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Abstract: 17 

Changes in winter conditions, such as decreased ice coverage and duration, have been observed 18 

in the Laurentian Great Lakes for more than 20 years. Such changes have been hypothesized to 19 

be linked to low Coregonus spp. survival to age-1 as most cisco (Coregonus artedi) populations 20 

are autumn spawners whose embryos incubate under ice throughout the winter. The quantity of 21 

light during winter is regulated by ice coverage, and light affects embryo survival and 22 

development in some teleosts. We experimentally evaluated how cisco embryos from lakes 23 

Superior and Ontario respond to three light treatments that represented day-light intensity under 24 

0-10, 40-60, and 90-100% ice coverage. Embryonic response measures included two 25 

developmental factors (embryo survival and incubation period) and two morphological traits 26 

(length-at-hatch and yolk-sac volume). Embryo survival was highest at the medium light 27 

treatment and decreased at high and low treatments for both populations, suggesting cisco may 28 

be adapted to withstand some light exposure from inter-annual variability in ice coverage. Light 29 

intensity had no overall effect on length of incubation. Increasing light intensity decreased 30 

length-at-hatch in Lake Superior but had no effect in Lake Ontario. Yolk-sac volume was 31 

positively correlated with increasing light in Lake Superior and negatively correlated in Lake 32 

Ontario. Contrasting responses in embryo development between lakes suggests differences in 33 

populations’ response to light is flexible. Our results provide a step towards better understanding 34 

the high variability observed in coregonine recruitment and may help predict what the future of 35 

this species may look like under current climate trends. 36 

 37 

Keywords: Coregonus; cisco; climate change; embryo incubation; ice coverage; light intensity 38 
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Introduction: 40 

Freshwater whitefishes, Salmonidae Coregoninae (hereafter coregonines) play important 41 

economic (Ebener et al., 2008) and ecological (Lynch et al., 2010; Nyberg et al., 2001; Stockwell 42 

et al., 2014) roles throughout the northern hemisphere, but populations have declined over the 43 

past century (Eshenroder et al., 2016). Historical coregonine declines were attributed to 44 

overfishing, invasive species, habitat alterations, and competition (Anneville et al., 2009; 45 

Rosinski et al., 2020; Stockwell et al., 2009). More recently, coregonine populations worldwide 46 

have experienced declines due to highly variable recruitment and low survival to age-1 (Lepak et 47 

al., 2017; Nyberg et al., 2001; Parks and Rypel, 2018) which have been associated with climate-48 

induced changes in early-life stage environments (Nyberg et al., 2001). However, an underlying 49 

mechanism between changing lake environments and coregonine year-class strength has yet to 50 

be established. 51 

 52 

Year-class strength in most fish species, including coregonines, is thought to be established prior 53 

to the end of the first season of growth (Cushing, 1990; Hjort, 1914; Karjalainen et al., 2015). 54 

Most coregonines are autumn spawners whose embryos incubate under ice throughout the winter 55 

(Karjalainen et al., 2000; Stockwell et al., 2009). Embryos are static, which leaves them 56 

vulnerable to predation (Stockwell et al., 2014) and unable to evade detrimental changes in 57 

winter environmental conditions (Pepin, 1991). Changes in winter conditions, such as decreased 58 

ice coverage and duration, that have been observed over the past 20+ years (Austin and Colman, 59 

2007; O’Reilly et al., 2015; Sharma et al., 2019), could alter developmental rates, embryo 60 

survival, and time of hatching (Karjalainen et al., 2015). Potential mechanisms by which ice 61 

coverage influences coregonine embryonic development include reduced physical wave action 62 

(Austin and Colman, 2007; Nguyen et al., 2017; Walter et al., 2006; Wang et al., 2010), 63 

stabilized winter and spring water temperatures (Magnuson et al., 1997; Winslow et al., 2017), 64 

and the amount of sunlight reaching the lake bottom (Bolsenga and Vanderploeg, 1992; 65 

Hampton et al., 2015).  66 

 67 

Photoperiod is the most consistent abiotic factor in nature (Ruchin, 2020) and can regulate fish 68 

development phenology, behavior, and physiology (Ruchin, 2007; Villamizar et al., 2011). The 69 

length of photoperiods characterize circadian rhythms and ensure that biological processes are 70 
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synchronized with the environment (Gaston et al., 2013; Marchesan et al., 2005; Ruchin, 2020). 71 

