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Abstract 17 

Motivation. Full length, high resolution 16s rRNA marker gene sequencing has been 18 

challenging historically. Short amplicons provide high accuracy reads with widely available 19 

equipment, at the cost of taxonomic resolution. One recent proposal has been to reconstruct 20 

multiple amplicons along the full-length marker gene, however no barcode-free 21 

computationally tractable approach for this is available. To address this gap, we present Sidle 22 

(SMURF Implementation Done to acceLerate Efficiency), an implementation of the Short 23 

MUltiple Reads Framework algorithm with a novel tree building approach to reconstruct 24 

rRNA genes from individually amplified regions.  25 

Results. Using simulated and real data, we compared Sidle to two other approaches of 26 

leveraging multiple gene region data. We found that Sidle had the least bias in non-27 

phylogenetic alpha diversity, feature-based measures of beta diversity, and the reconstruction 28 

of individual clades. With a curated database, Sidle also provided the most precise species-29 

level resolution.   30 

Availability and Implementation. Sidle is available under a BSD 3 license from 31 

https://github.com/jwdebelius/q2-sidle 32 
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Ribosomal RNA marker gene sequencing has been a mainstay of microbiome analysis for 34 

more than a decade. While there is a movement toward untargeted metagenomic sequencing, 35 

marker gene amplification remains relevant in environments with high host contamination, 36 

such as vaginal communities or biopsy samples [1]. However, marker gene sequencing 37 

comes with several challenges in taxonomic resolution. The use of short amplicons as 38 

opposed to the full 16S rRNA gene has been historically necessary as long read technologies 39 

historically had higher error rates and costs than short reads techniques [2–4]. In some cases, 40 

these errors exceeded real biological differences between 16S rRNA gene. All amplicon 41 

sequencing relies on primers with broad specificity; the primers used to amplify full length 42 

16S genes may not fully capture community diversity [5,6]. However, shorter read 43 

technologies also potentially come with drawbacks. Shorter reads from more universal primer 44 

pairs may have lower taxonomic resolution than full length sequences and therefore miss 45 

important genus- or species-level differences in organisms [7]. Alternatively, organism-46 

specific primers can come at the cost of accurately describing the rest of the community [8,9]. 47 

 48 

Synthetic long read technology, such as the approach marketed by Loop Genomics, provides 49 

the read quality of short read technology with the resolution of long read approaches. Here, 50 

short fragments along the full-length marker gene are tagged with a unique molecular 51 

identifier before PCR. This approach leverages the lower error rates of short read sequencers 52 

coupled with a mostly database-free approach to assembly [10]. However, the technique still 53 

uses primers for the full-length sequence, which may not be able to amplify all taxa with 54 

equal fidelity. The technique requires full length, unfragmented 16S molecules to work 55 

properly, a potential problem for sample types where the DNA may have degraded during 56 

storage, like FPVE biopsies embedded biopsies, or sample types which require heavy bead 57 
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beating, although the specific technique has not been fully benchmarked under these 58 

conditions [11,12] 59 

 60 

Full length sequences can also be reassemble by amplifying multiple regions along a full 61 

length marker gene and then scaffolding using a database approach [6]. This technique may 62 

be more robust to random breakage in the DNA. The mix of primers may allow for less 63 

overall primer bias. The problem then becomes how to combine the regions. One proposed 64 

solution is the use of operational taxonomic units (OTU), clustered against a reference 65 

database [13]. A second, user-proposed pipeline relies on regional denoising to generate 66 

amplicon sequence variants (ASVs). Taxonomic assignments are made using a naïve 67 

Bayesian classifier, and ASVs are scaffolded together using fragment insertion into a 68 

reference tree and then profiled using phylogeny-aware metrics. The third potential solution 69 

to the problem is the use of the Short Multiple Reads Framework (SMURF) algorithm, which 70 

performs regional kmer-based alignment to a reference and then solves the relative 71 

abundance using a maximum likelihood estimator model [6]. This allows the use of disjoint 72 

regions along a molecular target, and theoretically could be extended to combine multiple 73 

marker genes, independent of genome location. The original paper does not consider 74 

phylogeny, potentially limiting insights into the microbial community [14]. Additionally, the 75 

original implementation was challenging to use and required proprietary software. As a 76 

consequence, while the paper has been well cited, the method has not been widely adopted. 77 

