets of motor units 
over days may increase overall performance. This can be addressed by longitudinally tracking 
individual motor units over training and prioritizing selection of those units74. Alternatively, 
chronically implanted intramuscular electrodes could enable recordings that stably identify motor 
units across days, though such a system has yet to be shown. 

Finally, this study solely tested participants with no history of motor impairments, and so 
future studies should be performed to demonstrate the efficacy of our BMI in people with 
sensorimotor disabilities. Dependency of BMI throughput on muscle choice should be studied in 
this target population. If needed, motor units from multiple muscles can be combined for control 
to increase throughput. 
 
Conclusion 
In conclusion, we have demonstrated a novel motor-unit BMI that leveraged the flexibility of the 
peripheral sensorimotor system to enable skilled independent control of individual motor units 
belonging to the same muscle. We showed that such a BMI can achieve performances exceeding 
those of existing non-invasive BMIs. Concurrently, we shed light on long-standing questions 
surrounding the applicability of recruitment order often measured in naturalistic movements to 
volitional control of individual motor units. Advances in both motor control theory and BMI 
technology are critical to push the field towards clinically-relevant, widely-applicable assistive 
devices. Our study provides advances in both, potentially leading to improved therapeutics for 
people with sensorimotor disabilities. 
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Methods 
 
Experimental Procedures 
All experiments were approved by the Committee for Protection of Human Subjects (CPHS) of 
University California, Berkeley, and were performed in compliance with local COVID-19 
regulations. The recruited participants were healthy individuals — with no history of cognitive or 
sensorimotor impairments — between 22 and 30 years old, of which 3 were female and 5 male. 
Experiments were carried out on 6 consecutive days, with each session lasting a maximum of 
approximately 1 hour and 50 minutes.  
 
Setup and initial calibration | At the beginning of each session, participants were seated on a 
chair and fitted with a sensorized orthosis that constrained the elbow joint at 100 degrees and the 
wrist at its natural position (Figure 1A). After cleaning the skin with a mildly abrasive paste and 
isopropyl alcohol, a high-density 64-channel grid of surface EMG electrodes (GR10MM0808, OT-
Bioelettronica, Torino, Italy) was placed over the short and long heads of the biceps brachii, with 
the proximal/distal edges of the grid positioned at approximately 60%/80% of the distance 
between the acromion and the distal insertion of the biceps brachii tendon75. Markings on the skin 
were used to ensure stable grid positioning across days.  

We next calibrated the decomposition model used to extract individual motor unit activity 
from the measured neuromuscular signals. This initial calibration was performed offline on a 
recording of 60 seconds, during which the participants were instructed to perform subtle biceps 
contractions that would activate only a few motor units. To help participants in this task, we 
educated participants in recognizing individual motor unit action potentials from displayed raw 
neuromuscular signals, and encouraged them to use this simple form of neurofeedback to gauge 
their muscle activity. Participants were then introduced to the exploration procedure.  
 
Exploration procedure | A computer screen and headphones were used to provide participants 
with real-time auditory and visual neurofeedback of the detected motor unit activity (Figure 1B). 
Visual neurofeedback consisted of color-coded LED-like indicators that flashed when an action 
potential was detected and plots of the corresponding multi-channel waveforms. Auditory 
neurofeedback mapped detected action potentials into pitch-coded 150-ms-long stimuli. 
Neurofeedback signals were updated at 60 Hz. Detected activity and corresponding 
neurofeedback signals were divided into three categories: selected units, unselected units, and 
unsorted activity. Selected and unselected units represented motor unit activity successfully 
classified by the decomposition model, while unsorted activity represented residual threshold-
crossing events that were not matched with previously recognized motor units. Selected units 
were assigned to unit-specific neurofeedback features (i.e., colors and pitches), while those for 
unselected units and unsorted activity had categorical features. 

Participants were instructed to use the provided neurofeedback signals to explore covert 
strategies to selectively recruit different motor units — mimicking pioneering studies on individual 
motor unit control26–29 — and had approximately 30 minutes to select and sort in order of 
controllability the 3 motor units to use in the center-out task. To guide participants in their motor 
unit selection, we designed an algorithm that monitored motor unit activity in real-time and 
suggested units showing substantial evidence of independent control. Participants could rely on 
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this algorithm to automatically define which units to be included in the selected units category but 
could also include, exclude, and reorder units at will.  