In seasonally ice-covered lakes, winter lake light levels are regulated by ice coverage and snow 72 

depth (Bolsenga and Vanderploeg, 1992; Hampton et al., 2015). Ice can reduce light 73 

transmittance to 62% under clear ice, and to ≤ 10% under snow covered ice (Bolsenga and 74 

Vanderploeg, 1992).  75 

 76 

Salmonid embryos incubated under elevated light levels had higher mortality and deformity 77 

rates, slower formation of cartilaginous skeletal elements, decreased time to hatching, smaller 78 

size-at-age, and accelerated development after organogenesis (Chernyaev, 2007; Eisler, 1961, 79 

1958; Kwain, 1975; MacCrimmon and Kwain, 1969). However, other teleosts (e.g., turbot 80 

Scophthalmus maximus, Atlantic halibut Hippoglossus hippoglossus, brown-marbled grouper 81 

Epinephelus fuscoguttatus) exhibit opposite responses, or no response, to manipulated light 82 

illumination during incubation (Iglesias et al., 1995; Mangor�Jensen and Waiwood, 1995; 83 

Ruchin, 2020; Seth et al., 2014). To our knowledge, no previous work has examined the effects 84 

of light on coregonine embryos from North America. 85 

 86 

We experimentally evaluated how cisco (Coregonus artedi) embryos responded to different 87 

photoperiod intensities, as a proxy for different ice coverages. We hypothesized that exposure to 88 

elevated light intensity (a proxy for low ice coverage) decreases embryo survival and accelerates 89 

embryogenesis, resulting in earlier hatching, larger yolk-sac volume, and shorter length-at-hatch. 90 

Our objective was to identify the extent to which light influences cisco embryo survival, 91 

incubation duration, and length and yolk-sac volume at hatching. We expected populations 92 

adapted to lower light levels (high ice coverage) would experience a greater magnitude of change 93 

as light intensity increases. 94 

 95 

Methods: 96 

Ethics 97 

All work described here was approved for ethical animal care under University of Vermont’s 98 

Institutional Animal Care and Use Committee (Protocol # PROTO202000021). 99 

 100 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.03.23.436622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.23.436622


5 

Study Species and Locations 101 

Mature cisco were collected from the Apostle Islands, Lake Superior (46.85°, -90.55°) and 102 

Chaumont Bay, Lake Ontario (44.05°, -76.20°) in December 2019. Lake Superior cisco were 103 

collected at an open lake location at depths between 15 and 50 m. Lake Ontario cisco were 104 

collected in a shallow, protected bay on rocky shoals at depths between 2 to 5 m. Egg deposition 105 

has been confirmed in Chaumont Bay (George et al., 2017; Paufve et al., 2020). No direct 106 

evidence of spawning has been observed in Lake Superior and thus we are using the presence of 107 

ripe adults at our collection location as a proxy for a spawning location. We acknowledge that 108 

spawning and the embryo incubation location could be different, but previous literature suggests 109 

that spawning in Lake Superior occurs at depths of 30-200 m (Dryer and Beil, 1964; Eshenroder 110 

et al., 2016; Stockwell et al., 2009). Historical (1973-2020) ice conditions over the sampled 111 

spawning locations varied between lakes with the shallower, more protected Lake Ontario 112 

spawning site having more consistent ice coverage between January and March than the deeper, 113 

open location in Lake Superior (Figure 1). The different spawning habitats provide a contrast in 114 

light levels that coregonine embryos from each population would naturally experience because 115 

maximum light availability decreases with depth (Fleming-Lehtinen and Laamanen, 2012; 116 

Preisendorfer, 1986; Ramus et al., 1976; Secchi, 1864) and winter light availability is further 117 

restricted by ice and snow conditions (Bolsenga and Vanderploeg, 1992; Hampton et al., 2015). 118 

 119 

Crossing Design and Fertilization 120 

The design is fully described in Stewart et al. (2021). Briefly, gametes were stripped from 12 121 

females and 16 males from each lake and artificially fertilized to create 48 families from each 122 

lake. Reconstituted freshwater medium (ISO 6341, 2012) was used during fertilizations and 123 

rearing to standardize the chemical properties of the water used between lakes. Embryos were 124 

transported to the University of Vermont in coolers by overnight shipping for Lake Superior 125 

samples and driven the same day for Lake Ontario samples. A temperature logger recorded air 126 

temperature inside the transport cooler (Lake Superior: mean (SD) = 2.80°C (0.21); Lake 127 

