
 1 

 

Genetic analysis of coronary artery disease 
using tree-based automated machine 

learning informed by biology-based feature 
selection  

Elisabetta Manduchi, Trang T. Le, Weixuan Fu, and Jason H. Moore 

Abstract— Machine Learning (ML) approaches are increasingly being used in biomedical applications. Important challenges of 

ML include choosing the right algorithm and tuning the parameters for optimal performance. Automated ML (AutoML) methods, 

such as Tree-based Pipeline Optimization Tool (TPOT), have been developed to take some of the guesswork out of ML thus 

making this technology available to users from more diverse backgrounds. The goals of this study were to assess applicability 

of TPOT to genomics and to identify combinations of single nucleotide polymorphisms (SNPs) associated with coronary artery 

disease (CAD), with a focus on genes with high likelihood of being good CAD drug targets. We leveraged public functional 

genomic resources to group SNPs into biologically meaningful sets to be selected by TPOT. We applied this strategy to data 

from the UK Biobank, detecting a strikingly recurrent signal stemming from a group of 28 SNPs. Importance analysis of these 

uncovered functional relevance of the top SNPs to genes whose association with CAD is supported in the literature and other 

resources. Furthermore, we employed game-theory based metrics to study SNP contributions to individual level TPOT 

predictions and discover distinct clusters of well-predicted CAD cases. The latter indicates a promising approach towards 

precision medicine. 
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——————————   ◆   —————————— 

1 INTRODUCTION

n recent years, Machine Learning (ML) has gained in-
creased appreciation as an alternative or complemen-

tary methodology to statistical approaches in ‘omics’ data 
analyses [1], [2], [3]. Setting up an appropriate ML pipe-
line for a given analysis task involves many decisions in-
cluding data pre-processing algorithm selection, feature 
selection, feature engineering, estimator algorithm selec-
tion, and decisions about the many hyperparameter set-
tings. Thus, of particular appeal are Automated ML (Au-
toML) methods, which assist (potentially non-expert) us-
ers in the design and optimization of ML pipelines [4]. 
Our group has developed a genetic programming-(GP-
)based AutoML named Tree-based Pipeline Optimization 
Tool (TPOT) [5], [6], which has been successfully used to 
analyze data from metabolomics [7], [8], transcriptomics 
[9], [10], and toxicogenomics [10].  

In addition to these ‘omics’ applications, an initial ap-
plication of TPOT to a real-world genetic data set with 

prostate cancer aggressiveness as the endpoint discovered 
several feature combinations that significantly contribut-
ed to the classification accuracy [5]. The data set used in 
the latter was 1-2 orders of magnitude smaller, in terms of 
number of observations (~2300 subjects), than the typical 
size of current Genome Wide Association Studies 
(GWAS). Moreover, biological filters suggested by the 
endpoint of interest were used to reduce the number of 
features to the manageable size of ~200 Single Nucleotide 
Polymorphisms (SNPs). Even with this biological guid-
ance, the predictive performance was much lower than 
that achieved in the other TPOT ‘omics’ applications cited 
above. This is, however, not surprising considering the 
challenges associated with complex trait GWAS data, 
such as missing heritability, typically small effect sizes of 
common variants, and genetic heterogeneity (i.e. different 
SNPs being responsible for the trait in different subjects) 
[11], [12]. 

In this work, we set to further explore both the chal-
lenges and potential insights of TPOT analyses on a large-
scale genotype data set via a case study in Coronary Ar-
tery Disease (CAD) leveraging the UK Biobank resource 
[13]. We note that, despite numerous large-scale GWAS, 
less than half of the of CAD heritability has been account-
ed for [14]. After identifying cases and controls, to estab-
lish a baseline, we first assessed the predictive perfor-
mance of models using GWAS main effect CAD SNPs as 
features, i.e. SNPs previously identified from traditional 
univariate GWAS analyses. We then explored SNPs 
mapped to six genes suggested for CAD drug repurpos-
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ing and drug development [15]. For each of these genes, 
we also looked at SNPs mapping to its connected genes 
from Hetionet (https://het.io/), an integrative network of 
biomedical knowledge. For each gene in this extended 
network, we considered not only the SNPs in the gene 
body and proximal promoter region but also those resid-
ing in its potential enhancers based on publicly available 
epigenomic data from CAD relevant tissues (Figure 1A). 
We note that TPOT inherently analyzes features (i.e. 
SNPs) as a group and makes no assumptions about addi-
tivity of their effects. By utilizing a 2-stage TPOT ap-
proach and leveraging biologically meaningful SNP 
groupings, we identified a strikingly recurrent signal 
stemming from models built on an input subset of 28 
SNPs. After ranking these SNPs according to permutation 
feature importance, we uncovered links between the top 
SNPs and other genes related to atherosclerotic plaques 
and myocardial infarction. We also analyzed contribu-
tions to the individual predictions for the 28 SNPs using 
Shapley Additive exPlanations (SHAP) [16]. We clustered 
cases which were well predicted by the optimal model 
based on SHAP values, aiming at dissecting their hetero-
geneity in terms of driver SNPs. This also highlighted 
specific groups of cases for whom the predictions were 
driven by SNPs mapping to genes whose CAD relevance 
is supported by the literature and other functional ge-
nomic resources. These results provide new hypotheses 
about the genetic basis of CAD and demonstrate the utili-
ty of AutoML for genetic association analysis as well as 
the potential of applying metrics such as SHAP to ML 
models for precision medicine studies. 

