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Abstract 12 

As the COVID-19 pandemic continues to spread, hundreds of new initiatives including studies 13 

on existing medicines are running to fight the disease.  To deliver a potentially immediate and 14 

lasting treatment to current and emerging SARS-CoV-2 variants, new collaborations and ways 15 

of sharing are required to create as many paths forward as possible.  Here we leverage our 16 

expertise in computational antibody engineering to rationally design/optimize three previously 17 

reported SARS-CoV neutralizing antibodies and share our proposal towards anti-SARS-CoV-2 18 

biologics therapeutics.  SARS-CoV neutralizing antibodies, m396, 80R, and CR-3022 were 19 

chosen as templates due to their diversified epitopes and confirmed neutralization potency 20 

against SARS. Structures of variable fragment (Fv) in complex with receptor binding domain 21 

(RBD) from SARS-CoV or SARS-CoV2 were subjected to our established in silico antibody 22 

engineering platform to improve their binding affinity to SARS-CoV2 and developability 23 

profiles. The selected top mutations were ensembled into a focused library for each antibody for 24 

further screening.  In addition, we convert the selected binders with different epitopes into the 25 

trispecific format, aiming to increase potency and to prevent mutational escape.  Lastly, to avoid 26 

antibody induced virus activation or enhancement, we applied NNAS and DQ mutations to the 27 

Fc region to eliminate effector functions and extend half-life.   28 

 29 

  30 
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Introduction 31 

COVID-19 cases continue to climb rapidly after causing over 80 million infections and 1.7 32 

million deaths within a year.  The causing virus, SARS-CoV-2, is identified to enter human cells 33 

by binding to the angiotensin-converting enzyme 2 (ACE2) protein, following a similar path as 34 

SARS-CoV infection in 2003 [1-3].  However, compared to SARS, mutations in the RBD domain 35 

in SARS-CoV-2 produce a stronger binding affinity to human ACE2 [4-7].  36 

Due to the function of mediating cell entry, the spike protein and its RBD have been the focus of 37 

drug discovery for SARS coronaviruses. To date, hundreds of new research projects are focused 38 

on exploring potential treatments, many are at the preclinical trial phase, and several have 39 

reached the administration stage.  For instance, the mRNA-based vaccines developed by 40 

Moderna and Pfizer-BioNTech along with the Oxford-AstraZeneca’s vaccine built on the 41 

chimpanzee adenoviral vector supplemented by the SARS-CoV-2 spike protein have been 42 

authorized for emergency use. Besides vaccines, therapeutic antibodies offer additional 43 

advantages including tractable efficacy, stability, and biocompatibility. Several antibody-based 44 

therapeutics to combat SAR-CoV-2 have been developed, including Regeneron’s REGN-CoV2 45 

and Eli Lilly’s LY-CoV555. The former is a cocktail of two monoclonal antibodies (mAbs), 46 

REGN10933 and REGN10987, that target different RBD regions in order to maintain its 47 

neutralizing activity against future mutations [8], while the latter is isolated from a recovering 48 

COVID-19 patient [9].  49 

 50 

While developments of new vaccines and therapeutics have progressed rapidly, SARS-CoV-2 is 51 

evolving fast pace, if not faster, and thus poses risks and uncertainties to developed candidates 52 

and products. Several variants including K417N, E484K and N501Y mutations and deletions at 53 

positions 69—70 of the RBD have been reported. One of the spike protein mutations, E484K, 54 

was suggested to hinder the neutralization effects of some polyclonal and monoclonal 55 

antibodies [10, 11]. Some early studies suggest the mRNA-based vaccines developed by 56 

Moderna and Pfizer-BioNTech may be less effective against the recently emerged South Africa 57 

variant [12, 13]. To increase neutralization likelihood and prevent mutational escape, 58 

application of a mixture of monoclonal antibodies, i.e. an antibody cocktail, results in stronger 59 
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responses that are particularly effective against highly evolving pathogens [8]. Multi-specific 60 

antibody engineering based on a combination of broadly neutralizing antibodies is another 61 

highly effective method to target constantly evolving viruses. This design rationale was used to 62 

generate a trispecific antibody against HIV [14]. The underlying hypothesis is that targeting 63 

different regions of the antigen prevents resistance and escape and further enhances cross 64 

reactivity. Similar strategy using tandem linked single domain camelid antibodies showed 65 

significant efficacy against both influenza A and B viruses [15].  66 

Several neutralizing mAbs targeting the spike RBD on the SARS-CoV virus were previously 67 

isolated and structurally characterized. Among them, the antibody 80R binds to an epitope on 68 

the RBD that largely overlaps with the ACE2 interface (Figure 1A), and a strong salt bridge is 69 

characterized as the principal component of 80R efficacy against SARS-CoV [16]. Another 70 

antibody, m396, was reported with the unique ability of blocking both virus fusion and cell 71 

entry via the spike glycoprotein [17], with its epitope overlapping with the ACE2 binding site 72 

but substantially different from the 80R’s epitope (Figure 1A). Four CDR loops, H1—H3 and L3, 73 

mediate extensive interactions with the RBD and promote strong affinity of m396 to the virus 74 