Ontario: mean (SD) = 3.28°C (0.37)). Total length, mass, and egg diameter were collected from 128 

the spawned adults. Fertilization success was determined by assessing 10 haphazardly selected 129 

embryos under microscopy (Oberlercher and Wanzenböck, 2016). If fertilization was low 130 

(<30%), the family was removed from the experiment. 131 
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 132 

Rearing Conditions 133 

Embryos were individually distributed into 24-well cell culture microplates and incubated in 2 134 

ml of reconstituted freshwater (Stewart et al., 2021). A total of 36 embryos were used for each 135 

Lake Ontario and Lake Superior cisco family. Families were randomly distributed across three 136 

microplates (i.e., 12 eggs per family per microplate resulting in two families per 24-well 137 

microplate). 138 

 139 

Microplates from each population were incubated under three light treatments (0.6-6.2 μmol m-2 140 

s-1) that represented day-light intensity under 0-10 (low), 40-60 (medium), and 90-100 % (high) 141 

ice coverage (Table 1) and followed mean weekly photoperiods with gradual sunrise and sunset 142 

transitions. Light intensities for each treatment were chosen to mimic in situ winter, lakebed light 143 

measurements that were previously recorded with a photometer (JFE Advantech Co., Ltd. 144 

DEFI2-L) from Lake Superior (46.97°, -90.99°) at 10 m of water in 2016-17. No light intensity 145 

measurements were taken from Lake Ontario. Remote-sensing ice data (U.S. National Ice 146 

Center; usicecenter.gov) were used to quantify the daily percentage of ice coverage above the 147 

light sensor (Figure 2). Embryos were incubated at a constant target water temperature of 4.0°C 148 

in a climate-controlled chamber (Conviron® E8; Table 2). Forced airflow was used in the 149 

climate-controlled chamber to ensure equal air circulation around the microplates and opaque, 150 

plastic sheeting was used to separate light treatments. Microplates were covered with transparent 151 

lids to minimize evaporation and rotated (i.e., orientation and position within the incubator) 152 

weekly. Water temperature and light intensity were recorded hourly with loggers (HOBO® Water 153 

Temperature Pro v2 and JFE Advantech Co., Ltd. DEFI2-L) and daily mean values calculated 154 

(Table 1). During the hatch period, microplates were checked on a three-day cycle for newly 155 

hatched embryos. All hatched embryos were photographed ventrally (Nikon® D5600 and Nikon® 156 

AF-S DX 18-55mm lens) and then immediately preserved in 95% ethanol. Egg size at 157 

fertilization, total length-at-hatch, and post-hatching yolk-sac axes were measured from 158 

photographed images using Olympus® LCmicro. 159 

 160 
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Developmental and Morphological Traits 161 

Embryo survival was estimated as the percent of embryos surviving between eye-up and post-162 

hatch stages. Incubation period was assessed with two variables: the number of days from 163 

fertilization to hatching (days post-fertilization; DPF) and the sum of the degree-days to hatching 164 

(accumulated degree-days; ADD; °C). Total length-at-hatch (LAH; mm) and yolk-sac volume 165 

(YSV; mm3) were measured from five individuals per family at, or as close as possible to, 50% 166 

hatching for each family. Yolk-sac volume was calculated assuming the shape of an ellipse 167 

(Blaxter and Hempel, 1963):  168 

��� �  
�

6
�	

� 

where a = length of the yolk sac (mm) and b = height of the yolk sac (mm). 169 

 170 

Statistical Analyses 171 

Embryo survival was analyzed as a binomial response variable, while incubation period, length-172 

at-hatch, and yolk-sac volume at hatching were analyzed as continuous response variables. 173 

Because embryos were raised independently, the replication unit in the statistical models is the 174 

individual embryo and the design was unbalanced due to different levels of embryo mortality. 175 

All non-proportional data were visually checked for approximate normality using histograms and 176 

Q-Q plots. A cubic transformation was applied to LAH and a cubic root transformation was 177 

applied to DPF, ADD, and YSV to normalize the distributions. Embryo survival was analyzed 178 

with binomial generalized linear mixed-effects models, and the transformed variables (i.e.,  DPF, 179 