 78 

To address the issue of combining information from multiple primer regions, we re-79 

implemented the SMURF algorithm and developed a tree building approach, which is 80 

released as the q2-sidle (SMURF Implementation Done to acceLerate Efficiency) plugin. 81 

Three proposed approaches (closed reference OTUs, ASVs with an insertion tree, and Sidle) 82 
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were benchmarked to identify the best method for reconstruction, reliably capturing as much 83 

sequence information available across multiple gene regions. We further benchmarked the 84 

ability of each of these approaches on previously published vaginal microbiome data to 85 

determine their ability to recover species-level resolution.  86 

 87 

Materials and Methods 88 

Implementation 89 

 90 

To facilitate reassembly from multiple marker gene regions, we re-implemented the core 91 

SMURF algorithm in python as Sidle. The code has 95% test coverage with unit testing. 92 

Sidle has been released as a QIIME 2 plugin. This builds on the architecture of the popular 93 

microbiome analysis platform, including the decentralized provenance tracking; multiple 94 

installation options for Linux, OSX, and virtual boxes for windows operating system; and 95 

multiple APIs [15]. Integration with QIIME 2 also creates flexibility: users can enter with 96 

fully multiplexed sequences, partially demultiplexed sequences or even a feature table and 97 

can select denoising and quality filtering algorithms more appropriate to their data rather than 98 

assuming a single quality-filtering error model. To improve performance, Sidle leverages the 99 

python Dask distributed computational library for certain pleasantly parallelizable steps in the 100 

reconstruction algorithm. Dask allows end users to customize their parallel processing to their 101 

local compute architecture, and scales from a single machine to HPC clusters [16]. 102 

 103 

The Sidle implementation involves five steps: database preparation, regional sample 104 

preparation and alignment, table reconstruction, taxonomic annotation, and optionally, 105 

building a phylogenetic tree (Figure 1; Supplemental Methods).  106 

 107 
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Data Sources 108 

 109 

Benchmarking data. To benchmark all techniques, we used tutorial dataset provided by the 110 

original SMURF paper [6] (Supplemental Methods). This consisted of a single sample 111 

without metadata. The sample was compared against the Greengenes 13_5 (SMURF) and 112 

Greengenes 13_8 (Sidle) [17]. 113 

 114 

Simulation. We generated a set of reference samples based on previously published 115 

experimental data. This provided a base truth community with characteristics similar to true 116 

microbiome data and a biologically relevant, if somewhat large, effect size. Amplicons were 117 

simulated using in silico PCR for three primer pairs (Table S1; Supplemental Methods). 118 

Simulations were compared against the Silva 128 database at 99% identity [18]. 119 

 120 

Real Data We used a set of 24 vaginal samples (8 individuals with 3 replicates) which have 121 

been previously described [19] (Table S1; Supplemental Methods). The vaginal samples were 122 

compared to the Optivag 16S rRNA database (v0.1) [19]. This curated, vagina-specific 123 

database provides accurate species level assignments. 124 

 125 
Reconstruction Methods 126 

 127 

All reconstruction methods were performed using the 2020.11 release of QIIME 2 with the 128 

Sidle and the RESCRIPt plugins. 129 

  130 
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 131 
Figure 1. Schematic of Sidle Reconstruction. (A) The database is filtered to remove 132 
undesirable sequences and then per-region database are extracted and prepared. (B) The reads 133 
for each region are denoised and aligned with the per-region database.(C) The regional 134 
databases, regional alignments, and regional ASV tables are combined to reconstruct the 135 
database for full length sequences and the feature table. The database map is used with the 136 
taxonomy to reconstruct the taxonomy sequences. (D) Optionally, a phylogenetic tree can be 137 
reconstructed using the aligned sequences from the reference database to reconstruct 138 
fragments, which are inserted into a reference backbone. 139 
  140 
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Closed Reference OTU Clustering. In constructing OTUs, we assumed that denoising had 141 

already been applied. Sequences were clustered at 99% identity against the respective 142 

reference databases using vsearch (q2-vserach) [20]. Taxonomic assignments were inherited 143 

from the database; for the Silva 128 database, the phylogenetic tree was also inherited from 144 

the database (Figure S1).  145 

 146 

ASVs. The feature tables, and their corresponding sequence files, from all regions were 147 

merged. Taxonomic classification on the multi region data was performed using a naïve 148 