2 METHODS 

2.1 GWAS Data Preparation 

From the UK Biobank (UKB) data, we extracted all sub-
jects of white British ancestry (i.e. with a value of 1 for 
UKB field #22006) and retained a maximal subset of unre-
lated individuals (exploiting the related pairs file provid-
ed by UKB) whose genetically inferred sex matched the 
sex information collected at recruitment. We applied sev-
eral filters based on flags in the following UKB fields: 
22010 (recommended genomics exclusions), 22051 
(UKBiLEVE quality control failure), 22019 (sex chromo-
some aneuploidy), 22021 (kinship inferences), 22027 (out-
liers for heterozygosity or missing rate). We defined CAD 
cases based on the criteria from Supplemental Table 1 of 
[17], arriving at a collection of 19,134 cases and 321,881 
controls. For each such subject, we obtained the first 10 
genetic Principal Components (PC) from UKB as well as 
the genotyping array and age. We defined age as the val-
ue at the last assessment center visit for individuals in the 
control group and at diagnosis/operation/death for indi-
viduals in the case group, depending on the field contrib-
uting to their case classification.  

2.2 SNP Selection and Groupings 

Our starting point were the six CAD ‘druggable’ genes 
suggested by [15] for drug repurposing (CHRNB4, 

ACSS2, and GUCY1A3) and drug development (LMOD1, 
HIP1, and PPP2R3A). We then obtained all autosomal 
genes connected with each druggable gene from Hetionet 
(https://het.io/), an integrative network assembling the 
knowledge from 29 different databases of genes, com-
pounds, diseases, and more. For each gene (whether 
druggable or connected to a druggable gene), we ob-
tained its GRCh37 coordinates from Ensembl genes 101 
[18], extending them to include 5kb upstream and 1kb 
downstream of the Transcription Start Site. In addition, 
for each gene, we obtained its putative enhancers in CAD 
relevant tissues (fat, heart, and vascular) from the 
Roadmap Epigenomics Enhancer-Gene Links 
(https://ernstlab.biolchem.ucla.edu/roadmaplinking/). We 
then used BEDTools v2.25.0 [19] to extract, for each gene, 
SNPs residing in its body, promoter, or any of its enhanc-
ers (we only considered SNPs with a Minor Allele Fre-
quency (MAF) > 0.01 and an imputation info score > 0.9). 
We further filtered the resulting collection of SNPs using 
software aimed at scoring their potential functionality 
(whether coding or non-coding). Namely, we used CADD 
[20] v1.6, GWAVA [21] v1.0, and TraP [22] v3.0, and we 
only retained SNPs satisfying at least one of these condi-
tions: (1) CADD scaled score ≥ 10, or (2) GWAVA score ≥ 
0.5, or (3) TraP score ≥ 0.459. Finally, for each druggable 
gene, we took the filtered SNPs mapping to the gene or 
any connected gene and pruned them for Linkage Dise-
quilibrium (LD) using qctool v2 
(https://www.well.ox.ac.uk/~gav/qctool_v2/) with a 
threshold of 0.8 for r2. For each druggable gene, we de-
fined one Feature Set (FS) per connected gene, consisting 
of all SNPs resulting from the above filters and mapping 
either to the druggable or the connected gene (body, pro-
moter, or any enhancer), as illustrated in Fig 1. Note that 
any two FSs of a druggable gene share all the SNPs of that 
gene. 
 

2.3 TPOT Runs 

In our first set of analyses, we used classic TPOT, whose 
source code is freely available at 
https://github.com/EpistasisLab/tpot. We then assessed 
the results derived by incorporating covariate adjust-
ments as described in [10] using resAdj TPOT, whose 
code is also freely available at 
https://github.com/EpistasisLab/tpot/tree/v0.11.1-resAdj. 
In the latter analysis, we adjusted the outcome for age, sex 
and the first 10 PCs and we adjusted all features for geno-
typing array and the first 10 PCs. In all TPOT runs, we 
applied 5-fold cross validation. For each TPOT run, to 
match 19,134 cases, we randomly selected 19,134 samples 
from 321,881 individuals in the control group to obtain a 
balanced and reasonably sized input dataset. Where spec-
ified (see Results section), we used the Template and Fea-
ture Set Selector (FSS) described in [9]. The Template con-
strains the GP to only examine pipelines with a given ar-
chitecture. The FSS slices the input data set into smaller 
sets of features, allowing the GP to select the best subset 
in the final pipeline.  
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Fig. 1. (A) Selection of SNPs and FSs. For each druggable gene DG, 
its connected genes (CGs) were obtained from Hetionet. For each 
CG, the SNPs mapping to its body, promoter, and putative enhanc-
ers were identified (CGS) and added to those mapping to DG (DGS). 
The corresponding FS was derived from these SNPs after filtering by 
functionality scorers and pruning. (B) FSs for the druggable genes. 
Each point corresponds to an FS for the DG indicated on the y-axis 
and its x-coordinate indicates the number of SNPs in that FS. 