ADD, LAH, and YSV) were analyzed with restricted maximum likelihood linear mixed-effects 180 

models with the lme4 package v.1.1-26 (Bates et al., 2015). Population and incubation light 181 

treatment were included as fixed effects and female, male, female x male, and fertilization block 182 

as random effects. All traits and possible interactions were examined with backward, stepwise 183 

effect-selection and the maximal model for each trait selected using the buildmer package v.1.7.1 184 

(Voeten, 2020). The significance for population, species, incubation temperature, interaction 185 

effects, and any random effects selected were determined using a likelihood ratio test between 186 

the maximal model and reduced models with the model effect of interest removed. 187 

 188 

To enable population comparisons, the response to temperature for each trait was standardized to 189 

what we assumed was the optimal light treatment - the low light treatment (Table 1). For each 190 
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trait and family, the within-family percent change from the optimal light intensity was calculated 191 

as:  192 
�����

��

 
  100; 193 

where x1 = mean trait value from low light treatment and xi = the mean trait value from the light 194 

treatment of interest. The mean among-family percent change was calculated, and standard error 195 

was calculated as the among-family variation in percent change (Mari et al., 2021). 196 

 197 

All analyses were performed in R version 4.0.4 (R Core Team, 2021). 198 

 199 

Results: 200 

Spawning Adult and Egg Measurements 201 

Lake Superior spawning adults ranged from 326-503 mm (total length mean (SD) = 412.5 (40.8) 202 

mm) and 298.9-970.0 g (fresh mass mean (SD) = 589.1 (171.4) g) and were larger in total length 203 

and fresh mass than Lake Ontario adults which ranged from 321-425 mm (mean (SD) = 372.5 204 

(25.3) mm) and 280.5-795.8 g (mean (SD) = 496.6 (126.4) g). Egg diameter was larger in Lake 205 

Ontario (mean (SD) = 2.30 (0.08) mm) than Lake Superior (mean (SD) = 2.14 (0.12) mm). 206 

 207 

Developmental and Morphological Traits 208 

Incubation period (both DPF and ADD) and YSV had significant interaction effects between 209 

population and light treatments (maximum P = 0.008; Table 3). The interaction effects precluded 210 

any interpretation of main effects for incubation period and YSV but did suggest contrasting 211 

norms of reaction between populations. Below we describe the interaction effects for incubation 212 

period and YSV, and the population main effects and light treatment pairwise comparisons for 213 

embryo survival and LAH. All random effects (i.e., female, male, and female x male) were 214 

significant (maximum P = 0.009) except female for embryo survival, male for embryo survival 215 

and YSV, and female x male for embryo survival and LAH (Table 3). All statistical model 216 

results can be found in Table 3. 217 

 218 

Embryo Survival 219 

Embryo survival was highest for both populations at the medium light treatment, but lowest at 220 

the low light treatment for Lake Ontario and at the high light treatment for Lake Superior (Figure 221 
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3). Light and population main effects were significant. Only Lake Ontario pairwise light 222 

treatment comparisons with the low light treatment were significant (Low - Medium P < 0.001; 223 

Low - High P < 0.001). All pairwise light treatment comparisons for Lake Superior were not 224 

significant (minimum P = 0.089). Embryo survival was higher for Lake Ontario at the high 225 

(98.4%) and medium (99.6%) light treatments than for Lake Superior (85.3 and 89.3%, 226 

respectively) but there was no difference between populations at the low light treatment (0.9%; 227 

Figure 3). 228 

 229 

Incubation Period 230 

The number of days between fertilization and hatching was highest for Lake Ontario at the low 231 

light treatment (115.47 days) and for Lake Superior at the high light treatment (101.22 days; 232 

Figure 3). Lake Ontario cisco had a decrease in DPF from the low light to the high light 233 

treatments (-0.7%), while Lake Superior had an increase from the low light to the high light 234 

treatments (1.9%; Figure 3). Incubation period (DPF) was longer for Lake Ontario than Lake 235 

Superior across all light treatments (mean (SD) difference = 13.9 (0.8) days).  236 

 237 

The effect of light depended on population because the difference in ADD between populations 238 

was less pronounced at the high light treatment (difference = 60.8 ADD), while ADD was higher 239 

for Lake Ontario at the low and medium light treatments (497.7 and 485.9 ADD, respectively) 240 

than Lake Superior (427.5 and 420.8 ADD, respectively; Figure 3). Lake Ontario ADD had a 241 

negative response from the low to high light treatments (-2.5%), while ADD for Lake Superior 242 

did not change from the low to high light treatments (0.05%; Figure 3). 243 

 244 

Length-at-Hatch 245 

Light was not a component returned in the stepwise-selected model for length-at-hatch, but the 246 

population main effect between Lake Ontario and Lake Superior was significant (P < 0.001; 247 