Throughout the exploration period, the decomposition model was periodically updated 
until a maximum of 25 different motor units were detected. Participants could thus use the 
unsorted-activity neurofeedback to steadily recruit unsorted units of interest and assist the update 
algorithm in detecting these units.  

 
Center-out task | Participants controlled a computer cursor using the 3 motor units selected 
during the exploration procedure to achieve targets displayed on a screen. The activity of the 
selected motor units was mapped into the 2D position of a computer cursor using a population-
coding strategy (Figure 1C). Each motor unit was assigned to a unique direction by dividing the 
2D space into three equal subspaces (i.e., with a 120 degrees angle between each other) and 
provided a vectorial contribution to the cursor position along this direction and proportional to its 
normalized firing rate. To provide intuitive feedback on this control strategy, the cursor position 
was indicated by an arrow — representing the population vector — originating at the center of the 
screen. Motor unit firing rates were computed over a rolling window of 50 bins of 16 ms (800 ms 
in total) using a half-Hamming window profile that gave larger weight to the most recent bins. This 
firing rate was then normalized between 0 and the 90th percentile of the firing rate displayed 
during the exploration procedure. In some cases, this normalization value was manually adjusted 
between 10 to 20 Hz.  

A total of 13 active targets and 1 rest target were designed. Active targets included 12 
peripheral targets and 1 center target. Peripheral targets were defined by polar rectangular 
regions with a Δθ of 45° and Δr of 0.39 population-vector magnitude and were divided into 
exclusive targets (T1, T2, and T3) and simultaneous targets (T4), depending on their center angle: 
exclusive targets were centered on the assigned motor unit directions and thus required exclusive 
recruitment of an individual motor unit; simultaneous targets laid between the assigned directions 
and thus required simultaneous recruitment of two units. Peripheral targets were also divided by 
distance: close targets were centered at 0.395, while far targets were centered at 0.785 
magnitude. To achieve peripheral targets participants had to hold the cursor position within the 
target for a minimum of 0.5 seconds. The center target (T5) was defined by a circular region 
located at the center of the screen and had a radius of 0.2 magnitude. To achieve this target, 
participants were required to recruit all selected motor units at a minimum normalized firing rate 
of 0.33, while also keeping the cursor within the target boundaries. In contrast to active targets, 
the rest target required participants to avoid motor unit recruitment by holding the cursor within a 
distance of 0.1 from the screen center for 2 seconds.  

The task was divided into trials and inter-trial periods. At the beginning of each trial, an 
active target was randomly selected from a pool of available targets and participants had 60 
seconds to achieve it (Figure 1D). The rest target was then displayed and participants could 
initiate the next trial by completing it. To promote learning, active targets were grouped into 3 
difficulty levels, which were progressively made available depending on participants’ 
performance. At the beginning of each session, only the center target (T5) and the motor unit #1 
and #2 exclusive targets (T1 and T2) were available. An algorithm monitored the average trial 
success rate over a window of 5 min and if this surpassed a threshold of 3 trials per minute, 
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targets belonging to the next difficulty level were made available: T3 targets were added first, T4 
targets last. 

To promote engagement and incentivize learning, task and trial performance metrics were 
displayed on the task monitor. Finally, in addition to the arrow indicating the cursor position, 
participants received neurofeedback of the selected unit action potentials via the same LED-like 
indicators and audio stimuli utilized in the exploration procedure. Participants trained on this task 
for approximately 60 minutes per day during the first 3 days, and for a minimum of 30 minutes per 
day on the last 3 days of experiments.  

 
Force-control task | Participants were instructed to perform isometric elbow flexion and forearm 
supination contractions to match target force profiles displayed on a computer screen. The forces 
measured by the sensorized orthosis were displayed in real-time by a bar indicator (Figure 5A). 
Target forces followed a trapezoidal profile — with onset, hold, and offset durations of 1 second — 
and were displayed adjacently to the measured forces. To prepare participants for a change in 
force profile, the target force expected 1-second ahead was also displayed.  