2.4 Feature Assessments 

We employed ELI5 v0.10.1 (https://github.com/TeamHG-
Memex/eli5) to calculate permutation feature importance 
and the python SHAP library 
(https://github.com/slundberg/shap) to compute SHAP 
values with kernel explainer, an agnostic method that 
makes no assumption on the model type. Moreover, we 
used shap.kmeans to generate the explainer background 
from the training set, with 46 clusters for classic TPOT 
and 73 for resAdj TPOT. We arrived at these numbers by 
examining the Dunn indices for k-means clusterings for k 
varying between 30 and 100 and selecting the k yielding 
the highest value, using the R package NBClust [23]. The 
Dunn index is a measure of cluster quality defined in [24]. 
We also employed NbClust to inspect Dunn indices and 
generate k-means clustering of subjects based on SHAP 
values. 

For visualization, we used the python SHAP library to 
compute a matrix of SHAP values for each individual and 
SNP and produce the initial summary plots. From the 
SHAP value matrix, we generated the final force plots 

using the R programming language (v 4.0.3) with the 
dplyr (v1.0.2), ggplot2 (v3.3.2), tidyr (v1.1.2), readr 
(v1.4.0), and seriation (v1.2-9) libraries. A GitHub reposi-
tory with reproducible R visualization code is available at 
https://github.com/trang1618/cad-shap. 

3 RESULTS 

We first explored the predictive performance of TPOT 
when using as features the SNPs in the CAD loci identi-
fied in [25] and reported in Supplemental Table 2 of that 
paper. After LD pruning (with a threshold of 0.6 for r2) we 
obtained 92 SNPs. We ran classic TPOT 50 times (without 
a Template), each with a random down-sampling of the 
controls (hence with a balanced input of 19,134 cases and 
19,134 controls). In each run, the input was split into 
training (75%) and holdout validation testing (25%) parts. 
We set a population of 100 in the GP and the stopping 
criterion was the earliest of 100 generations or 2 days. 
Over the 50 runs, the range for the accuracy of the TPOT 
optimized pipeline on the holdout testing set was 0.561-
0.582, which is reasonable given the typically small effect 
sizes of common variants and genetic heterogeneity. This 
classic TPOT result served to establish a reference based 
on the strongest known main effect signals, suggesting 
that runs that explore other sets of variants may not yield 
accuracy values much higher than 0.50. Therefore, partic-
ularly useful for this type of application, is TPOT’s feature 
set selector (FSS), which slices the input data set into 
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smaller sets of features and reports the best feature subset 
in the final pipeline. Indeed, due to the GP stochasticity, 
we carried out multiple runs of TPOT. We could therefore 
examine the consistency with which the same FS was se-
lected across multiple runs, hypothesizing that an FS re-
peatedly selected in different pipelines contains potential-
ly interesting signals. 

To look for variants other than the known GWAS hits, 
we focused on SNPs mapped to the body, promoter, or 
putative enhancers (in CAD relevant tissues) of the six 
‘druggable’ genes from [15] and their connected genes 
from Hetionet, as described in Methods. Since runs of 
TPOT on such large data sets are computationally expen-
sive, we first carried out pilot analyses consisting of 10 
TPOT runs per druggable gene, using the Template FSS-
Transformer-Classifier, where each FS comprised the SNPs 
mapped to a druggable gene and one of its connected 
genes (see Methods and Fig. 1). In these pilot analyses we 
had the same settings as the above baseline analyses in 
terms of down-sampling of controls, train/test split, and 
GP population, but the GP stopping criterion was short-
ened to the earliest of 100 generations or 1 day. The best 
out of 10 testing accuracies for the six druggable gene 
varied from 0.5062 (for the runs using FSs derived from 
LMOD1) to 0.5229 (for the runs using FSs derived from 
PPP2R3A). Moreover, out of 197 FSs considered for 
PPP2R3A, the same FS (corresponding to its connected 
gene PRC1) was selected in 4 of the 10 runs. Thus, we de-
cided to pursue the 197 FSs determined by PPP2R3A and 
its connected genes for more extensive TPOT runs, as we 
had indication of possible interesting signals among these 
SNPs.  

Fig. 2. Workflow for the 2-stage procedure. 

In the more extensive runs, we adopted a 2-stage pro-
cedure, illustrated in Fig. 2. In both stages we increased 
the number of runs from 10 to 50. Moreover, we made 
sure to use different holdout testing sets in the two stages. 
More precisely, we generated 50 random down-samplings 
of the controls and, for each of these, we randomly split 

the resulting 38,264 cases and controls into a training 
(75%) part, a holdout validation testing (13%) part for 
stage 1 and a holdout validation testing part (12%) for 
stage 2. In the first stage, we carried out 50 TPOT runs 
(one for each of the down-sampling and train/test splits), 
using the Template FSS-Transformer-Classifier, focusing 
only on the FSs corresponding to PPP2R3A. We used a 
population of 100 in the GP and a stopping criterion of 
the earliest of 100 generations or 1 day. We noted that in 
21 of the 50 runs the TPOT optimized pipeline selected 
the same FS, corresponding to PRC1, re-enforcing the re-
sults from the pilot runs. Moreover, out of the 50 runs, the 
accuracy of the best pipeline on the holdout testing set 
was 0.5245 and this pipeline selected the PRC1 feature set 
(consisting of 28 SNPs mapped to either this gene or 
PPP2R3A). 