Table 3). Lake Ontario had a higher LAH than Lake Superior across all light treatments (Figure 248 

4). Length-at-hatch decreased with increasing light by 3.2% in Lake Superior, but negligible 249 

differences in LAH were observed for Lake Ontario across light treatments (Figure 4).  250 

 251 
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Yolk-sac Volume 252 

Yolk-sac volume had a different response to light intensity between populations (Figure 4). The 253 

effect of light depended on population because the difference in YSV between populations was 254 

less pronounced at the low light treatment (difference = 0.22 mm3), while YSV was lower for 255 

Lake Ontario at the high and medium light treatments (0.35 and 0.37 mm3, respectively) than 256 

Lake Superior (0.67 and 0.63 mm3, respectively; Figure 4). YSV increased from the low to high 257 

light treatments (15.3%) in Lake Superior and decreased from the low to high light treatments (-258 

5.5%) in Lake Ontario (Figure 4). 259 

 260 

Discussion: 261 

Developmental and morphological traits for Lake Superior and Lake Ontario cisco populations 262 

demonstrated similar and contrasting reaction norms to incubation light intensity. First, we found 263 

different responses to light intensity in embryo survival between populations. Second, increasing 264 

light intensity had minimal impact on incubation periods (DPF and ADD) for both populations. 265 

Lastly, LAH and YSV responded differently to varying light intensities between populations. 266 

Consequently, cisco from lakes Superior and Ontario are likely to have different responses to 267 

changes in ice coverage and subsequent light conditions. 268 

 269 

Our hypothesis that embryo survival would be highest at the lowest light treatment was not 270 

supported. Embryo survival was highest for both populations at the medium light levels, 271 

suggesting that populations may be adapted to withstand some light exposure from high inter-272 

annual variability in ice coverage. This result was contradictory to that observed in two Pacific 273 

salmonid species (chinook salmon Oncorhynchus tshawytscha and rainbow trout Oncorhynchus 274 

mykiss) for which embryo survival was highest at the lowest light exposures evaluated (0.04 275 

μmol m-2 s-1; Eisler, 1961, 1958; Kwain, 1975). Lake Ontario cisco had a sharper decrease in 276 

survival than Lake Superior cisco at the low light treatment. The difference was surprising 277 

because average historical ice coverage over the Lake Ontario spawning location is higher than 278 

the Lake Superior spawning location, and thus low light conditions are more likely to occur for 279 

Lake Ontario cisco embryos. However, the Lake Ontario cisco spawning location is shallow (< 5 280 

m) and could have high light intensity with little or no ice coverage. Higher variability in winter 281 
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illuminance may have selected for the population of Lake Ontario cisco sampled to have greater 282 

flexibility to higher light conditions than deeper spawning cisco sampled from Lake Superior.  283 

 284 

Our hypothesis that elevated light intensity would accelerate embryogenesis was not supported. 285 

The greatest difference in incubation periods was between populations, and was likely due to 286 

differences in embryo size, as larger embryos (i.e., Lake Ontario cisco) require more time to 287 

develop (Hodson and Blunt, 1986; Kamler, 2008). Previous studies of other salmonid species 288 

(European whitefish Coregonus lavaretus, chinook salmon, rainbow trout) found increasing light 289 

intensity decreased the length of incubation (Chernyaev, 2007; Eisler, 1958; Kwain, 1975).  290 

 291 

In contrast to incubation period, LAH and YSV responded to the light treatment and matched our 292 

hypotheses, but responses differed between populations. Lake Ontario cisco exhibited minimal 293 

change in LAH as light increased, but YSV decreased, suggesting that light intensity increased 294 

the metabolic demand of embryos. In comparison, Lake Superior cisco showed a trade-off 295 

between LAH and YSV. A negative relationship between LAH and YSV is common in fish 296 

temperature incubation studies (Blaxter, 1991; Karjalainen et al., 2015; Stewart et al., 2021), but 297 

the relationship is usually accompanied by a change in incubation period as basal metabolic 298 

demand consumes yolk as a function of the length of incubation. We found that light influenced 299 

incubation periods similarly among light treatments; therefore, the trade-off between LAH and 300 