Bayesian classifier trained on the full 16S gene q2-feature-classifer [21]. The final feature 149 

table was filtered to exclude any feature without at least phylum level resolution. In cases 150 

where the database was unable to classify a taxonomic level, the lowest defined taxonomic 151 

level was inherited. For the simulated data, we constructed a phylogenetic tree using 152 

fragment insertion into the Silva 128 backbone (q2-fragment-insertion) [22].  153 

 154 

Multiple region alignment with Sidle. The sidle reference databases were filtered to exclude 155 

reference sequences with more than 5 degenerate nucleotides or references which belonged to 156 

kingdom Eukaryota. Reference and ASV sequences were trimmed to a consistent length 157 

(Table S1). Alignment was performed on a per-region basis allowing no more than 2 158 

nucleotides difference for reads over 300nt and 1 for reads under 300nt. Feature tables were 159 

reconstructed using the default parameters in QIIME. Taxonomy was reconstructed, treating 160 

missing taxonomic levels as unique designations. For the simulation, the phylogenetic tree 161 

was generated using the Silva 128 reference [22,23]. 162 

 163 

Performance 164 

 165 
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We benchmarked the performance of the original SMURF implementation and Sidle on the 166 

SMURF tutorial data and the vaginal real dataset (Supplemental Methods). We were unable 167 

to run the SMURF code to expand and prepare the database due to a missing function. To 168 

profile vaginal samples, we were required to concatenate the files into a single fastq file for 169 

each sample and arrange them manually into file folders; this was only possible because the 170 

per-region primers had not been trimmed. SMURF was run in MATLAB 2020b (Mathworks, 171 

Natick, MA, USA) and profiled with the profile function. Sidle was profiled using 172 

Snakemake (v 5.3) [24].  173 

 174 

Statistical Analysis of simulated data 175 

 176 

Diversity analyses were performed using multiple rarefaction. Feature tables were rarefied to 177 

10,000 sequences/sample five times for each rarefaction method.  178 

 179 

Alpha diversity. Alpha diversity was characterized using Faith’s Phylogenetic diversity, 180 

Observed ASVs, Shannon diversity, and Pielou’s evenness were calculated on each table 181 

[25,26]. The relative effect size for alpha diversity metrics was calculated as the absolute 182 

value of the Cohen’s d statistic; the mean and standard deviation reflect the five iterations. 183 

The values were compared against the reference dataset using an ordinary least squares 184 

regression comparing all the iterations for the reconstruction against all reference iterations; 185 

reference variation was compared using pairwise testing. Regression was performed using 186 

statsmodels (v 0.11.1) [27]. 187 

 188 

Beta Diversity. The effect of reconstruction method on the overall community structure was 189 

compared using beta diversity. Rarefied tables were used to calculate Bray-Curtis distance on 190 
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feature level data; Bray-Curtis distance on a table collapsed to genus level; weighted 191 

UniFrac; and unweighted UniFrac distances (q2-diversity) [28–30]. The reconstruction 192 

methods were compared to the reference dataset using Mantel’s test with 999 permutations in 193 

scikit-bio (v. 0.5.5; www.scikit-bio.org) [31]. The correlation presented is the average Mantel 194 

correlation across all pairwise mantel tests. The mantel correlation for reconstruction 195 

methods were compared using a one-sided t-test with unequal variance. The t-test was 196 

calculated in scipy (v 1.5.2) [32]. 197 

 198 

Clade Abundance. Taxonomic abundance was compared between organisms using an 199 

ordinary least-squares regression. Since the reference data and assemblies were annotated 200 

using different databases, we first harmonized the taxonomy. To simplify the comparison, 201 

organisms in the reconstructed taxonomy (based on the Silva database) which were labeled as 202 

“ambiguous”, “unidentified” or “uncultured” were treated as the equivalent of the un-203 

annotated levels in the Greengenes (reference) database. We also treated any level where the 204 

taxonomic classifier could not resolve the organism or where Sidle could not resolve the taxa 205 

as unannotated. Unannotated levels inherited the lowest defined level. Class assignments 206 

were harmonized between the reference and reconstruction database.  207 

 208 

The counts were normalized and filtered to retain features at the specified level that were 209 

present with an average abundance of at least 0.01%. We used linear regression with a zero-210 

intercept to calculate the correlation between the reference and reconstructed taxonomic 211 

abundance. We evaluated the relationship between the values using a paired t-test with a 212 