To assess the significance of these results, we per-
formed permutation tests. Ideally, we would generate 
1000 permutations and, for each permutation, repeat the 
entire stage 1 procedure of 50 runs set up as above. How-
ever, because of the computationally expensive nature of 
GP, we only generated 20 permutations of the target col-
umn in our full data set and repeated the stage 1 analysis 
in each permutation (for a total of 20×50=1000 TPOT 
runs). For each of the 20 permutations, we investigated 
the highest occurrence frequency of the same FS out of 50 
runs and all of these 20 values were ≤ 4, much smaller 
than the observed value of 21 on the unpermuted data. 
We also assessed the highest testing accuracy out of 50 
runs for each of these permutations, and all of these 20 
values were less than the observed value (0.5245) on the 
unpermuted data. Even though we cannot infer that the 

results from stage 1 have permutation p-values < 0.05 due 
to the limited number of permutations, it is nevertheless 
noteworthy to see that the same FS was selected in such a 
large proportion of the 50 original TPOT runs compared 
to the best proportions achieved in the runs on the 20 
permuted data sets. 

In stage 2, we focused on the SNPs from the significant 
FS from stage 1, i.e. the 28 SNPs mapped to either 
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PPP2R3A or PRC1 (see Supplemental Table 1) and ran 
TPOT without Template and extending the stopping cri-
terion to the earliest of 100 generations or 2 days, to see if 
we could improve accuracy. Again, we ran TPOT 50 times 
using the down-sampling and train/test splits illustrated 
above, but this time, the accuracies were computed using 
the holdout testing sets 2. These unconstrained runs 
slightly improved the testing accuracy, with the best of 50 
accuracies equal to 0.5274. For each of the 20 permuta-
tions, we ran 50 TPOT runs with the stage 2 settings 
(again, for a total of 1000 runs) and again the highest test-
ing accuracy out of 50 runs was less than the observed 
value across all permutations. 

Fig. 3. Outline of the best pipeline from the classic TPOT stage 2 
runs. Select Percentile, Variance Threshold, and Recursive Feature 
Elimination (RFE) are feature selectors. Extra Trees Classifier (ETC) 
and Stochastic Gradient Descent Classifier (SGDC) are classifier 
estimators. The Stacking Estimator adds to its input features the 
results of applying the indicated estimator to those features. 

The classic TPOT results indicate that there is signal 
within the combination of SNPs mapped to the 
body/promoter/enhancers of PPP2R3A and PRC1. In or-
der to verify that this signal persisted even when factor-
ing out potential covariate effects, we repeated a 2-stage 
procedure similar to classic TPOT, using resAdj TPOT 
with the adjustments described in Methods. Since resAdj 
TPOT transforms the problem from classification to re-
gression, performance was measured by the coefficient of 
determination, as opposed to accuracy. Because of how 
resAdj TPOT operates, in stage 1 the Template used was 
FeatureSetSelector-resAdjTransformer-Transformer-Regressor; 
as the resAdjTranformer is required in order to make the 
adjustments. For the same reason, in stage 2, we had less 
flexibility and could not dispense of a Template (we used 
resAdjTransformer-Transformer-Regressor). In the first stage 
runs, out of the 197 FSs again the FS corresponding to 
PRC1 was the one most frequently selected, in 7 out of 43 
successful runs. Albeit the best coefficient of determina-
tion in stage 2 was low (0.0023), the frequency with which 
the FS for PRC1 occurred in stage 1 indicates presence of 
signal in this FS. We note that a permutation approach in 
the spirit of what we did for classic TPOT could not be 

applied here, because permuting the target column would 
have disrupted the relationship between target and co-
variates. 

In order to better understand the drivers of the model 
in the best pipeline from stage 2, based on the FS consist-
ing of the 28 SNPs mapping to the body, promoter, or 
enhancers of PPP2R3A and PRC1, we looked at permuta-
tion feature importance, both for classic and resAdj TPOT. 
The drivers for the best stage 2 pipeline from classic 
TPOT (illustrated in Fig. 3) were the SNPs rs4932178 and 
rs113028686. These two SNPs were also among the top 7 
SNPs in the best stage2 pipeline from resAdj TPOT, to-
gether with rs116415933, rs139138366, rs8031684, 

rs11073964, rs35773450. The SNP rs4932178 resides in a 
putative enhancer for PRC1 (in heart and fat), but is also 
within the promoter of FURIN, a gene expressed in vascu-
lar Endothelial Cells (ECs) and whose levels in ECs affect 
monocyte-endothelial adhesion and migration [26]. It has 
also been shown that FURIN inhibition reduces vascular 
remodeling and atherosclerotic lesion progression in mice 
[27]. Furthermore, this gene is among the prioritized 
causal CAD genes from [28] based on cumulative evi-
dence from experimental and in silico studies. rs4932178 
was also identified in GTEx (https://gtexportal.org/, v8) as 
an eQTL for FES in various tissues including coronary 
artery. Colocalization between CAD and expression asso-
ciation signals was observed for FES by [29]. rs113028686 
is in the 5’-UTR of PRC1 and is an eQTL of FES in various 
tissues including adipose, whole blood, and tibial artery 
(from GTEx). rs8031684, residing within an intron of 
PRC1, is an eQTL of RCCD1 in adipose, aortic and tibial 
artery, as indicated in HaploReg v4.1 [30]. RCCD1 is in the 
same subnetwork as FURIN for the CAD key driver 
NGRN identified in [31]. rs11073964, just upstream of 
PRC1, is also a missense mutation for VPS33B which is 
among 13 novel susceptibility loci for early-onset myo-
cardial infarction identified in [32]. Among the remaining 
3 SNPs (rs116415933, rs139138366, rs35773450), all intron-
ic within the CAD druggable gene PPP2R3A, rs116415933 
is reported in GTEx as eQTL for IL20RB in various tissues, 
including adipose and aortic and tibial artery. GeneCards 
[33] reports an association with the CAD phenotype for 
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IL20RB (www.genecards.org). 