YSV in Lake Superior cisco suggests decreased yolk conversion efficiency to somatic tissue 301 

occurred as light intensity increased. This suggests future decreases in ice coverage and 302 

subsequent increases in embryonic light exposure, in the absence of adaptation, may result in 303 

smaller, less-robust larvae, which may in part explain the low survival of Lake Superior cisco 304 

and other coregonines to age-1 over the past 20 years (Lepak et al., 2017; Stockwell et al., 2009). 305 

The reasons underlying differences between cisco populations from Lakes Ontario and Superior 306 

remain unknown. However, the contrasting responses in LAH and YSV between populations 307 

suggests that embryogenesis for each population has different levels of developmental plasticity 308 

to light. 309 

 310 

Embryo development is sensitive to environmental conditions, which can greatly influence life-311 

history trajectories, performances, and reproductive success (Colby and Brooke, 1970; 312 
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Karjalainen et al., 2016; Luczyński, 1991). We did not quantify developmental stages, except eye 313 

pigmentation, so specific life-stage developmental rates are unknown. Changes in the frequency 314 

of light (i.e., periodicity) can have adverse effects on fish embryos after yolk plug closure and 315 

first vertebrate trunk segment formation (Abdel-Rahim et al., 2019; Chernyaev, 2007, 1993; 316 

Ruchin, 2020). Fluctuating light cycles (e.g., 6:6h light:dark) and constant light (e.g., 24h light) 317 

accelerated the rate of embryonic development compared to ‘normal’ photoperiods (e.g., 12:12h 318 

light:dark; Chernyaev, 2007, 1993; John and Hasler, 1956; Ruchin, 2020). Photoperiod 319 

disruptions can inhibit the pineal organ and melatonin synthesis, which is critical to regulate and 320 

synchronize diurnal and seasonal biological rhythms (Delgado et al., 1987; Ekstrzöm and Meissl, 321 

1997; Falcón et al., 2010; Roberts, 1978). The role photoperiod and the endocrine system plays 322 

in embryo development and phenology remains unknown for coregonines. Further studies that 323 

examine the impact of changing light intensities and photoperiods throughout incubations (e.g., 324 

decreased or no light during winter from ice coverage and increased light intensity and 325 

periodicity during spring ice-out) will help determine the fine-scale influence light and 326 

photoperiod may have on specific development stages (i.e., hatching), hormone regulation, and 327 

organ, tissue, and skeletal formation. 328 

 329 

Sunlight intensity, albedo, and attenuation are strongly influenced by the angle of the sunlight, 330 

which is determined by season and latitude (Forsythe et al., 1995; Goldberg and Klein, 1977). 331 

Latitude and sun angle are negatively correlated and this negative relationship is strongest at the 332 

winter solstice in the northern hemisphere (Goldberg and Klein, 1977; Wielgolaski and Inouye, 333 

2003). Lake Ontario is at a lower latitude and thus experiences a higher sun angle than Lake 334 

Superior, which results in a more intense and longer period of daylight. Our light treatments 335 

were calculated from light sensors deployed only in Lake Superior; thus, the experimental light 336 

intensity treatments for Lake Ontario cisco may not have captured an accurate light environment 337 

representation. Under-ice light data from more lakes, depths, and habitats would add to our 338 

understanding of cisco embryo light environments and improve the authenticity of experimental 339 

treatments. Additionally, comparing populations from high latitude lakes which experience 340 

decreased winter sunlight would provide an additional contrast for local adaptation and 341 

phenotypic plasticity across geographic regions. 342 

 343 
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Turbidity also contributes to light attenuation, and spring ice-out and river discharge can 344 

drastically increase the presence of suspended particulates and light absorption (Shao et al., 345 

2019). Hydrological responses to climate change indicate earlier and protracted winter/spring 346 

runoff and higher runoff volume (Blahušiaková et al., 2020; Cutforth et al., 1999; Shen et al., 347 

2018). Seasonal runoff, including snowmelt pulses, often drive high nutrient loads and primary 348 

productivity in temperate lakes (Isles et al., 2017; Rosenberg and Schroth, 2017). Runoff 349 

entering ice-covered lakes is expected to suspend near the ice surface, rather than mixing into the 350 

water column (Cortés et al., 2017; Yang et al., 2020), and therefore, have implications on when 351 

nutrients are used by primary producers and the onset of spring plankton blooms (Sommer et al., 352 