Bonferroni corrected p-value. We considered a p < 0.05 with at least 5% deviation to be 213 

significant. Modeling was performed in statsmodels and scipy [27,32]. The ratio between the 214 
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reconstruction and reference abundance was plotted using seaborn (v. 0.11.0) and matplotlib 215 

(v. 3.2.2) [33,34].  216 

 217 

Statistical Analysis of Real Data 218 

 219 

Within-subject stability was calculated using Bray-Curtis distance on the species-level data 220 

for each method. We used a linear mixed effects model using each individual as a random 221 

effect; modeling was performed in statsmodels [27]. We calculated the distance from the 222 

single region sample by filtering the data to retain species present with a relative abundant of 223 

at least 10% in at least one pool (n=11); these features represented at least 89% of the relative 224 

abundance for all 8 pools. In cases where assignments were different (i.e. cases where the 225 

level could not be assigned or resolved), the missing values were treated as 0 counts. A PCoA 226 

projection and corresponding biplot was calculated using q2-diversity; the PCoA was 227 

visualized using q2-Emperor [35]. 228 

 229 
Results 230 

 231 

A comparison of Sidle and SMURF 232 

We first compared the performance of Sidle and SMURF for database preparation, profiling a 233 

single sample, and profiling multiple samples (Table S2). We first tried to prepare the 234 

Greengenes database using the set of six SMURF primers [6,17]. We were unable to profile 235 

the full SMURF database generation because the SMURF library was missing a necessary 236 

function to expand the degenerate sequences. This also prevents the use of other databases 237 

directly through the SMURF implementation. Even with this function excluded, database 238 

processing with SMURF took an hour and 43 minutes, compared to the 27 minutes required 239 

by Sidle, a three-fold increase (Table S2). SMURF was more efficient at single sample 240 
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profiling, taking 7:56 compared to Sidle’s 35:46; this was primarily due to differences in the 241 

time spent on denoising and reconstruction. The Sidle implementation “solves” the database 242 

on the fly, determining the correct sequences during reconstruction while SMURF determines 243 

this database structure during the database preparation step.  244 

 245 

We then tried profiling the two functions using a real dataset rather than the provided tutorial 246 

data. We first tried using a curated, environment-specific database with SMURF, however, 247 

due to the missing function, we were unable to prepare this database. We therefore used the 248 

pre-expanded Greengenes database with the two regional primers. It took SMURF 88 249 

minutes to prepare the database, and when we tried to use this database with the samples, the 250 

database mapping was incorrect and data could not be processed. In contrast, it took 15 251 

minutes to prepare the Greengenes database with Sidle, and full reconstruction took less than 252 

30 minutes, for a total run time of 44 minutes for 24 samples.  253 

 254 

Having determined that Sidle was a more runnable implementation, we then explored the 255 

effect of different reconstruction methods on the reconstructed community. We tried three 256 

methods: using closed reference OTU clustering (“OTUs”), ASVs with naïve Bayesian 257 

taxonomic assignment and a fragment insertion tree (“ASVs”) and multiple region 258 

reconstruction (“Sidle”). These were performed starting from the same set of simulated 259 

amplicons. 260 

 261 

Community Structure 262 

 263 

We found the reconstructed alpha diversity was highly correlated with the reference values 264 

(R2 > 0.85, Table 1).  All three reconstruction methods over-estimated the phylogenetic 265 
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diversity, although the over-estimation was greater when fragment insertion was used, 266 

resulting in 2.91 fold over estimation with Sidle and 3.53 fold over-estimation using ASVs 267 

for reconstruction. With non-phylogenetic metrics, Sidle most faithfully reconstructed the 268 

alpha diversity with no over-estimation, within 0.1 fold (Table 1). ASVs consistently over-269 

estimated the alpha diversity metrics by the largest factor. OTUs fell between, overestimating 270 

compared to the reference and sidle.  271 

 272 

We also explored beta diversity (Table 2). We found a strong correlation between the 273 

reference community and the reconstructed community using all three reconstruction 274 

methods across all four metrics (mantel R2 > 0.90, p=0.001, 999 permutations). However, 275 

Sidle represented a significant improvement over OTU clustering and ASV reconstruction for 276 

unweighted UniFrac (p < 0.002), weighted UniFrac (p < 1x10-12), and feature-based Bray-277 