Fig. 4. Multisample force plot for the 1489 correctly classified testing 
cases in the best stage 2 pipeline for classic TPOT. Explanations for 
these subjects are stacked horizontally, so the x-axis indicates the 
individuals. For each individual, the feature contributions to its pre-
diction (probability of CAD) are shown along the y-direction, with 
features pushing the prediction higher in red, and features pushing 
the prediction lower in blue. 

Fig. 5. Feature rankings within the four SHAP value-based clusters 
for the correctly classified CAD testing cases in the best stage 2 
pipeline from classic TPOT. The x-axis indicates the mean absolute 
SHAP value for the subjects in that cluster. Only the top 3 (out of 28) 
features are indicated as all remaining ones have negligible contribu-
tions. 

Permutation importance measures the overall rele-
vance of a feature to a model, i.e. how much the model 
relies on that feature, by examining how much shuffling 
the feature values increases the model error. However, 
especially when a model has limited predictive ability 
and heterogeneity exists among subjects, as it is typically 
the case with GWAS data, it is of interest to examine how 
each feature contributes to the individual predictions. 
With this in mind, we set to examine which features were 
driving the good predictions among the CAD cases using 
SHAP values, a game-theory based metric for explaining 
individual predictions [16]. We first examined the best 
pipeline from stage 2 of classic TPOT and computed the 
feature SHAP values for the 1489 testing CAD cases that 
were correctly classified. Fig. 4 shows the force plot for 
these subjects (force plots were introduced in [34]). Based 
on inspection of the force plot and Dunn indices for vari-
ous k values, we used SHAP values to cluster these sam-
ples into four groups (sizes: 76, 156, 252, and 1005). We  

 

then ranked the features within each group by their aver-
age impact on model output across that group. 

We observed that the same three features are driving 
the model output in all four clusters but with differing 
relevance (Fig. 5). These are two SNPs discussed above 
(rs4932178 and rs113028686) plus the rs17636091 SNP. The 
latter resides within an intron of PRC1 and is reported by 
GTEx as eQTL, in various tissues, including adipose and 
artery (aorta and tibial), for both RCCD1 and VPS33B, 
genes whose relevance to CAD has been discussed above. 
Clusters 1 and 3 are very similar with rs4932178 having a 
markedly higher average contribution to the model out-
put, and rs17636091 contributing slightly more than 
rs113028686 on average in cluster 1 than in 3. For subjects 
in cluster 2, predictions are mostly driven by rs113028686, 
whereas for those in cluster 3, rs17636091 is the driver 
with rs113028686 not too distant of a second. 

We then proceeded with a similar approach for the 

best stage 2 pipeline from resAdj TPOT. We focused on 

the 250 CAD testing cases in the bottom quartile of the 

absolute difference between the covariate-adjusted ob-

served and predicted outcomes. We note that these indi-

viduals are distinct from the 1489 correctly predicted us-

ing classic TPOT (overlap=19). Based on inspection of the 

force plot (Fig. 6) and Dunn indices for various k values, 

we clustered these subjects into six SHAP value-based 

groups (sizes 26, 5, 27, 13, 43, and 136). 

In this case (Fig. 7), rs4932178 returns as the main 

driver to the model predictions for subjects in cluster 3. 

Moreover, this SNP is a strong driver in cluster 4 together 

with the top driver of that cluster, which is rs116415933, 

discussed above. The latter SNP is also the main driver in 

cluster 5, whereas in cluster 1 it is the main driver closely 

followed by rs188650245, an intronic SNP in PPP2R3A, 

indicated in GTEx as eQTL in several tissues, including 

cultured fibroblasts, for IL20RB, a gene discussed above. 

The latter SNP is also a top driver for cluster 6, but here 

with similar impact to rs139138366. Finally, cluster 2 is 

dominated by rs17636091, discussed above. 
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Fig. 6. Multisample force plot for the 250 well classified testing cases 
in the best stage 2 pipeline for resAdj TPOT. Explanations for these 
subjects are stacked horizontally, so the x-axis indicates the individ-
uals. For each individual, the feature contributions to its prediction 
are shown along the y-direction, with features pushing the prediction 
higher in red, and features pushing the prediction lower in blue. 

Fig. 7. Feature rankings within the six SHAP value-based clusters for 
the well predicted CAD testing cases in the best stage 2 pipeline 
from resAdj TPOT. The x-axis indicates the mean absolute SHAP 
value for the subjects in that cluster. The features displayed are 
those in the union of the top 5 from each of the 6 clusters. 