Three isometric contraction types were tested: elbow flexion, forearm supination, and 
simultaneous elbow flexion and forearm supination. Each contraction type was tested 5 times at 
3 different loads, for a total of 45 trials. Loads of 500, 1000, and 1500 grams were default but in 
some cases decreased to avoid fatigue (lowest maximum load of 1000 g). Trials were separated 
by 2 seconds of rest period. Trials of different types were ordered randomly.  
 
Speller task | The same 3 motor units from the center-out task were used to operate a cursor to 
navigate a virtual keyboard in a copy-typing speller task. The keyboard layout (OPTI-II) and target 
sentences mimicked those of previous BMI studies6,34. The keyboard divided the screen in 30 
square keys (6x5) and included all the alphabet letters, 2 space keys, and 2 delete keys; 
misselection of a character required participants to select the delete key.  

To facilitate navigation, the keyboard featured wraparound borders and the cursor was 
controlled in velocity. In particular, the population vector used in the center-out task to compute 
the cursor position was here used to control the cursor velocity. These design features allowed 
full 2D space navigation even with control of a single motor unit, though this would result in 
extremely low performances. Letter selection was triggered by simultaneously recruiting the 3 
selected motor units above a threshold normalized firing rate and for a threshold amount of time 
— similar to how center-out T5 targets were achieved. Firing rate and time thresholds were default 
to 0.5 Hz and 0.5 seconds, and sometimes slightly adjusted according to participants’ preference.  

Participants were tested in this task for a minimum of approximately 30 minutes in the last 
3 days of experiments, after training for a minimum of 30 minutes in the center-out task. A few 
participants also tested this task prior to the 3rd day, but only after completing a minimum of 60 
minutes of center-out task.  
 
Motor unit BMI  
 
EMG recordings | Biceps brachii EMG signals were acquired using a PZ5M neurodigitizer 
amplifier and an RZ2 bioamp processor from Tracker-Davis Technologies (TDT) at 12.2 kHz. The 
64-channels grid of electrodes was connected via 32-channels ZIF-clip TDT headstages and 
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Omnetics connectors. Signals were band-pass filtered between 10 and 900 Hz using a 6th order 
Butterworth filter. Notch filters at 60, 120, 180, and 240 Hz were also used to remove the powerline 
noise. Filtered signals were then used to extract 56 bipolar derivations parallel to the muscle 
fibers. A multichannel threshold crossing algorithm was then used to detect possible motor unit 
activity; thresholds were set to 6 times the signal’s standard deviation and were calibrated at the 
beginning of each session using 10-second recordings during which participants were instructed 
to avoid biceps contractions and not move. A threshold crossing event at any of the bipolar 
channels triggered a dead-time of 20 ms that limited overall detection rate. Threshold crossing 
events and filtered bipolar signals were downsampled to 2 kHz and streamed to the BMI 
decomposition model. All these processing steps were performed using custom software written 
for the RZ2 bioprocessor, which ensured a maximum of 0.5 ms delay between acquisition and 
streaming.  
 
Decomposition model | Bipolar EMG signals were decomposed into motor unit activity using a 
convolutive blind source separation model. This model included a previously validated offline 
EMG decomposition model76 and shared similar logic to recent techniques for online EMG 
decomposition77.  