[18]. While 80R and m396 directly block the ACE2 binding site, CR3022 possess an epitope not 75 

overlapping with the ACE2 binding site (Figure 1A), making its combination with other 76 

antibodies an attractive neutralizing agent against SARS-CoV. Moreover, CR3022 was found 77 

effective against the CR3014 escape viruses and in combination with CR3014 provides 78 

prophylaxis against SARS-CoV. For instance, mutations in the SARS-CoV RBD, such as N479S 79 

and P462L, did not eliminate CR3022 neutralization potency [19]. Previous investigations 80 

reported that only CR3022 has detectable binding to the SARS-CoV-2 RBD region [20]. P384A 81 

mutation in the SAR-CoV-2 RBD was able to return the binding affinity to SARS-CoV levels 82 

which suggests that this location plays a vital role in CR3022 neutralization activity. These 83 

observations highlight the importance of optimizing the properties of these mAbs to be used for 84 

therapeutic or prophylactic purposes against SARS-CoV-2 virus. 85 

Discovery of antibody therapeutics has rapidly evolved in the past few years, and research in 86 

lead generation and optimization faces strong challenges in needing high success rates and 87 

short timelines.  Structure-based rational engineering of antibodies has been shown fast and 88 
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highly effective in optimizing features of lead candidates, including cross reactivity, potency, 89 

developability, and safety profile.  Hereto we selected the above mentioned three structurally 90 

known anti-SARS-CoV monoclonal antibodies with established neutralization potency and fed 91 

them into our computational design pipeline to propose SARS-CoV-2 neutralizing antibodies.  92 

Moreover, combinations of those binders are designed into a multi-specific format aiming to 93 

further enhance the anti-viral potency and tolerance to viral evolution in the RBD. 94 

 95 

Method 96 

Selection of templates. SARS-CoV and SARS-CoV-2 share the same RBD-ACE2 interface as a 97 

cell entry path.  The RBDs have 76% sequence identity between SARS-CoV and SARS-CoV-2, 98 

and the level of identity decreases to 64% within the RBD-ACE2 interface residues [4] (Figure 99 

1B).  Crystal or cryoEM structures of multiple anti-SARS-CoV Fab complexes with the RBD 100 

from SARS-CoV or SARS-CoV-2 are available; we select three clones, m396, 80R, and CR3022 as 101 

our templates, with the filtering criteria of continuously overlapping epitopes, ranging from 102 

highly conserved RBD surface to more mutation prone (Figure 1A&B).  103 

Developability assessment and engineering at Fv level. The Fv of the candidates were isolated 104 

from their complex structure and subjected to computational prediction of developability 105 

features including surface patches, chemical degradation of Asp and Asn, and oxidation of Met. 106 

Patch calculation included spatial aggregation propensity (SAP) [21] using Discovery Studio 107 

(BIOVIA, Dassault Systèmes) with a 5 Å radius and clustering of residues in the patch analysis 108 

using Molecular Operation Environment (MOE) version 2019.0102 [22].  Patches larger than 50 109 

Å2 were selected for further visual inspection. Deamidation and isomerization motifs were 110 

analyzed with bioMOE using structure-based prediction models developed by Sydow et al. [23] 111 

and Robinson et al. [24]. Risk of methionine oxidation was predicted using sulfur solvent-112 

accessible area and 2-shell models with bioMOE [25].  Residue scanning on the patch residues 113 

or chemical liability motifs were manually inspected and mutation strategies were made 114 

following two criteria: 1) mutation does not impact binding; and 2) mutation reduces patch 115 

area. 116 

 117 
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Structures preparation for SARS-CoV-2 reactivity engineering. All antibody sequences 118 

reported here are renumbered using continuous peptide numbering. The RBD from SARS-CoV-119 

2 spike structure is used to replace the RBD in the m396 and 80R complexes.  For 80R, the single 120 

chain Fv (scFv) was split to Fv with standard VH-VL pairing and the linker between VH and VL 121 

in the scFv was removed.  Antibody residues that are within 6 Å of the RBD are selected and 122 

fed to residue scanning in MOE, Rosetta, TopNetTree, and SAAMBE3D. To prepare the 123 

structures for residue scanning, the PDB model of Fab/Fv with RBD2 were initially protonated 124 

and energy minimized with MOE. For calculations in Rosetta and machine learning based 125 

methods, the MOE minimized structure was further relaxed with Rosetta.  126 

MOE. The MOE computation workflow, unless specified, was performed with MOE.2019.01.02 127 

[22] with Amber10 forcefield [26] and Born solvation model [27]. After protonation and 128 

minimization, all selected residues that are within 6 Å of the antigen were subjected to single 129 

residue scanning to 20 natural residues with ensemble LowMode [28]. For ensemble generation, 130 

residues located outside 4.5 Å away from the mutation site were fixed.  131 

Rosetta Flex ddG. Flex ddG is built upon the Rosetta architecture and incorporates the 132 

conformational sampling of backbone and side chain torsions into the free energy calculation 133 

using the Talaris scoring function in Rosetta[29]. Following the nonlinear reweighting protocols, 134 

i.e. generalized additive models, of the Rosetta energy function computed for each structure of 135 

mutant and wildtype at complex and unbound states, Flex ddG estimates the ΔΔG values. 136 