4 CONCLUSION AND DISCUSSION 

In this work we employed a large-scale genotype data set 
for the CAD phenotype, derived from UKB, to assess the 
applicability of AutoML, specifically TPOT. Traditional 
GWAS analyses are based on univariate statistical ap-
proaches aimed at detecting main effects. ML approaches 
like TPOT enable investigation of SNPs as groups, em-
bracing the possibility of both additive and epistatic ef-
fects. However, GWAS data sets present some unique 
challenges to AutoML as compared to other data types. 
First, the search space is very large, both in terms of num-
ber of observations (subjects) and features (SNPs). More-
over, if one is interested in comparing different feature 

sets, then the search space is indeed much larger than the 
search space for univariate analyses. All of this hinders 
computational feasibility. Second, the signal is weak and 
hard to detect, due to several inherent characteristics of 
this type of data, including small effect sizes of common 
variants and heterogeneity. Our baseline runs of TPOT, 

focused on features previously 
identified as the strongest CAD 
main effects, confirm this, with ac-
curacies just above 55%. 

In order to overcome the large 
search space obstacle, on the one 
hand, we randomly down-sampled 
the controls to equal the number of 
cases (about 20,000 each). We ap-
plied this down-sampling multiple 
times with different seeds before 
performing multiple TPOT runs. 
This down-sampling still retained a 
considerably large number of ob-
servations and at the same time 
eliminated the issue of having a 
highly unbalanced data set (even 
though the balanced accuracy score 
can be used in TPOT to deal with 
unbalanced data set). We also re-
duced the feature search space by 
employing biological filters where 

we integrated three resources: (1) results from a previous 
druggability prioritization study for CAD, (2) Hetionet 
integrated network, (3) tissue specific enhancer-promoter 
predictions derived from Roadmap Epigenomics data 
[35]. In addition, we employed various scorers to filter out 
potentially non-functional SNPs. Reducing the SNPs to be 
analyzed is a necessary but very delicate step. The idea is 
to utilize multiple lines of evidence to narrow down the 
feature space, whereby the goal is not to look for all pos-
sible signals of interest but to focus on a promising sub-
set. There are many paths that can be taken to this end 
and in our case study we picked and followed one route. 
In general, for this type of filtering approaches, the risk is 
to discard too much and hence eliminate all potentially 
interesting features. The choice of suitable functional ge-
nomics data, public databases, and scoring algorithms 
bear a crucial weight into guiding the selection of SNPs 
and SNP groupings.  As more functional genomics data 
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become available as well as improved computational 
methods to extract from these more precise and relevant 
SNP-gene mappings, the application of TPOT and other 
AutoML to high-throughput genotype-phenotype data 
should become increasingly fruitful. 

In spite of this reduction in search space size, the in-
put data to our runs were still very large; thus, we had to 
set an upper bound of 100 for both the GP population and 
the GP number of generations. Moreover, for our permu-
tation analyses, where the whole process had to be re-
peated for each permutation and we carried out 50 TPOT 
runs per permutation per stage, we had to limit the num-
ber of permutations to 20. Thus, improving TPOT run-
time is an important area for further development so that 
runs on GWAS data can be on par with the typical set-
tings used for other data types (e.g. 500-1000 generations 
and similarly sized populations in the GP). Improvements 
in run time would also enable increasing the number of 
permutations so to estimate p-values with small uncer-
tainty. 

A feature that turned out to be particularly useful for 
this scenario where accuracies were just above 50%, was 
the FSS which allowed us to specify that the pipelines 
being searched by TPOT in the first stage should all start 
with the selection of a feature set among a collection of 
sets of interest. With this, by examining the consistency 
with which a given FS was selected in multiple runs, we 
managed to identify a strikingly recurrent FS, comprising 
SNPs residing within the body, promoter, or enhancers of 
the ‘druggable’ PPP2R3A or its connected gene PRC1. To 
our knowledge, the latter gene has not previously been 
reported as being CAD relevant. Even though we cannot 
rule out the possibility that it represents a novel CAD 
gene, there are other possible explanations for the signal 
detected by TPOT. Indeed, when we examined permuta-
tion-based feature importance, we noted that several of 
the top SNPs relevant to models from the best stage 2 
TPOT pipelines were not only in functional regions for 
PRC1, but also in functional regions for other genes (such 
as FES, FURIN, RCCD1, VPS33B, and IL20RB) with evi-
dence for CAD relevance from previous studies. We note 
that permutation feature importance should not be over-
interpreted in data sets like those derived from GWAS, 
where the predictive power is limited and heterogeneity 
is expected among the cases. In view of the latter, it is 
especially important to examine the feature contributions 
to model output on an individual basis. In this work, we 
computed SHAP values to cluster the testing cases with 
good predictions and examined the drivers of these pre-
dictions in different clusters. This approach underscores 
the case heterogeneity in our data set and provides an 
example of how to move towards precision medicine by 
utilizing metrics, such as SHAP values, which can help 
distinguish which features are relevant for which indi-
viduals. Our analysis of the SHAP value-based clusters 
also highlighted groups of subjects where the predictions 
were driven from SNPs associated to the genes with CAD 
relevance indicated above. Together, our findings corrob-
orate that, despite the specific challenges presented by 
GWAS to TPOT, insights can be gained from applications 

of AutoML to this type of data, especially in combination 
with consistency measures (as provided by the FS recur-
rence analysis) and metrics aimed at facilitating model 
explanations such as SHAP. 
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SUPPLEMENTAL MATERIAL 

Supplemental Table 1. SNPs in the PPP2R3A-PRC1 fea-

ture set. For each SNP, its CADD, GWAVA and TraP 

scores are indicated together with the gene the SNP maps 

to and whether it resides within the extended gene body 

(B) or a putative enhancer (E). 