2012). If the timing of spring plankton blooms changes as a result of earlier and protracted 353 

winter/spring nutrient loads, the potential mis-match between interacting species may produce 354 

bottom-up consequences (Rogers et al., 2020). Our results showed changing light intensities did 355 

not affect cisco hatch dates; thus, the ability of cisco to match optimal spring nursery conditions 356 

may be weakened if coregonines do not respond to changing ice conditions similarly to the 357 

plankton community (Cushing, 1990; Myers et al., 2015). The proximity of spawning and 358 

nursery grounds to shoreline and river outlets would likely impact the synchrony between 359 

coregonine larvae and planktonic prey. 360 

 361 

Many fish species are iteroparous and, in some species, individuals repeatedly use the same 362 

spawning location (Marsden et al., 1995; Skjæraasen et al., 2011; Thorrold et al., 2001). The 363 

question of what constrains the choice of a spawning location cannot be separated from the 364 

question of what constrains early-life development and survival (Ciannelli et al., 2015; Iles and 365 

Sinclair, 1982; Petitgas et al., 2012; Sinclair and Iles, 1989). Embryo survival is largely 366 

determined by incubation habitat (e.g., water temperature, light exposure, oxygen availability, 367 

protection from predators), thus, selective pressure is focused on 'correct' and adaptive choices of 368 

spawning sites by the parents. The amount of spawning plasticity (e.g., spawning site selection, 369 

fidelity to spawning sites, spawning time) among populations could serve as an indicator for the 370 

level of evolutionary constraints for offspring (Ciannelli et al., 2015). For example, Atlantic 371 

herring (Clupea harengus) exhibit a wide range of reproductive strategies across diverse 372 

geographical locations, but have limited spawning site plasticity because embryo survival is 373 

dependent on substrate and vegetation (Petitgas et al., 2012). Coregonines are considered to be 374 
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behaviorally and developmentally plastic and do not appear to be constrained by a spawning 375 

habitat type (Karjalainen et al., 2015; Muir et al., 2013; Paufve, 2019); however, our 376 

understanding of coregonine reproductive behavior and spawning-site selection is limited. The 377 

selection of deeper or shallower spawning locations would provide a gradient in environment 378 

conditions (e.g., light, temperature) depending on population-specific habitat requirements, and 379 

both suitable nearshore and offshore spawning habitats are historically likely to be present in 380 

each sampled lake (Goodyear, 1982; Paufve, 2019). Examining coregonine reproductive 381 

behavior and characterizing contemporary spawning habitat requirements is a logical and needed 382 

next step to build on our results.  383 

 384 

The existence of varying trait responses between populations raises questions concerning causal 385 

mechanisms. Genomic studies can aid our understanding by determining what functional 386 

pathways could be up- or down-regulated due to light energy. Any potential changes in 387 

metabolic or catabolic genes from light will enhance trait analyses and allow further partitioning 388 

of the effects of light from other energy demanding environmental variables (e.g., temperature). 389 

 390 

Conclusion: 391 

Given the extensive degree of developmental plasticity in coregonines, propagation has been 392 

proposed as a practical way to reintroduce native species from lakes with extirpated or reduced 393 

population levels (Bronte et al., 2017; Zimmerman and Krueger, 2009). A key uncertainty to 394 

maximizing restoration efforts is whether managers should mimic natural environmental 395 

conditions to increase survival during propagation (Bronte et al., 2017). Our study highlights the 396 

potential role of winter light conditions, the influence of light intensity on cisco embryo 397 

development, and the impact changing ice regimes may have on cisco survival and recruitment 398 

in the wild. We did not identify a consistent directional reaction between and within the two 399 

sampled cisco populations to increasing light, and light is likely to have a differential effect on a 400 

number of physiological and biochemical processes. Large-scale, cross-lake propagation and 401 

reintroduction efforts are likely to be complicated by the capacity to match cisco phenotypes and 402 

optimal incubation conditions. Our results provide a step towards better understanding the recent 403 

high variability observed in coregonine recruitment and may help predict what the future of this 404 

species may look like under current climate trends. 405 
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Tables: 689 

 690 

Table 1. Mean daily ± SD light intensity (μmol m-2 s-1) for three ice coverage classes measured 691 

from Lake Superior and corresponding laboratory experimental light conditions used for both 692 

Lake Superior and Lake Ontario. 693 

 694 

 Ice Coverage (Light Treatment) 

Location > 90% (Low) 40-60% (Medium) < 10% (High) 