Firstly, the three RBD-Fv complex structures prepared by MOE were energy minimized using 137 

the Rosetta FastRelax protocol. For each complex, the lowest energy structure was chosen from 138 

the 10 relaxed structures and used for the next step. Secondly, ΔΔG estimates for each single 139 

point mutation were calculated using the "Flex ddG" protocol with default parameters as 140 

described in the reference [30], except for using 10 instead of 35 averaged models due to 141 

computational constraints. This change was made according to the observation in the original 142 

publication that the correlation and mean absolute error between predicted ΔΔG and 143 

experimental ΔΔG became stable when the number of averaged models was around 10 or more 144 

[30].  145 
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TopNetTree. TopNetTree is a machine learning (ML) model that utilizes site-specific persistent 146 

homology to extract the local geometric information of the protein complexes and mutation 147 

sites [31]. As such, this method simplifies the complexity of the 3D atomic structure and in 148 

conjunction with ML methods, including convolutional neural networks and gradient-boosting 149 

trees, it is able to capture the change in the underlying biochemical features, such as hydrogen 150 

bonding and dispersion interaction represented at the zeroth homology group H0, along with 151 

the structural change, represented at first and second homology groups H1 and H2, at the 152 

mutation site.  The model is trained and validated on different single site mutation datasets, 153 

including computational and experimental data, such as SKEMPI v2.0 [32] and AB-Bind [33]. 154 

Validation results of this method illustrate satisfactory performance across different databases 155 

and mutation regions (accessible surface area) for the ΔΔG prediction. The ΔΔG calculations 156 

were performed using both topological and physiochemical properties. The original 157 

TopNetTree model parameters were used in this study. The optimized complex structures 158 

obtained from Rosetta were used as input for free energy calculations. To maintain consistency 159 

with TopNetTree methodology each structure was further optimized with the profix module in 160 

Jackal modeling suite.  161 

SAAMBE-3D. SAAMBE-3D is an ML based model that is constructed based on a variety of 162 

features spanning across multiple chemical, physical, sequential and mutation specific 163 

properties. This allows SAAMBE-3D to efficiently extract essential information from the 164 

structure and predict the ΔΔG upon mutation.  We downloaded and used, without 165 

modification, the scripts and models associated with the publication [34] 166 

(http://compbio.clemson.edu/saambe_webserver/index3D.php). The model was trained on 3753 167 

single point mutations from 299 different protein–protein complexes, of which approximately 168 

650 mutations were from 76 Ag-Ab complexes. We did not re-train the model on the more 169 

relevant Ag-Ab subset as the significant reduction in the dataset size may decrease the 170 

performance of the model.  Rosetta optimized structures for each Fv-RBD system were used as 171 

the initial structure for SAAMBE-3D calculations.  172 

Consensus Z-score. Z-scores were used to extract the favorable mutations for each system. 173 

Coupled with the structural inspection, z-scores have been shown to accurately highlight/guide 174 
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mutation selection from the vast affinity maturation calculations. We used a modified Z-score as 175 

suggested by Sulea et al. [35] where the median and median absolute deviation (MAD) were 176 

used based on the following equation:  177 

Zi = (xi - xmed) / (1.4826 * MAD)     178 

Each Z-score was averaged over the four methods. Top 60 average scores for each system 179 

supplemented with the structural inspection to select the final list of affinity promoting 180 

mutations.  181 

Results 182 

Selection of three neutralizing antibodies.  Monoclonal antibodies 80R, m396, and CR3022 183 

have been well characterized to prove their neutralizing potency to SARS-CoV virus.  The 184 

mutations between SARS-CoV-2 and SARS-CoV RBD make these neutralizers not immediately 185 

applicable to block the RBD-ACE2 interactions [36, 37].  Publicly available high-quality 186 

structures of Fab in complex with RBD allow us to quickly design SARS-CoV-2 binders through 187 

our structure-based rational engineering platform, which has been serving our cross reactivity 188 

and affinity maturation engineering purposes in biologics projects [38]. The epitopes of these 189 

three antibodies are located in relatively conserved surfaces on the RBD (Figure 1A&B).  The 190 

80R and m396 epitopes largely overlap with the ACE2 binding site, which limits the possibility 191 

of escaping mutations on the RBD as mutations abolishing ACE2 interaction are unfavorable. 192 

Although the CR3022 epitope is distal from the ACE2 binding site, it has been shown as a 193 

conserved epitope between SARS-CoV and SARS-CoV-2 [20]. Additionally, the glycosylation 194 

sites (N331 and N343) in the SARS-CoV-2 RBD are away from the epitopes of the three 195 

antibodies, making it less likely to shield antibody binding (Figure 1A) [39]. Lastly, 80R and 196 

CR3022 utilize kappa, while m396 uses lambda light chain. The difference in light chains also 197 

helps assembly design into multi-specific antibodies and minimize mispairing risks.  198 

In silico mutagenesis and consensus Z-score.  For each complex structure, antibody residues 199 

within 6 Å from the RBD were selected for ΔΔG calculations upon mutation to all 20 amino 200 

acids. This resulted in 48, 35, and 34, mutation sites corresponding to 80R, m396, and CR3022, 201 

respectively. Figures 2D, 3D, and 4D depict the results of ΔΔG calculations performed on 80R, 202 

m396, and CR3022, respectively, using the 4 computational methods discussed before. Due to 203 
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the mutational structure sampling algorithms, the binding affinity scores comparing mutations 204 

to wild type (e.g. H:S101S) can be nonzero. For normalization, the ∆∆G value for each mutation 205 

is offset so that the wild type mutations are zero. Interestingly, predicted ΔΔG values obtained 206 

from SAAMBE-3D are mainly unfavorable (positive values), and the range of predicted values 207 

is smaller than other methods. Another observation is the large variation of predicted values 208 

among these four methods, reflecting the need of an approach to effectively rank the mutations. 209 