REFERENCES 

[1] N. Perakakis, A. Yazdani, G. E. Karniadakis, and C. Mantzoros, “Omics, 

big data and machine learning as tools to propel understanding of bio-

logical mechanisms and to discover novel diagnostics and therapeu-

tics,” Metabolism, vol. 87, pp. A1–A9, Oct. 2018, doi: 

10.1016/j.metabol.2018.08.002. 

[2] G. Eraslan, Ž. Avsec, J. Gagneur, and F. J. Theis, “Deep learning: new 

computational modelling techniques for genomics,” Nat. Rev. Genet., 

vol. 20, no. 7, Art. no. 7, Jul. 2019, doi: 10.1038/s41576-019-0122-6. 

[3] H. L. Nicholls, C. R. John, D. S. Watson, P. B. Munroe, M. R. Barnes, and 

C. P. Cabrera, “Reaching the End-Game for GWAS: Machine Learning 

Approaches for the Prioritization of Complex Disease Loci,” Front. 

Genet., vol. 11, p. 350, 2020, doi: 10.3389/fgene.2020.00350. 

[4] F. Hutter, L. Kotthoff, and J. Vanschoren, Eds., Automated Machine 

Learning: Methods, Systems, Challenges. Springer International Pub-

lishing, 2019. 

[5] R. S. Olson, R. J. Urbanowicz, P. C. Andrews, N. A. Lavender, L. C. 

Kidd, and J. H. Moore, “Automating Biomedical Data Science Through 

Tree-Based Pipeline Optimization,” in Applications of Evolutionary 

Computation, Cham, 2016, pp. 123–137, doi: 10.1007/978-3-319-31204-

0_9. 

[6] R. S. Olson and J. H. Moore, “TPOT: A Tree-Based Pipeline Optimiza-

tion Tool for Automating Machine Learning,” in Automated Machine 

Learning: Methods, Systems, Challenges, F. Hutter, L. Kotthoff, and J. 

Vanschoren, Eds. Cham: Springer International Publishing, 2019, pp. 

151–160. 

[7] A. Orlenko et al., “Considerations for automated machine learning in 

clinical metabolic profiling: Altered homocysteine plasma concentration 

associated with metformin exposure,” in Biocomputing 2018, 0 vols., 

WORLD SCIENTIFIC, 2017, pp. 460–471. 

[8] A. Orlenko et al., “Model selection for metabolomics: predicting diag-

nosis of coronary artery disease using automated machine learning,” 

Bioinformatics, vol. 36, no. 6, pp. 1772–1778, Mar. 2020, doi: 

10.1093/bioinformatics/btz796. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted March 23, 2021. ; https://doi.org/10.1101/2021.03.23.436652doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.23.436652
http://creativecommons.org/licenses/by/4.0/


 9 

 

[9] T. T. Le, W. Fu, and J. H. Moore, “Scaling tree-based automated machine 

learning to biomedical big data with a feature set selector,” Bioinformat-

ics, vol. 36, no. 1, pp. 250–256, Jan. 2020, doi: 

10.1093/bioinformatics/btz470. 

[10] E. Manduchi, W. Fu, J. D. Romano, S. Ruberto, and J. H. Moore, “Em-

bedding covariate adjustments in tree-based automated machine learn-

ing for biomedical big data analyses,” BMC Bioinformatics, vol. 21, no. 

1, p. 430, Oct. 2020, doi: 10.1186/s12859-020-03755-4. 

[11] T. A. Manolio et al., “Finding the missing heritability of complex diseas-

es,” Nature, vol. 461, no. 7265, pp. 747–753, Oct. 2009, doi: 

10.1038/nature08494. 

[12] R. De, W. S. Bush, and J. H. Moore, “Bioinformatics challenges in ge-

nome-wide association studies (GWAS),” Methods Mol. Biol. Clifton 

NJ, vol. 1168, pp. 63–81, 2014, doi: 10.1007/978-1-4939-0847-9_5. 

[13] C. Bycroft et al., “The UK Biobank resource with deep phenotyping and 

genomic data,” Nature, vol. 562, no. 7726, Art. no. 7726, Oct. 2018, doi: 

10.1038/s41586-018-0579-z. 

[14] K. Musunuru and S. Kathiresan, “Genetics of Common, Complex 

Coronary Artery Disease,” Cell, vol. 177, no. 1, pp. 132–145, Mar. 2019, 

doi: 10.1016/j.cell.2019.02.015. 

[15] Tragante Vinicius et al., “Druggability of Coronary Artery Disease Risk 

Loci,” Circ. Genomic Precis. Med., vol. 11, no. 8, p. e001977, Aug. 2018, 

doi: 10.1161/CIRCGEN.117.001977. 

[16] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting 

Model Predictions,” Adv. Neural Inf. Process. Syst., vol. 30, pp. 4765–

4774, 2017. 

[17] Aragam Krishna G. et al., “Phenotypic Refinement of Heart Failure in a 

National Biobank Facilitates Genetic Discovery,” Circulation, vol. 139, 

no. 4, pp. 489–501, Jan. 2019, doi: 

10.1161/CIRCULATIONAHA.118.035774. 