The offline decomposition model used convolutive blind source separation to define the 
motor units underlying the measured EMG signals76. Briefly, the filtered bipolar EMG signals were 
extended and whitened. An extension factor of 16 was used76. Next, a 2-step iterative algorithm 
was used to find sparse components that best reconstructed the whitened data. First, a fixed-
point iteration algorithm was used to estimate the next component using the logarithm of the 
hyperbolic cosine as a contrast function to optimize sparseness and an orthogonal constraint to 
promote estimates of unique sources. The logarithm of the hyperbolic cosine was used because 
of its superior robustness to outliers compared with simpler contrast functions76. Second, an 
iterative algorithm was used to minimize the variability of the inter-spike intervals of detected 
spike-trains. After projecting the data onto the candidate component, K-means++ (k=2) was used 
to estimate a threshold on the peaks in the squared projected data. The estimated component 
was then refined according to those peaks. This process repeated until the inter-spike interval 
converged. Since the coefficient of variation for spike-trains generated by multiple motor units are 
intrinsically more variable than those generated by a single motor unit, this second step was 
shown to ameliorate source estimation by exploiting the regularity of motor unit firings76. The 
resulting component was then added to the matrix of estimated components if the signal to noise 
ratio (SNR) of the spikes detected along this component was greater than a fixed threshold; SNR 
was measured using the Silhoutte coefficient and a threshold of 0.85 was used76. This iterative 
algorithm, which is described in greater detail in Negro et al., 201676, was repeated until a 
maximum of 25 sources were detected. A post-processing step was then introduced to further de-
duplicate the number of components underlying the same motor units. Indeed, despite the 
orthogonal constraint used in the fixed-point algorithm to increase the number of unique estimated 
sources, this approach can lead to components capturing delayed versions of the same motor 
unit action potentials70,76. Spike-trains were thus extracted from each estimated component and 
only components with less than 30% of coincident spikes were kept. Note that while a minor 
inconvenience in offline analyses, an excessive number of duplicated components would largely 
impact computational load required by our BMI.  
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The offline model was initialized on the 60-second dataset acquired at the beginning of 
each session. This calibration was used to compute the whitening matrix and to initialize the 
decomposition matrix with the first set of estimated sources. This whitening matrix was then fixed 
for the remainder of the session. A batch update algorithm was then used throughout the 
exploration procedure to periodically update the decomposition matrix with potential new 
components. To optimize computational efficiency and allow for quick model updates (update 
time < 30s), instead of using the full EMG stream this algorithm only ran on the windows of EMG 
signals surrounding the detected threshold crossing events (10 ms before the peak multichannel 
amplitude and 20 ms after). The update algorithm was triggered every 750 threshold crossing 
events with no extracted motor units and ran until a maximum of 25 total motor units were detected 
or until the end of the exploration procedure.  

Individual motor unit activity was continuously estimated in real-time through this 
decomposition model from the 30ms threshold-crossing events detected from the streamed EMG 
signals. For each threshold crossing, data windows were whitened, extended, and projected to 
the source space by multiplying each extended multichannel sample with the most current 
decomposition matrix. A motor unit was then considered detected if the squared projected data 
exceeded the decomposition model’s threshold for a given source, determined with k-means 
during the offline decompositions. Using this algorithm, multiple units could be detected from one 
threshold crossing event. If the projected activity did not surpass any component’s threshold, the 
event was then classified as unsorted activity. 

Online and offline decomposition models were implemented through custom-written GPU-
accelerated Python programs. All data was streamed between multiple computers with minimal 
latency and high bandwidth through River78, an open-source C++ library based on Redis. Overall 
latency from data acquisition to motor unit activity detection was generally under 70ms. 
 
Motor unit selection algorithm | This algorithm monitored the dimensionality of motor unit 
activity throughout the exploration procedure and suggested motor units with potential for 
independent control. A circular buffer (size of 216 samples) was used to collect sorted motor unit 
activity. The firing rate of each motor unit was then computed over overlapping windows of 1 s 
with 500 ms overlap. Non-negative Matrix Factorization (NMF) was then used to detect motor 
units explaining most firing rates variance. First, components required to explain a minimum of 
90% of the total firing rates variance were selected. Second, the motor unit with the largest weight 
for each of the selected components was chosen and used to update the subset of suggested 
motor units. Suggested motor units were updated every 20 seconds.  
 
Force and kinematic recordings | The sensorized orthosis was custom-designed and 3D printed 
using a Form 3 (Formlab) printer with standard resin. The orthosis embedded 2 load cell sensors 
(a CB6 from DACELL, Korea and a TAL220 from HT Sensor, China) to measure elbow-flexion 
and forearm-supination forces, respectively, and inertial measurement units (BNO055, Bosch 
Sensortec, Germany) to capture movements. Load and IMU signals were sampled at 50 Hz using 
a Raspberry Pi 4. A HX711 analog-to-digital converter (Avia Semiconductor, China) was used to 
acquire the load data. Data was streamed online to other BMI modules using River.  
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Behavioral Analysis 
 
Center out task day 1 | Center out performance at day 1 was evaluated using the percentage of 
successful trials for each target category (T1, T2, T3, T4, and T5). A trial was considered failed if 
the presented target was not achieved within the 60s of trial and successful otherwise. 
Participants that did not reach the second and third difficulty levels were excluded when analysing 
the corresponding target categories (T3 and T4 respectively). Hypothesis testing was performed 
using bootstrapping (n=10000 iterations) and Bonferroni correction for multiple comparisons 
(Figure 2C-D). 
 