Previous studies in binding affinity predictions suggest that using a consensus approach over 210 

different methods can improve prediction accuracy [35, 40-45]. Following this rationale, we 211 

applied a similar strategy to rank the single mutations from the four computational predictions 212 

for each antibody. We used relative ranking instead of absolute score due to different 213 

magnitudes and scales of the four methods. A Z-score describes a value's relationship to the 214 

mean of a group of values, which is useful for normalization of raw scores. Here we used a Z-215 

score based on the median value instead of the mean value for each scoring function, which 216 

reduces the sensitivity of Z-scores to outliers. By averaging the Z-score from the four methods, 217 

consensus Z-scores were computed, and the top ranked mutations were visualized to validate 218 

the predictions. For each system we selected the top 60 mutations as presented in Table 1.  219 

Structural inspection. During the structural inspection, physiochemical factors, such as spatial 220 

limitations, removal of salt bridge or hydrogen bond, deletion or introduction of Cys, Met, and 221 

Pro residues were taken into consideration. As shown in Figure 2C and Table 1, selected 222 

mutations for 80R belong to positions D50, A51, S52, S67, S92 in the light chain; and N57, R100, 223 

S101 in the heavy chain. Since A51 is in the vicinity of Y489, F490, and Q493, it is expected that 224 

mutations to Phe, Trp, or Tyr will promote formation of π—π interactions, while mutations to 225 

Glu, His, Arg, and Lys may facilitate hydrogen bond interactions with Q429. Similarly, 226 

mutations at site 50 and 32 can either strengthen the hydrogen bond or form nonpolar 227 

interactions with the bonding partners on the RBD. Side chains of residue 100 and 101 on the 228 

heavy chain are in close proximity to Y505, therefore, introduction of aromatic side chains in 229 

these locations are presumably favorable. Heavy chain S101D mutation was selected due to 230 

possible hydrogen bond enhancement for interacting with N501 (Figure 4C).  231 

 232 
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As shown in Figure 3C and Table 1, top ranked affinity enhancing mutations for m396 are 233 

primarily located at the CDRH2 loop, such as residues 52—59. These residues are in a close 234 

contact with R403, Q498, Y505, and N501 on the RBD. H:I57R and H:N59R mutations can 235 

introduce a salt bridge with D405 resulting in stronger binding to the RBD. H:S31X mutations, 236 

where X is polar side chain, increases the possibility of hydrogen bond formation with T500 and 237 

N501 on the RBD. Structural investigation does not support the H:S31F change as it disrupts the 238 

hydrogen bond network at this site. However, due to the large Z-score and consistency of the 239 

three methods, including MOE, Flex ddg, and TopNetTree, this mutation was included in the 240 

suggested list. Mutations on the light chain, including L:G29X and L:S30X, where X is an 241 

aromatic mutation, is highly favorable as these side chains are in proximity of Y369 and F374. 242 

L:S30E, L:S30H, and L:S30K can result in strong hydrogen bond interactions with the backbone 243 

of the RBD near L:S30. Lastly, L:S93E may introduce a salt bridge with the R408 side chain.  244 

As shown in Figure 4C and Table 1, selected mutations on the light chain of CR3022 are located 245 

on 4 sites, 33—35 and 62. The polar substitutions of these residues are justified through 246 

possibility of formation of a hydrogen bond network with D428 and T430 on the RBD, whereas 247 

nonpolar mutations can enhance the hydrophobic interactions with L517. The selected 248 

mutations on H:G101 and H:S103 of the heavy chain are all of aromatic nature due to their 249 

proximity to Y380 and F377. Chain elongation and a more polar headgroup in the H:S100Q 250 

substitution can potentially enhance the hydrogen bond network with S383, T385, and K386. 251 

H:I102Y is likely to enhance interactions with Y380, while H:T104E and H:Y27R mutations could 252 

promote a stronger hydrogen bond network with S383 and N370, respectively. 253 

 254 

Developability engineering.  255 

Computational developability risk assessments were focused on chemical liability sites that are 256 

nearby or within the paratope and surface patch forming residues, such as hydrophobic and 257 

charged residues.  258 

De-risk plan for antibodies 80R and CR3022 is proposed only for chemical liabilities. In 80R, 259 

CDRH2 largely contributes to RBD binding. H:D54-G55 which sit in the middle of CDRH2 are 260 

considered high risk, although H:D54 does not directly contact RBD residues; H:D54E mutation 261 
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is therefore proposed.  In CR3022, D54 in the DS motif in CDRH2 forms salt bridge to K378 in 262 

the RBD. H:D54E mutation is proposed, as H:D54 flanking residues are not directly interacting 263 

with the RBD and H:D54 sits in a relatively flexible loop.  Surface patches on those two 264 

antibodies are generally smaller than 100 Å2 and are considered as low risk. One cluster of 265 

hydrophobic residues exists in CR3022 around CDRL2 and the 17-residue long CDRL1. The 266 

hydrophobic interface (L- I34, Y55, W56) is critical for RBD binding, and the surface is 267 

surrounded by charged residues.  Therefore, no mitigation plan is proposed on the CR3022 268 

hydrophobic patch. 269 

Among the three selected antibodies, m396 has the highest developability risk, with a 270 