Curtis distance (p < 1x10-12). However, it underperformed on genus-level Bray Curtis 278 

distance, where ASV-based analysis performed best (p < 1x10-8).  279 

 280 

Taxonomy 281 

 282 

We compared the correlation between the relative abundance of collapsed taxa at the class 283 

level. Database harmonization across the lower taxonomic levels is notoriously difficult, and 284 

we found large differences below class level.   285 
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Table 1. The effect of reconstruction method on the observed alpha diversity 286 

Reconstruction 
Method 

Biological effect Change from reference 
mean (std) mean (std) R2 

Phylogenetic Diversity      
 Referencea 3.92 (0.04) 1.000 (0.002) 0.995 
 OTUs 4.13 (0.07) 1.309 (0.003) 0.993 
 ASVs 4.23 (0.15) 3.523 (0.007) 0.992 
 Sidle 4.19 (0.11) 2.910 (0.009) 0.992 

Observed Features      
 Referencea 5.03 (0.05) 1.000 (0.002) 0.996 
 OTUs 5.02 (0.10) 1.337 (0.003) 0.995 
 ASVs 4.89 (0.12) 1.869 (0.006) 0.995 
 Sidle 4.84 (0.11) 0.998 (0.003) 0.995 

Shannon Diversity      
 Referencea 4.4 (0.04) 1.000 (0.000) 0.999 
 OTUs 4.21 (0.04) 1.102 (0.000) 0.997 
 ASVs 4.41 (0.05) 1.188 (0.001) 0.998 
 Sidle 4.32 (0.06) 1.000 (0.001) 0.998 

Pielou's Evenness      
 Referencea 3.59 (0.07) 1.000 (0.000) 0.998 
 OTUs 3.28 (0.05) 1.053 (0.000) 0.990 
 ASVs 3.66 (0.06) 1.078 (0.000) 0.995 

  Sidle 3.52 (0.02) 1.001 (0.001) 0.994 
a Reference is compared to itself through multiple rarefaction 
 287 
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Table 2. The effect of reconstruction method on the observed beta diversity 289 

Method 
Biological effect size Comparison to reference  

R2 
p-valuea 

R2 
p-valuea 

Mean (std) mean (std) 
Uweighted UniFrac       
 Referenceb 0.677 (0.007) 0.001 0.984 (0.001) 0.001 
 OTUs 0.669 (0.011) 0.001 0.979 (0.002) 0.001 
 ASVs 0.618 (0.012) 0.001 0.976 (0.002) 0.001 
 Sidle 0.679 (0.010) 0.001 0.980 (0.002) 0.001 
Weighted UniFrac       

 Referenceb 0.863 (0.002) 0.001 0.999 (0.000) 0.001 

 OTUs 0.842 (0.001) 0.001 0.975 (0.000) 0.001 
 ASVs 0.826 (0.001) 0.001 0.974 (0.000) 0.001 
 Sidle 0.841 (0.001) 0.001 0.978 (0.001) 0.001 
Bray Curtis       
 Referenceb 0.835 (0.001) 0.001 0.999 (0.000) 0.001 
 OTUs 0.826 (0.001) 0.001 0.998 (0.000) 0.001 
 ASVs 0.819 (0.001) 0.001 0.998 (0.000) 0.001 
 Sidle 0.839 (0.002) 0.001 0.999 (0.000) 0.001 
Genus level Bray Curtis       
 Referenceb 0.862 (0.001) 0.001 0.999 (0.000) 0.001 
 OTUs 0.862 (0.001) 0.001 0.995 (0.000) 0.001 
 ASVs 0.860 (0.000) 0.001 0.995 (0.000) 0.001 
  Sidle 0.863 (0.001) 0.001 0.995 (0.000) 0.001 
a Permutative p-value with 999 permutations 
b Reference is compared to itself through multiple rarefaction 
 290 
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We identified a total of 12 classes present with an average relative abundance of at least 292 

0.01% in the reference dataset which could be mapped to the reconstructed data (Figure 2, 293 

Table S2). We found 8 classes where at least one reconstruction method was significantly 294 

different (p < 0.05; > 5% deviation). This 5% threshold was selected because of 295 

compositionality in the data: to have a relative increase in one class, we must lose relative 296 

abundance somewhere else; by selecting this threshold, we hoped to allow some shifts 297 

associated with compositionality in the data. We found that all three reconstruction methods 298 

consistently underestimated class Clostridia (p. Firmicutes) by between 10% and 8% (OTUs 299 