Trial performance metric | While the percentage of successful trials allows to evaluate whether 
independent motor unit control is possible, this metric fails to capture the quality of this control. A 
more holistic performance metric was thus computed to assess motor unit control quality and 
evaluate learning over time. This metric combined together 3 independent metrics using Principal 
Component Analysis (PCA). The normalized distance between the cursor position with respect to 
the presented target center was calculated for every time point within each recorded trial; 
normalization was performed with respect to the maximum target distance. The average and 
integral of this distance for each trial were then linearized using a log transform. These metrics 
were used to capture the cursor error and trial duration and were the first 2 independent metrics. 
The third metric was used to reward motor unit specificity. A specificity score was first computed 
for each trial’s time point as a value between -1 and 1, where -1 corresponds to selective 
recruitment of motor units that are not required for achieving the considered target and 1 to 
selective recruitment of the target motor units. The mean specificity was then calculated for each 
trial and linearized using the logistic transform. A PCA model was then fit on all the collected trials 
to combine these 3 metrics; the single holistic metric was then the first component of this PCA 
model, standard scaled to improve interpretability of the results. Figure 2A and B show how this 
holistic metric relate to the 3 underlying metrics prior linearization, as well as to the trial duration 
— a feature commonly used for evaluating performances in trial-based tasks. Feature 
linearization was performed to conform with the assumptions of the statistical techniques used to 
analyze learning over time. These analyses excluded T5 targets. 
 
Learning analyses | Collected center-out data are characterized by hierarchical and crossed 
dependencies: trials (at the first hierarchical level) are grouped in days (at the second level) and 
in participants (at the third level), while target categories are crossed at all hierarchical levels. To 
account for these dependencies, learning analyses were performed using linear mixed-effects 
models (LMMs) — an extension of linear regression models that allow to separate the overall 
effects of a model term (i.e. the fixed effects) from the variability in the data generated by different 
sources of stochastic variations (i.e., the random effects)79,80.  

When analyzing the overall within- and across-day learning (Figure 3C-D), trial 
performance was modeled by the following equations representing our general LMM: 
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where j, t, i, θ, and r refer to the participant, day, trial, target angle, and target distance indexes, 
respectively; 𝛾0refers to the fixed effect estimated for the 𝑛"4independent variable; 𝜇56708  refers to 
the 𝑙"4 random effect for the 𝑛"4independent variable caused by the random factor 𝑥𝑦𝑧; 𝛽5670 refers 
to the combined random and fixed effects; and 𝜖!"#$%refers to the model residuals. This model 
describes trial performance 𝑦!"#$% as a function of within- (𝑤𝑖𝑡ℎ𝑖𝑛!"#$()() and between-day 
(𝑎𝑐𝑟𝑜𝑠𝑠!"$+)() time variables, an interaction term between these 2 variables (𝑤𝑖𝑡ℎ𝑖𝑛!"#$()(𝑎𝑐𝑟𝑜𝑠𝑠!"$

+)(), 
and two additional variables used to control for potential across-day effects caused by differences 
in number of performed trials (𝑤𝑖𝑡ℎ𝑖𝑛!"$./+0and 𝑤𝑖𝑡ℎ𝑖𝑛!"$./+0𝑎𝑐𝑟𝑜𝑠𝑠!"$+)(). The within-day time variable 
𝑤𝑖𝑡ℎ𝑖𝑛!"#$