130 Å2 hydrophobic patch around CDRH2 (H:I54-L55-G56-I57), and a 130 Å2 acidic patch 271 

around CDRL2 (L:D50-D51-S52-D53) (Figure S1B). Chemical liabilities in m396, including 272 

exposed H:M102 in CDRH3, L:N26-N27 motif in CDRL1 and L:D92-S93 motif in CDRL3, were 273 

predicted as moderate risk since those residues are not directly mediating RBD recognition. To 274 

mitigate the risks in m396, mutations giving higher consensus scores at residues L:N26, L:D51, 275 

L:D92, H:I54, H:L55, H:I57, and H:M102 were selected into the screening library (Figure 3D, 276 

Tables 1, 3).  277 

 278 

Library design. With proposed affinity and developability optimization mutations, we next 279 

proceeded to design three focused libraries for 80R, m396, and CR3022 individually. The 280 

designed libraries will be used by a high-throughput system, such as phage display, to screen 281 

for high affinity binders. Table 2-4 summarizes variations at different positions in the three 282 

libraries. The resulting theoretical library sizes are all smaller than 1 × 1011, which are suitable 283 

for phage display screening.  284 

 285 

Trispecific antibody design and Fc selection. SARS-CoV-2 has shown fast mutation rates 286 

among discovered variants, therefore combining neutralizing antibodies with different epitopes 287 

into a multi-specific format can benefit both potency and breadth, especially for future variants. 288 

We therefore proposed to engineer the three mAbs, after affinity optimization against SARS-289 

CoV-2, into a trispecific format, which has been demonstrated successful in HIV neutralization 290 
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[14]. The trispecific format includes a single Fab arm derived from a normal immunoglobulin G 291 

(IgG) with a double Fv arm generated in the CODV-Ig format (cross-over dual variable Ig-like 292 

proteins) [46] (Figure 5A-B). We modeled all possible combinatorial structures of CODV in 293 

complex with SARS-CoV-2 spike proteins (Figure 5C-D). Interestingly, it had been reported that 294 

CR3022 binding requires rearrangements in the S1 domain of the spike protein which results in 295 

dissociation of the spike [47]. A similar observation that CR3022 showed incompatibility to all 296 

possible CODV configurations led us to keep CR3022 in the Fab arm and use m396 and 80R in 297 

the CODV arm. After examining the structural compatibility, option 2 (80R as VH1/VL2, m396 298 

as VH2/VL1) showed to be the best geometrical configuration (Figure 5C-D).  299 

Modifications to the Fc domain are devised to block the contact formation between the Fc 300 

region and effector cells.  Antibody-dependent enhancement (ADE) potentially poses a safety 301 

risk to an antibody treatment, and anti-SARS-CoV-2 antibodies could exacerbate COVID-19 302 

through antibody-dependent enhancement [48]. Although effector function has been recently 303 

reported as essential for optimal efficacy in SARS-CoV-2 monoclonal antibody SC31 [49], 304 

considering the triplicated valency in our CODV-IgG trispecific antibody, we included NNAS 305 

glycosylation at the FcγR interface [50] to completely eliminate Fc-mediated effector functions 306 

therefore minimizing ADE risk, and DQ mutations at the FcRn interface [51] to extend antibody 307 

half-life.  308 

 309 

Discussion 310 

The devastating COVID-19 pandemic urges faster and smarter designs of treatment to patients 311 

worldwide.  Antibody therapies have been shown to have the advantages of large-scale 312 

production and anti-viral potency.  Structure-based rational engineering to redesign well 313 

characterized SARS-CoV neutralizing mAbs enables quick solutions to create a pool of SARS-314 

CoV-2 neutralizers with known epitopes.  In this work we share our knowledge in antibody 315 

engineering especially in multi-specific formats. Using computational protein engineering tools, 316 

we proposed a multi-specific antibody based on optimization of SARS-CoV neutralizing 317 

antibodies. Our extensive exploration of mutational space involved in the direct interaction 318 

with the SARS-CoV-2 RBD has produced a mutation library that is expected to improve the 319 
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efficacy of these antibodies against the SARS-CoV-2 virus. Physiochemical properties and free 320 

energy calculations of each mutation were taken into consideration in building our mutation 321 

library. The satisfactory level of agreement and consistency among three of the methods used in 322 

this study, including MOE, Rosetta Flex ddg, and TopNetTree, highlights the effectiveness of 323 

our proposed library design.   324 

Several AI-guided studies have been carried out to discover treatment against SARS-CoV-2 325 

virus, including the work from Magar et al. [52] and Desautels et al. [53]. Using a ML-based 326 

algorithm, Magar and coworkers proposed single and combinatorial mutations on 80R and S230 327 

antibodies with potentially better antibody response. In the case of 80R, the proposed mutations 328 

are largely distal from the binding site, and they don’t overlap with our proposal. Since the ML-329 

based model was trained on patient neutralization response, it may capture different properties 330 

related to neutralization rather than direct interaction with antigen. It is intriguing that there 331 

may be a synergistic effect when combining the ML-based mutations with our proposed 332 

mutations in neutralization activity. In another work from Desautels et al., antibody candidates 333 

were proposed using an active learning protocol where the model takes Rosetta scores as 334 

ground truth and continuously improves its predictability. Complex structures of SARS-CoV 335 

neutralizing Abs, including S230, m396, and F26G19, were fed to the algorithm, and mutants 336 

with favorable predicted Rosetta scores were proposed. The mutants were further selected by 337 

free energy calculations using MD simulations under the implicit solvent model (GBSA). After 338 

all, mutations were selected based on Rosetta score and MM/GBSA free energy, while the ML 339 

model was used to predict Rosetta scores of large numbers of mutations. In contrast, our 340 

method used two separate ML-based models predicting affinity changes directly and assembled 341 

the results together with two physics-based methods, one Rosetta-based and one similar to 342 