0.92 [95% CI 0.90, 0.93]; ASVs 0.90 [95% CI 0.89, 0.92], Sidle 0.91 [95% CI 0.89, 0.93]). 300 

We also found an over-estimation of class Mollicutes (p. Tenericutes). However, while OTU 301 

clustering and ASVs over-estimated the relative abundance by 22% [95% CI 19%, 25%] (p < 302 

0.005) for both methods, Sidle only over-estimated by 8% [95% CI 6%, 11%] (p=0.03). We 303 

also found Sidle performed better in reconstruction of classes Erysipelotrichia and 304 

Deltaproteobacteria, which OTU and ASV reconstruction overestimated and in class 305 

Epsilonproteobacteria, which OTU and ASV-based reconstruction significantly 306 

underestimated (Table S2). Overall, ASV-based methods had significant deviation from the 307 

reference in 8 classes, OTU clustering missed in 5 classes, and Sidle underperformed in two 308 

cases. 309 

  310 
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 311 

 312 

Figure 2. Reconstruction method affects the observed relative abundance of bacterial 313 
classes. The ratio of the reconstruction method (OTUs: yellow, ASVs: silver, sidle: dark 314 
blue) shows differences in the reconstruction accuracy. The boxplots with at least a 5% 315 
deviation on average are labeled with FDR-corrected p-value : * p < 0.05; ** p < 0.01; *** p 316 
< 0.001. Values below 1 represent under-estimation of a given clade, while those above 1 317 
represent over-estimation of the given clade. 318 
 319 
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Applications to real data 321 

 322 

We also explored the effect of reconstruction on real data using a curated, species-level 323 

database. We first looked at reconstruction using vaginal samples from eight individuals 324 

(Figure 2). We compared a current approach – ASVs drawn from a single region to samples 325 

reconstructed using OTUs, ASVs from both V13 and V34 regions, and Sidle annotated with 326 

Optivag database. Optivag is an environment specific, manually curated database, designed 327 

to allow accurate species level annotation in vaginal communities [19]. 328 

 329 

We first evaluated the ability of the ASV-based methods and Sidle to resolve taxonomy. With 330 

ASVs from the V34 region alone, the naïve Bayesian classifier was unable to resolve species 331 

level resolution for a total of 111 ASVs. Classification using the full 16S rRNA gene 332 

sequence with both regions led to 321 ASVs unclassified at species level, including 62 ASVs 333 

of 192 mapped to genus Lactobacillus. Sidle was unable to resolve one feature, which led to 334 

one unresolved species: a genus member of Streptococcus mapped to either Streptococcus 335 

infantis or Streptococcus oralis. 336 

 337 

We next looked at the taxonomic composition of the individuals using species-level data. We 338 

found the individual vaginal composition was relatively stable, regardless of the method 339 

used. OTUs were significantly more stable than collapsed ASVs from multiple regions 340 

(p=0.007); there were not significant differences in stability between any other pairs of 341 

metrics (Figure 3A). We also found the individual to be the strongest determinant of the 342 

community structure. One major concern was the inability of either ASV-based method to 343 

accurately resolve Lactobacillus species making it potentially difficult to accurately 344 

distinguish between Lactobacillus crispatus and other species (Figure 3B,C).   345 
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 346 

Figure 3. The effect of reconstruction method on vaginal communities at species level 347 
resolution. (A) The within pool species level Bray Curtis distance for reconstruction with the 348 
V34 region only (R), OTUs (O), ASVs (A), and Sidle (S). Points show intra-subject distance, 349 
colored by subject. The black bar indicates the global mean, error bars are the standard 350 
deviation. (B) PCoA biplot of Bray Curtis distance on species level data combined across 351 
methods. Points are colored by subject (matching A and C), shape indicates the 352 
reconstruction methods (circle: v34 only, square: OTUs, star: cone: ASVs; star: Sidle). The 353 
five most abundant clades are shown in the biplot. (C) The average relative abundance per 354 
subject for each of the four reconstruction methods. 355 
  356 
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Discussion 357 