()( was calculated as the centered, normalized trial index	𝑖. For each day t, subject j, and 
target direction θ, trials were centered with respect to half of the performed trials. Such centering 
within-cluster (CWC) was used to segregate within-day effects from higher order effects. A 
normalization factor of 100 trials was used. The subtracted means from 𝑤𝑖𝑡ℎ𝑖𝑛!"#$()( were in turn 
CWC centered and included in the model through the 𝑤𝑖𝑡ℎ𝑖𝑛!"$./+0 term, which was used to 
account for possible changes in performances caused by the different number of performed trials 
for each recording. The across-day variable 𝑎𝑐𝑟𝑜𝑠𝑠!"$+)( consisted of the aligned and normalized 
day index t. Alignment was performed within-cluster (AWC) with respect to the first day 𝑡 for which 
participant 𝑗 performed 𝜃 targets. While for targets belonging to the first difficulty level (i.e., T1 
and T2 targets) AWC had no effect, this alignment strategy allowed to take into account 
participants’ across-day heterogeneity in reaching T3 and T4 targets, effectively comparing 
across-day performances with respect to the number of days of practice instead of those of 
experiment. This variable was normalized with respect to 6 days. Maximal random effects were 
used to minimize Type I errors during hypothesis testing81. Random effects included: random 
intercepts for each participant (𝜇!&&), target direction (𝜇$&,), combination of participant and target 
direction (𝜇!$&*), combination of participant, target direction, and day (𝜇!"$&' ), and combination of 
target direction and distance (𝜇$%&-); and random slopes for both the within- and across-day time 
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variables (𝜇!"$'&  and 𝜇!$*&!" #$%&$'()*$+,-." /01234" $55$'(%" 6$#$" 432$+$2" 0%" 78'$1($#$2" 93#40+"

2)%(#):;()31%" 6)(<" $%()40($2" %(0120#2" 2$*)0()31%" =" 012" 3&()310+" '3##$+0()31" &0#04$($#" >."The 
centering and alignment choices used for 𝑤𝑖𝑡ℎ𝑖𝑛!"#$()( and 𝑎𝑐𝑟𝑜𝑠𝑠!"$+)( made the fixed-effect of the 
model intercept 𝛾&to capture the overall performance of a general participant on the center-out 
task at day 1. The modeled fixed effects for the within- and across-day time variables represented 
the overall improvement in performance a general participant would obtain in the center-out task 
by training over 100 trials and 6 days, respectively.  

Learning analyses performed for each of the selected motor units separately (Figure 3E) 
were carried out using a similar LMM, which included the same fixed-effect terms but reduced 
random-effects: 
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where terms follow the same conventions as in the previous model. In particular, since different 
models were used to evaluate learning over T1, T2, and T3 targets, random effects that were 
used to account for variations caused by different target directions were removed. Random slopes 
for the within-day term were computed for each combination of participant, day, and target 
distance, while random slopes for the across-day term were computed for each combination of 
participant and target distance.  

Analyses of participants’ performance on the T4 targets were conducted using a 
generalized linear mixed-effects model (GLMM) with a Poisson link function. Specifically, the rate 
of successful T4 trials over time was modelled as:  

𝑙𝑜𝑔 ?
𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙_𝑡𝑟𝑖𝑎𝑙𝑠!"
𝑡𝑎𝑠𝑘_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛!"
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where terms follow the same convention as above, 𝑡𝑎𝑠𝑘_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛!"indicates the duration in hour 
of the center-out task performed by participant j at day t, and 𝑑𝑎𝑦!" indicates the tth experiment 
day of participant j. 

All models above parameters were fitted using the restricted maximum likelihood (REML) 
approach. Confidence intervals used for hypothesis testing were computed using the profile 
method. Model assumptions were tested using the White’s Lagrange Multiplier test, for testing 
heteroskedasticity of the residuals, and the D’Agostino and Pearson’s test, for testing residuals 
Normality. All models (general, T1, T2, T3, and T4 models) displayed homoscedastic residuals 
(p=0.08, p=0.9, p=0.3, p=0.9, and p=0.07, respectively), but only the residuals for the GLMM 
resulted normally distributed (p=0.65 for the T4 model, p<0.001 for the others). However, LMMs 
have been shown to be highly robust to violations of distributional assumptions and the kurtosis 
([1.2, 0.77, 0.5, 2.5]) and skewness ([0.23, -0.19, 0.15, 0.7]) of our models with non-normal 
residuals’ fell largely within acceptable ranges, shown to have minimal impact on the validity of 
LMMs estimates80. 
 