MM/GBSA. By this more diverse scoring system, we expect to increase the prediction accuracy. 343 

Moreover, a high-throughput screening method enables testing more mutations and their 344 

combinations, which will further increase the possibility of success.  345 

Continuous evolution of SARS-CoV-2 virus remains a significant threat even after the successes 346 

of current vaccine development. Among the mutations in the UK and South African strains, 347 

E484K is within the 80R epitope, while N501Y is within both 80R and m396 epitopes (Figure 348 
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1B). This emphasizes the importance of combining multiple antibodies with different epitopes, 349 

especially to include antibodies with conserved epitopes, such as CR3022. Given the success 350 

shown in the HIV study, our trispecific format is one of the suitable formats for 3-in-1 antibody 351 

design. However, it requires careful geometry modeling and sequence optimization for further 352 

developability. 353 

 354 
Conclusions  355 

In this study, we used computational protein engineering tools to optimize SARS-CoV 356 

neutralizing mAbs against SARS-CoV-2 virus. Three mAbs were used as templates where their 357 

complex structures with SARS-CoV-2 RBD were optimized following modeling protocols in 358 

Rosetta and MOE simulation packages. Subsequently, extensive free energy calculations were 359 

carried out on the residues in contact with the RBD. Two physics-based and two ML-based free 360 

energy calculation suites were utilized to perform the affinity maturation calculations. For each 361 

system, developability assessment was done and a focused library was proposed for high-362 

throughput screening of high affinity and developable Fabs against the SARS-CoV-2 RBD. 363 

Lastly, a design of combining the three antibodies in a trispecific format was achieved, aiming 364 

for high potency and broad neutralization activity.  365 
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 366 
Figure 1. Redesign of the three anti- SARS-CoV RBD antibodies to target SARS-CoV-2. (A) 367 
Structural superimposition of CR3022 (cartoon representation colored in blue, PDB code 6W41), 368 
m396 (cartoon representation colored in orange, PDB code 2DD8), 80R (cartoon representation 369 
colored in magenta, PDB code 2GHW), and ACE2 (ribbon representation colored in grey, PDB 370 
code 6M17) on their binding to SARS-CoV or SARS-CoV-2 RBD. N-glycosylation at N343 site is 371 
shown as red sphere, while glycosylation at N313 site is not visible in the crystal structures. (B) 372 
Sequence alignment of the SARS-CoV-2 and SARS-CoV RBDs. Conserved residues between 373 
SARS-CoV and SARS-CoV-2 are highlighted in blue color. Recent UK and South African SARS-374 
CoV-2 mutation sites are highlighted in red. Epitope residues are indicated by colored dots: 375 
blue for CR3022, orange for m396, and magenta for 80R. (C) Schematic workflow for 376 
engineering of the three antibodies. Green text indicates engineering toward developability and 377 
cross reactivity, and orange text indicates format related designs in Fab and Fc regions.  378 
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379 
Figure 2. Engineering of 80R. (A) Sequence alignment of SARS-CoV-2 and SARS-CoV RBDs. 380 
80R epitope residues are highlighted in orange. Non-conserved epitope residues are marked 381 
with asterisks. (B) Epitope residues on SARS-CoV-2 are shown. CDR loops are labeled. Epitope 382 
residues that are conserved between SARS-CoV-2 and SARS-CoV are shown in pink, and those 383 
that are not conserved are shown in red. (C) Interactions between selected 80R residues for 384 
engineering and epitope residues are shown. Amino acid variants observed in SARS-CoV are in 385 
parentheses. SARS-CoV-2 RBD is grey, 80R heavy chain is magenta, and 80R light chain is pink. 386 
Residues are numbered according to their positions on the SARS-CoV-2 S protein sequence. (D) 387 
Heatmap of prediction of all possible mutations for selected residues on 80R from SAAMBE-3D, 388 
TopNetTree, Rosetta flex ddG, and MOE MM/GBVI methods. Residues selected for library 389 
design are colored in red. 390 
 391 
 392 
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 393 
Figure 3. Engineering of m396. (A) Sequence alignment of SARS-CoV-2 and SARS-CoV RBDs. 394 
M396 epitope residues are highlighted in brown. Non-conserved epitope residues are marked 395 
with asterisks. (B) Epitope residues on SARS-CoV-2 are shown. CDR loops are labeled. Epitope 396 
residues that are conserved between SARS-CoV-2 and SARS-CoV are shown in orange, and 397 
those that are not conserved are shown in red. (C) Interactions between selected m396 residues 398 
for engineering and epitope residues are shown. Amino acid variants observed in SARS-CoV 399 
are in parentheses. SARS-CoV-2 RBD is grey, m396 heavy chain is orange, and m396 light chain 400 
is yellow. Residues are numbered according to their positions on the SARS-CoV-2 S protein 401 
sequence. (D) Heatmap of prediction of all possible mutations for selected residues on m396 402 
from SAAMBE-3D, TopNetTree, Rosetta flex ddG, and MOE MM/GBVI methods. Residues 403 
selected for library design are colored in red. 404 
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 405 
Figure 4. Engineering of CR3022. (A) Sequence alignment of SARS-CoV-2 and SARS-CoV 406 
RBDs. CR3022 epitope residues are highlighted in brown. Non-conserved epitope residues are 407 
marked with asterisks. (B) Epitope residues on SARS-CoV-2 are shown. CDR loops are labeled. 408 
Epitope residues that are conserved between SARS-CoV-2 and SARS-CoV are shown in blue, 409 
and those that are not conserved are shown in red. (C) Interactions between selected CR3022 410 
residues for engineering and epitope residues are shown. Amino acid variants observed in 411 
SARS-CoV are in parentheses. SARS-CoV-2 RBD is grey, CR3022 heavy chain is blue, and 412 
CR3022 light chain is cyan. Residues are numbered according to their positions on the SARS-413 
CoV-2 S protein sequence. (D) Heatmap of prediction of all possible mutations for selected 414 
residues on CR3022 from SAAMBE-3D, TopNetTree, Rosetta flex ddG, and MOE MM/GBVI 415 
methods. Residues selected for library design are colored in red. 416 
  417 
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 418 
Figure 5. Trispecific antibody engineering. (A) Schematic linear configuration of the trispecific 419 
antibody color-coded by position. Dark shades (blue, purple, or green) denote heavy chain 420 
peptides; light shades denote light chain peptides.  (B) Schematic cartoon configuration of the 421 
trispecific antibody shown in cartoon. Same color scheme is used as that in (A). (C) All possible 422 
combinations of the three Fvs in the trispecific format. (D) Structural modeling showed only 423 
Option 2 as the optimal geometrical configuration. The CODV is shown in surface format and 424 
color coded as in (A-C), and the spike proteins are shown in grey colored cartoon.  425 
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Table 1. Top 60 mutations ranked by consensus Z-scores. Mutations are represented in “Chain 426 
ID: Mutation” format and are associated with consensus z-scores calculated by the formula in 427 
the Methods section. 428 