 358 

In this analysis, we explored three methods for reconstructing multiple fragments of a larger 359 

target gene using a reference database. Our results suggest that the Sidle implementation of 360 

the SMURF algorithm was the best method for reconstructing microbial composition from 361 

multiple 16S rRNA gene regions. In simulation studies, Sidle most accurately calculated non-362 

phylogenetic alpha diversity, feature-based beta diversity, and led to the lowest bias in clade 363 

relative abundance. Interestingly, we found the tree building method was associated with the 364 

observed phylogenetic diversity. Both ASV reconstruction and Sidle rely on a fragment-365 

insertion based approach, where the sequences are inserted into a reference backbone [22]. 366 

Placements near the tips appear to potentially expand the distance. However, this effect did 367 

not extend to community comparisons. However, although the insertion tree affected the 368 

phylogenetic alpha diversity, it did not affect the UniFrac distance (beta diversity) between 369 

samples, suggesting this may not be a major drawback for such metrics. 370 

 371 

Using real data and an environment-specific curated database, we also found that Sidle 372 

reconstruction provided the most precise species-level annotation. For vaginal communities 373 

like the example community used in this analysis, accurate, species-level Lactobacillus 374 

assignments are crucial because closely related species have different effects on community 375 

structure [36]. For example, one study found that vaginal communities containing L. 376 

crispatus but not L. inners was able to inhibit E. coli growth [37]. In our data, the classifier 377 

was unable to identify ASVs which were likely L. crispatus at the species level, leaving them 378 

annotated as an unclassified member of genus Lactobacillus. The inability of ASV-based 379 

annotation to perform species-level resolution therefore has implications for our biological 380 

understanding. 381 
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 382 

Sidle had overall superior performance: with only two regions of the 16S rRNA gene, we 383 

were able to resolve the species for all but one feature, which was annotated to genus level. In 384 

contrast, our full-length naïve Bayesian classifier that was used for ASV-based annotation 385 

was unable to assign taxonomy for 111 ASVs, including several members of genus 386 

Lactobacillus. It is possible that if we had combined region-specific classifiers, we might 387 

have improved the taxonomic resolution, however, this might also create a bias since 388 

different classifiers would be used on different regions [21]. The evaluation is perhaps 389 

hardest with OTU clustering. Because the OTUs use the taxonomic annotation assigned to 390 

the reference sequence in the database, the observed sequence annotation depends on the 391 

database resolution. However, recent work has suggested that the traditional 97% identity 392 

threshold used for OTU clustering is insufficient for species-level annotation, and short read 393 

amplicons require almost 100% identity OTUs (essentially ASVs) [38]. It has also been 394 

argued that reference based OTU clustering methods can be misleading: the sequences 395 

included in the OTU clusters may have a similarity larger than the threshold identity, as long 396 

as they share the same level of similarity to the reference [39]. The main advantage of OTU 397 

clustering for multiple region scaffolding is that the use of consistent reference allows 398 

multiple regions to be combined, however, the approach comes with all the drawbacks of 399 

single region OTUs-clustering. 400 

 401 

Although Sidle performed the best of our reconstruction methods, there are some drawbacks. 402 

First, although the authors of the SMURF algorithm claim species level resolution, this is 403 

obviously limited by database resolution. With specialized, well curated databases like the 404 

Optivag database or Human Oral Microbiome Database, species level resolution is 405 

achievable and trust-worthy [19,40,41]. However, more general databases like the Silva 406 
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database may not provide accurate annotation at lower taxonomic levels, especially because 407 

Silva does not curate species assignments [23]. Therefore, the user must consider the 408 

database they plan to use and its resolution. Next, Sidle and OTU clustering are limited by 409 

database coverage. The methods may not be appropriate for environments with poor database 410 

coverage, such as soil or saltwater, since sequences may be discarded. Third, the SMURF 411 

algorithm (and Sidle by extension) requires the exact primers used to amplify the sequences 412 

for database preparation. Databases are re-usable, so companies with proprietary primers 413 

might be able to provide a prepared database. However, this may be a challenge for data re-414 

use and future publications will need to be careful about including primer pairs and read 415 

lengths used for annotation.  416 

 417 

In conclusion, we present Sidle, an open-source implementation of the SMURF algorithm 418 

with a novel tree building approach. We demonstrated that Sidle was best able to reconstruct 419 

a reference community in reconstruction and provided high quality species level annotation 420 

with a curated database. We hope this library serves as a resource to the community.  421 

  422 
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