[18] A. D. Yates et al., “Ensembl 2020,” Nucleic Acids Res., vol. 48, no. D1, 

pp. D682–D688, Jan. 2020, doi: 10.1093/nar/gkz966. 

[19] A. R. Quinlan and I. M. Hall, “BEDTools: a flexible suite of utilities for 

comparing genomic features,” Bioinformatics, vol. 26, no. 6, pp. 841–

842, Mar. 2010, doi: 10.1093/bioinformatics/btq033. 

[20] P. Rentzsch, D. Witten, G. M. Cooper, J. Shendure, and M. Kircher, 

“CADD: predicting the deleteriousness of variants throughout the hu-

man genome,” Nucleic Acids Res., vol. 47, no. D1, pp. D886–D894, Jan. 

2019, doi: 10.1093/nar/gky1016. 

[21] G. R. S. Ritchie, I. Dunham, E. Zeggini, and P. Flicek, “Functional anno-

tation of noncoding sequence variants,” Nat. Methods, vol. 11, no. 3, 

Art. no. 3, Mar. 2014, doi: 10.1038/nmeth.2832. 

[22] S. Gelfman et al., “Annotating pathogenic non-coding variants in genic 

regions,” Nat. Commun., vol. 8, no. 1, Art. no. 1, Aug. 2017, doi: 

10.1038/s41467-017-00141-2. 

[23] M. Charrad, N. Ghazzali, V. Boiteau, and A. Niknafs, “NbClust: An R 

Package for Determining the Relevant Number of Clusters in a Data 

Set,” J. Stat. Softw., vol. 61, no. 1, Art. no. 1, Nov. 2014, doi: 

10.18637/jss.v061.i06. 

[24] J. C. Dunn†, “Well-Separated Clusters and Optimal Fuzzy Partitions,” J. 

Cybern., vol. 4, no. 1, pp. 95–104, Jan. 1974, doi: 

10.1080/01969727408546059. 

[25] C. P. Nelson et al., “Association analyses based on false discovery rate 

implicate new loci for coronary artery disease,” Nat. Genet., vol. 49, no. 

9, Art. no. 9, Sep. 2017, doi: 10.1038/ng.3913. 

[26] Yang Xu et al., “FURIN Expression in Vascular Endothelial Cells Is 

Modulated by a Coronary Artery Disease–Associated Genetic Variant 

and Influences Monocyte Transendothelial Migration,” J. Am. Heart 

Assoc., vol. 9, no. 4, p. e014333, Feb. 2020, doi: 10.1161/JAHA.119.014333. 

[27] G. K. Yakala et al., “FURIN Inhibition Reduces Vascular Remodeling 

and Atherosclerotic Lesion Progression in Mice,” Arterioscler. Thromb. 

Vasc. Biol., vol. 39, no. 3, pp. 387–401, 2019, doi: 

10.1161/ATVBAHA.118.311903. 

[28] A. S. Shadrina et al., “Prioritization of causal genes for coronary artery 

disease based on cumulative evidence from experimental and in silico 

studies,” Sci. Rep., vol. 10, no. 1, Art. no. 1, Jun. 2020, doi: 

10.1038/s41598-020-67001-w. 

[29] B. Liu et al., “Genetic Regulatory Mechanisms of Smooth Muscle Cells 

Map to Coronary Artery Disease Risk Loci,” Am. J. Hum. Genet., vol. 

103, no. 3, pp. 377–388, 06 2018, doi: 10.1016/j.ajhg.2018.08.001. 

[30] L. D. Ward and M. Kellis, “HaploReg: a resource for exploring chroma-

tin states, conservation, and regulatory motif alterations within sets of 

genetically linked variants,” Nucleic Acids Res., vol. 40, no. D1, pp. 

D930–D934, Jan. 2012, doi: 10.1093/nar/gkr917. 

[31] Zhao Yuqi et al., “Network-Based Identification and Prioritization of 

Key Regulators of Coronary Artery Disease Loci,” Arterioscler. Thromb. 

Vasc. Biol., vol. 36, no. 5, pp. 928–941, May 2016, doi: 

10.1161/ATVBAHA.115.306725. 

[32] Y. Yamada et al., “Identification of 13 novel susceptibility loci for early-

onset myocardial infarction, hypertension, or chronic kidney disease,” 

Int. J. Mol. Med., vol. 42, no. 5, pp. 2415–2436, Nov. 2018, doi: 

10.3892/ijmm.2018.3852. 

[33] G. Stelzer et al., “The GeneCards Suite: From Gene Data Mining to 

Disease Genome Sequence Analyses,” Curr. Protoc. Bioinforma., vol. 54, 

no. 1, p. 1.30.1-1.30.33, 2016, doi: https://doi.org/10.1002/cpbi.5. 

[34] S. M. Lundberg et al., “Explainable machine-learning predictions for the 

prevention of hypoxaemia during surgery,” Nat. Biomed. Eng., vol. 2, 

no. 10, Art. no. 10, Oct. 2018, doi: 10.1038/s41551-018-0304-0. 

[35] A. Kundaje et al., “Integrative analysis of 111 reference human epige-

nomes,” Nature, vol. 518, no. 7539, Art. no. 7539, Feb. 2015, doi: 

10.1038/nature14248. 

 

 
 

 
 
 
 
 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted March 23, 2021. ; https://doi.org/10.1101/2021.03.23.436652doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.23.436652
http://creativecommons.org/licenses/by/4.0/