80R m396 CR3022 

chain:mutation Z score chain:mutation Z score chain:mutation Z score 

H:S101W 
H:R100W 
H:S101M 
H:S101L 
L:A51F 
L:A51H 
H:R100F 
L:A51Y 
H:S101D 
H:S101C 
H:R100M 
H:R100L 
L:A51L 
l:A51Q 
L:A51I 
H:R100E 
H:R100I 
H:R100D 
H:R100V 
H:S101I 
L:A51W 
l:S67Y 
l:D50E 
l:A51E 
l:S67H 
l:S67F 
H:R100C 
H:S101V 
L:S52F 
H:R100K 
L;S92H 
L:A51M 

-3.068 
-3.029 
-2.905 
-2.886 
-2.604 
-2.558 
-2.48 
-2.384 
-2.292 
-2.219 
-2.114 
-2.099 
-2.09 
-1.957 
-1.931 
-1.898 
-1.892 
-1.887 
-1.874 
-1.833 
-1.824 
-1.816 
-1.791 
-1.768 
-1.754 
-1.742 
-1.739 
-1.731 
-1.697 
-1.688 
-1.641 
-1.626 

L:S30Y 
L:S30F 
L:S30W 
H:L55Y 
H:V101Y 
L:S93H 
H:S31R 
L:S30R 
H:V101W 
H:S31F 
H:G103F 
H:S31Y 
L:S30H 
H:N59F 
H:I54F 
L:S94F 
H:T52Y 
H:S31Q 
L:S30E 
L:S93E 
L:S95F 
L:S93Y 
L:S93I 
H:M102W 
L:S32Y 
H:V101F 
H:N59R 
H:S31W 
H:G103W 
L:G29F 
H:L55F 
H:I57R 

-2.865 
-2.464 
-2.351 
-2.241 
-1.863 
-1.797 
-1.788 
-1.695 
-1.664 
-1.656 
-1.637 
-1.545 
-1.507 
-1.496 
-1.459 
-1.428 
-1.413 
-1.38 
-1.366 
-1.365 
-1.356 
-1.339 
-1.329 
-1.29 
-1.263 
-1.263 
-1.248 
-1.244 
-1.244 
-1.24 
-1.237 
-1.213 

H:S103W 
H:G101F 
L:S33H 
L:S33F 
H:G101A 
L:S33M 
H:S103F 
L:S33Y 
L:S33E 
L:S62W 
H:S103Y 
L:S33L 
H:T104Q 
H:G101W 
H:D55Q 
L:N35R 
H:D55I 
H:D55H 
H:S103M 
L:S33Q 
L:S33I 
H:S100Q 
L:S62Y 
H:D55C 
L:S62V 
H:T31E 
H:D55S 
H:I102Y 
H:T104E 
H:T31M 
L:S62M 
H:S100P 