Kinematic analyses | Measured IMU euler angles were preprocessed using an artifact removal 
algorithm and a 6th order Butterworth low-pass filter at 6 Hz. Artefact removal was used to ignore 
samples with prominence superior to 10°, which accounted for less than 0.1% of all samples. 
Principal Component Analysis (PCA) was then used to align the rotational axis of the IMU sensor 
to the axis of largest variation. Kinematic analyses during the center-out task (Figure 6A) used 
the 1st principal component to compute the mean absolute velocity (MAV) for trial and inter-trial 
periods. The median MAV was then computed for each day, each participant, and trial category 
and used to evaluate target-specific movement strategies. Statistics of active targets were 
compared with respect to those of rest targets; hypothesis testing was performed by bootstrapping 
(n = 10000 iterations) the distribution of the paired differences for each recording and using 
Bonferroni correction of the estimated confidence intervals for multiple comparisons. 
 
Speller | A common metric for assessing information throughput in self-paced BMIs is the 
achieved bitrate, which combines the number of possible symbols to select (i.e. the number of 
characters on a keyboard) with the net number of correct symbols selected per second32. This 
metric is typically considered an underestimate of the true information throughput of a device, as 
it penalizes errors relatively harshly compared to other information throughput metrics32. It is 
defined as: 

𝐵 =
𝑙𝑜𝑔*(𝑁)𝑚𝑎𝑥(S< − S=, 0)

t
, 

where Sc is the number of correct symbols transmitted, Si the number of incorrect symbols 
transmitted, and N the number of symbols. In our case, N = 27, due to the 26 letters and the 
“space” character on the keyboard (excluding the delete key). Smoothed bitrates (Figure 8B) 
were computed from 5-minute sliding windows taken every 30 seconds; peak bitrate was the 
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maximum smoothed bitrate value during a given session. Average bitrate was the achieved bitrate 
B computed over the entire spelling session. Changes in average bitrate over days of training 
(Figure 8D) were modelled with a linear mixed-effects model where the number of days of training 
were centered within-subject to account for differences in amount of training between subjects. 
This model fit a fixed-effect slope and intercept for days of training and was fit using the restricted 
maximum likelihood (REML) approach. Model assumptions were tested as described in the above 
learning analyses. 

 
Motor unit activity analysis 
Pooled motor unit decomposition | A separate offline motor unit decomposition was run for the 
EMG collected during the force-control task with the same parameters as the decompositions run 
online. Then, for each day, the motor units identified across both the online and offline 
decompositions were pooled together, and all of the EMG data for that day was then re-
decomposed with these motor units, yielding a superset of motor unit action potential timings 
relative to those detected online. All analysis that used firing rates (Figures 4-6, 8) uses these 
pooled motor units and their action potential timings from both tasks. This methodology allowed 
for motor units to be identified for analysis purposes even when they had not been identified 
during the online sessions. 
 
Integrated EMG and motor unit firing rates | The integrated EMG (iEMG, Figure 5B) for 
channel i at time t was computed as the sliding window sum of rectified EMG: 

iEMG=(𝑡) = _ |𝐸𝑀𝐺#(𝑗)|
"

!>"?@

 

where N was fixed as the number of samples corresponding to a 200 millisecond window. The 
data was then downsampled by a factor of 25 to approximately 81 Hz. Smoothed motor unit firing 
rates were computed from the pooled motor unit firings and were computed in the same manner 
as computed online for the center-out task. 
 For analysis based on firing rates during the center-out task (Figures 5-6), any time bins 
occurring during T5 or rest trials were excluded. For analysis during the speller task (Figure 8), 
time bins used for letter selection were explicitly excluded as well. When necessary, both firing 
rate and iEMG were linearly interpolated in time in order to align with other streams of data (e.g. 
aligning with load sensor data). 
 