Field (Lake Superior) 2.0 ± 1.1 3.4 ± 2.5 5.5 ± 5.9 

Laboratory 0.6 ± 0.1 3.9 ± 1.9 6.2 ± 1.0 

  695 
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Table 2. Mean daily ± SD water temperatures (°C) during embryo incubations from each light 696 

treatment for Lakes Superior and Ontario. 697 

 698 

 Light Treatment 

Lake High Medium Low 

Superior 4.3 ± 0.2 4.3 ± 0.3 4.3 ± 0.3 

Ontario 4.2 ± 0.3 4.3 ± 0.3 4.4 ± 0.4 

  699 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.03.23.436622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.23.436622


27 

Table 3. Likelihood ratio test output for each model selected for embryo survival (%), incubation 700 

period (number of days post-fertilization (DPF) and accumulated degree days (°C; ADD)), 701 

length-at-hatch (mm), and yolk-sac volume (mm3) from Lakes Superior and Ontario cisco 702 

(Coregonus artedi). pop indicates population. The full model that was selected is bolded for each 703 

trait.  704 

 705 

Trait Model Effect Tested df χ
2 p-value 

Embryo 
Survival 

   light + pop     

   pop  light 2 181.92 < 0.001 

    light pop 1 95.00 < 0.001 

Incubation 
Period 
(DPF) 

   light + pop + light:pop + female:male + female + male     

   pop + female:male + female + male light 2 10.80 0.005 

   light + female:male + female + male pop 1 3,023.89 < 0.001 

    light + pop + female:male + female + male light:pop 2 9.66 0.008 

    light + pop + light:pop + female + male female:male 1 79.91 < 0.001 

    light + pop + light:pop + female:male + male female 1 25.29 < 0.001 

    light + pop + light:pop + female:male + female male 1 10.80 0.001 

Incubation 
Period 
(ADD) 

   light + pop + light:pop + female:male + female + male     

   pop + female:male + female + male light 2 51.72 < 0.001 

   light + female:male + female + male pop 1 3,092.41 < 0.001 

    light + pop + female:male + female + male light:pop 2 13.23 0.001 

    light + pop + light:pop + female + male female:male 1 79.99 < 0.001 

    light + pop + light:pop + female:male + male female 1 25.25 < 0.001 

    light + pop + light:pop + female:male + female male 1 10.75 < 0.001 

Length-at-
Hatch 

   pop + female + male     

   female + male pop 1 373.34 < 0.001 

   pop + male female 1 100.97 < 0.001 

    pop + female male 1 11.37 < 0.001 

Yolk-sac 
Volume 

   light + pop + light:pop + female:male + female     

   pop + female:male + female light 2 1.96 0.376 

   light + female:male + female pop 1 712.18 < 0.001 

   light + pop + female:male + female light:pop 2 19.04 < 0.001 

    light + pop + light:pop + female female:male 1 6.52 < 0.001 

    light + pop + light:pop + female:male female 1 38.94 < 0.001 

 706 
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Figure captions: 707 

 708 

Figure 1. Histogram of annual mean ice coverage between 1-Jan and 15-Mar from 1973-2020 for 709 

the sampling location in Lake Superior (top) and Lake Ontario (bottom). Ice coverage data was 710 

obtained from the U.S. National Ice Center (usicecenter.gov/). 711 

 712 

Figure 2. Daily ice coverage (%; blue line) and light intensity (μmol m-2 s-1; gray line) based on 713 

light sensors set at 10 m depth off Sand Island, Lake Superior. Ice coverage data above the 714 

sensor was obtained from the U.S. National Ice Center (usicecenter.gov/). 715 

 716 

Figure 3. Mean embryo survival (%), length-at-hatch (mm; LAH), yolk-sac volume (mm3; YSV), 717 

and incubation period (number of days post-fertilization (DPF) and accumulated degree days 718 

(°C; ADD)) at each incubation light treatment from Lake Superior and Lake Ontario cisco 719 

(Coregonus artedi). Error bars indicate standard error. 720 

 721 

Figure 4. Mean among-family standardized responses (%) to assumed optimal light conditions 722 

(i.e., low) within each sampled population from Lake Superior and Lake Ontario cisco 723 

(Coregonus artedi) for embryo survival, length-at-hatch (LAH), yolk-sac volume (YSV), and 724 

incubation period (number of days post-fertilization (DPF) and accumulated degree days 725 

(ADD)). Error bars indicate among-family standard error. 726 
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