-2.238 
-2.169 
-1.939 
-1.828 
-1.653 
-1.630 
-1.628 
-1.470 
-1.466 
-1.433 
-1.423 
-1.316 
-1.306 
-1.291 
-1.288 
-1.241 
-1.213 
-1.199 
-1.139 
-1.137 
-1.131 
-1.126 
-1.114 
-1.114 
-1.111 
-1.110 
-1.087 
-1.085 
-1.077 
-1.069 
-1.055 
-1.055 
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H:R100A 
H:R100S 
H:R100N 
L:A51K 
L:S31Y 
H:R100T 
H:S101T 
L:D50Y 
H:R100Q 
H:S101E 
L:A51D 
L;S92M 
L:S67M 
L:A51R 
H:D105W 
L:S52M 
L:S67E 
H:S101Y 
H:S31W 
L:S67K 
L:S92R 
L:A19K 
L:A19D 
L:A51N 
L:S52Y 
H:N57Q 
H:A33M 
H:S31F 

 

-1.612 
-1.556 
-1.523 
-1.512 
-1.422 
-1.405 
-1.362 
-1.349 
-1.336 
-1.331 
-1.303 
-1.29 
-1.274 
-1.273 
-1.269 
-1.23 
-1.217 
-1.217 
-1.199 
-1.187 
-1.172 
-1.166 
-1.164 
-1.149 
-1.104 
-1.104 
-1.002 
-0.995 

 

H:V101L 
H:S31M 
H:T100W 
L:N27E 
H:I57W 
H:N59Y 
H:G50E 
H:S31K 
H:M102Y 
L:S30K 
L:S32W 
H:V101M 
L:S93N 
H:G50Q 
L:G29R 
L:S30M 
L:G29Y 
H:I57H 
L:S94W 
H:V101R 
L:S95I 
L:K31R 
L:S32F 
L:G29W 
L:S93D 
L:G29P 
L:N27W 
L:N27Y 

 

-1.21 
-1.208 
-1.198 
-1.187 
-1.184 
-1.178 
-1.163 
-1.159 
-1.134 
-1.132 
-1.121 
-1.11 
-1.104 
-1.062 
-1.051 
-1.03 
-1.013 
-1.011 
-0.993 
-0.976 
-0.96 
-0.944 
-0.939 
-0.923 
-0.906 
-0.841 
-0.835 
-0.822 

 

H:S100A 
H:Y27R 
H:S100M 
H:Y27W 
H:D107W 
H:D55G 
H:P105W 
H:G101S 
L:S33W 
H:S100T 
L:I34Q 
H:T31I 
L:S62T 
H:I102F 
L:S62R 
L:S62N 
L:S62L 
L:S33C 
L:S62F 
L:N35Y 
L:S62H 
L:N35W 
L:S33K 
L:S33R 
L:S62I 
L:I34Y 
L:S32N 
L:S62Q 

 

-1.040 
-1.030 
-1.010 
-0.998 
-0.998 
-0.960 
-0.959 
-0.958 
-0.956 
-0.939 
-0.930 
-0.923 
-0.920 
-0.920 
-0.900 
-0.882 
-0.858 
-0.832 
-0.809 
-0.800 
-0.789 
-0.773 
-0.768 
-0.709 
-0.695 
-0.690 
-0.677 
-0.673 

 

 429 

  430 
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Table 2. Selected 80R mutations for library design. Wild-type residues are listed in bold. 431 
Underlined residues are potential developability labile sites. 432 

 
80R: variable light chain  80R: variable heavy chain 

 
19 31 50 51 52 67 92 

 
31 54 57 100 101 105 

wild type A S D A S S S 
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Table 3. Selected m396 mutations for library design. Wild-type residues are listed in bold. 435 
Underlined residues are potential developability labile sites.  436  

  m396: variable light chain 
 

m396: variable heavy chain 
 

 
 26 27 29 30 31 32 51 92 93 94 95 

 
31 52 54 55 57 59 101 102 103 

wild type  N N G S K S D D S S S 
 

S T I L I N V M G 

 
 Q E F Y R W W E Y F I 

 
R Y F Y R F Y W F 
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Table 4. Selected CR3022 mutations for library design. Wild-type residues are listed in bold. 439 
Underlined residues are potential developability labile sites. 440 

  
CR3022: variable light chain 

 

 

CR3022: variable heavy chain 

  
32 33 34 35 62 

 
27 31 54 55 100 101 102 103 104 105 107 

wild type 
 

S S I N S 
 

Y T D D S G I S T P D 

  
N H Q R W 

 
W E E Q Q F Y W Q W W 

   
F Y Y Y 

  
I  I P W F F E 

  

   
Y 

 
W V 

   
 H A S 

 
Y 

   

   
E 

  
T 

   
 S T 

      

   
L 

  
R 

   
 G 

       

   
Q 

  
N 

   
 

        

   
I 

  
L 

   
 

        

   
W 

  
F 

   
 

        

   
K 

  
H 

   
 

        

   
R 

  
I 

   
 

        
 441 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 23, 2021. ; https://doi.org/10.1101/2021.03.23.436613doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.23.436613


 442 
Figure S1. Developability assessment on antibody 80R, m396, and CR3022. Left: MOE patch 443 
analysis on the Fv region of antibody (A) 80R, (B) m396, and (C) CR3022. Red color indicates 444 
negative-charge patch, blue color indicates positive-charge patch, and green color indicates 445 
hydrophobic patch. Right: spatial aggregation propensity (SAP) analysis of antibody (A) 80R, 446 
(B) m396, and (C) CR3022, with high SAP score colored in red and low SAP score colored in 447 
blue (scale showed in a bar scheme). 448 

449 
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