Exploration Period Analysis | In order to identify groups of units that were often mutually active 
during the exploration period, motor unit activity was decomposed into 3 separate components 
via non-negative matrix factorization (NMF). NMF aims to find two low-rank matrices, W and H, 
from a non-negative data matrix X such that 

'
*
d|𝑋 −𝑊𝐻|d*

*  

is minimized and such that W, H are also nonnegative. NMF was performed via a coordinate 
descent solver with NNDSVD initialization. Since the relative scales of the projections (W) and its 
components (H) are typically arbitrary, we resolved ambiguity by scaling each component to unit 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2021. ; https://doi.org/10.1101/2021.03.22.436518doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.22.436518
http://creativecommons.org/licenses/by-nc-nd/4.0/


L2-norm and scaling its corresponding transformation by the appropriate reciprocal factor. We 
then computed the CIFT for each of the 3 components relative to one another, as described in 
the following section. 
 
CIFT metric | For analysis in all tasks in this study, a simple time-based metric, the cumulative 
independent firing time (CIFT), was devised (Figure 4). CIFT is defined as the fraction of total 
time a motor unit was independently active relative to the total time the motor unit was active, and 
thus takes values between zero and one. A motor unit was considered “active” if its smoothed 
firing rate exceeded 5 Hz, and was considered “independently active” if both it was active and no 
other motor units had firing rates simultaneously exceeding 5 Hz. This 5 Hz threshold corresponds 
to the approximate physiological minimum motor unit firing rate82. Throughout this analysis, we 
utilize the CIFT as a general measure of relative independence of motor units and use it across 
various contexts (Figures 4, 6, 8). Note that our use of CIFT in the exploration period extends its 
use from comparing motor units to comparing NMF components. 
 
Dimensionality Computation | The participation ratio (PR) was computed to quantify the 
dimensionality of the iEMG and firing rate data83–85. The PR is a metric computed on the 
covariance matrix of a feature and represents the approximate dimensionality of the manifold 
spanned by that feature; a higher participation ratio means more principal components are 
needed to explain a given proportion of the feature’s variance. Participation ratio is defined as: 

𝑃𝑅 =
(∑ 𝜆A(𝑖)# )*

∑ (𝜆A(𝑖)*)#
, 

where 𝜆A(𝑖) is the i-th eigenvalue of the covariance matrix C of the corresponding feature (iEMG 
or firing rates). Participation ratio was computed across the periods spanning the force-control 
tasks, center-out tasks, and speller tasks (Figures 5, 8). In our data, the participation ratio 
approximately corresponded to the number of principal components needed to explain 80-85% of 
the total feature variance. 
 The relationship between selected and unselected motor units during the force-control 
and center-out tasks was characterized using linear regression (Figure 5G-I). Linear regression 
was used to predict the unselected motor units’ activity from the activity of the selected ones. The 
quality of this prediction was characterized by the coefficient of determination (R2). 
 
Recruitment Thresholds | Recruitment thresholds for each motor unit were computed for both 
elbow flexion and wrist supination from force-control task data (Figure 6). First, force data from 
load sensors was smoothed with a median filter and normalized within each session to values 
between zero and one. Then, for force-control task trials in which elbow flexion (forearm 
supination) was the sole movement indicated, the recruitment threshold for a particular motor unit 
for elbow flexion (forearm supination) was identified as the average across trials of the measured 
load at the beginning of the first occurrence of 3 consecutive firings with inter-spike interval (ISI) 
less than 200ms. 
 
Statistics 
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Statistical tests, their significance values, and the relevant number of samples are reported in the 
appropriate figure legends and/or relevant method section. Error bars used in point-plots 
represent 95% confidence intervals. No data were excluded from the analyses, unless specifically 
reported.  
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Supplementary 
 
Changes in Center-Out Task Participation Ratio over Time 

 
Supplementary Figure 1 | Dimensionality of center-out firing rates for 3 selected motor units increases over 
time. A, Even on the first day, participation ratio within the 3 selected motor units increases significantly between 
force-control and center out tasks (paired t-test, p=0.002). B, Participation ratio within the 3 selected units during the 
center-out task increases over days of training (p=0.01 for fixed-effect slope, n=48). Thin lines and gray dots 
represent different participants’ participation ratios for each session, while thick black line indicates regression line for 
the fixed-effect change in PR over days. 
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