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ABSTRACT 
The realism and accuracy of lipid bilayer simulations through molecular dynamics (MD) is heavily 
dependent on the lipid composition. While the field is pushing towards implementing more 
heterogeneous and realistic membrane compositions, a lack of high-resolution lipidomic data 
prevents some membrane protein systems from being modeled with the highest level of realism. 
Given the additional diversity of real-world cellular membranes and protein-lipid interactions, it 
is still not fully understood how altering membrane complexity affects modeled membrane protein 
function or if it matters over long timescale simulations. This is especially true for organisms 
whose membrane environments have little to no computational study, such as the plant plasma 
membrane. Tackling these issues in tandem, a generalized, realistic, and asymmetric plant plasma 
with more than 10 different lipid species membrane is constructed herein. Classical MD 
simulations of pure membrane constructs were performed to evaluate how altering the 
compositional complexity of the membrane impacted the plant membrane properties. The apo 
form of a plant sugar transporter, OsSWEET2b, was inserted into membrane models where lipid 
diversity was calculated in either a size-dependent or -independent manner. An adaptive sampling 
simulation regime validated by Markov-state models was performed to capture the gating 
dynamics of OsSWEET2b in each of these membrane constructs. In comparison to previous 
OsSWEET2b simulations performed in a pure POPC bilayer, we confirm that simulations 
performed within a native-like membrane composition alter the stabilization of apo OsSWEET2b 
conformational states by ~1 kcal/mol. The free energy barriers of intermediate conformational 
states decrease when realistic membrane complexity is simplified, albeit roughly within sampling 
error, suggesting that protein-specific responses to membranes differ due to altered packing caused 
by compositional fluctuations. This work serves as a case study where a more realistic bilayer 
composition makes unbiased conformational sampling easier to achieve than with simplified 
bilayers.  

 

INTRODUCTION 
Biological membranes of natural origin are nonhomogeneous, multicomponent and asymmetric 
with a large diversity of lipid chemical structures. Resulting protein-lipid interactions are as 
diverse as the membrane bilayer composition itself and deserve further study. Although recent 
realistic membrane studies have emerged, the modeling of pure complex membranes and their 
interactions with membrane proteins is still in a characterization phase. Molecular dynamics (MD) 
simulations account for the positions of all atoms of a given system at any moment in time, 
providing an exceptional level of atomistic, label-free resolution for studying membrane properties 
and membrane protein function. As the popularity of MD has grown in parallel to the advent of 
more efficient computing capabilities, modern practices concerning the simulation of membrane 
systems have also advanced.1,2 Specifically, increasing attention has been paid to appropriate 
modeling of membrane realism in the hopes of better capitulating native biological processes.3 
How “realistic” a membrane’s simulated behavior can be is influenced by the selection of 
forcefields, system setup tools, and the constituent lipid diversity representing the modeled cellular 
environment. System preparation protocols and forcefield development behind the assembly and 
parameterization of membrane-containing MD systems have continuously improved over the last 
decade.4,5 The refinement of these necessary components of membrane system setup have resulted 
in increased predictive power; for instance, coarse-grained models are widely accepted for 
accurately predicting lipid-protein interactions.3,6,7 Still, uncertainty surrounds how realistic any 
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membrane composition should be for a given MD application, where the benefit of “better” lipid 
representation is not fully understood. 
 Simulation of realistic membranes is not yet a standard modeling convention for a number 
of reasons. Firstly, high-resolution lipidomic data is not available for all cell types of all organisms 
to reveal accurate chemical diversity nor leaflet asymmetry. This is mainly due to a lack of interest 
in resolving the complete “lipidomic picture” for a diversity of organisms’ native membrane 
environments or because spectrometry technology was previously not advanced enough to fully 
resolve the identity of both lipid acyl chains when first studied. Given crystal structure availability 
of biodiverse origins without corresponding membrane characterizations available, MD 
practitioners resort to incorporating simplified membranes into their models. Up until the past 
decade, this practice of using simplified models has resulted in regularly unchallenged “default” 
modeling practices. For instance, single component mammalian membranes are commonly 
represented as POPC, and bacterial membranes are represented by POPE/POPG. Meanwhile, 
realistic model bilayers include at least six different lipid species.3 

Secondly, the modeling of an asymmetric membrane is computationally difficult, due to 
both leaflets being constrained by the same box volume and pressure coupling. Compounded by a 
lack of data validating explicit leaflet-specific ratios of lipid species, determining how different 
lipid types should be allotted between the upper and lower leaflets often results from tedious trial 
and error. Some methods have been developed to make the construction of asymmetric membranes 
become more systematic,8–12 but these approaches do not completely eradicate the lateral pressure 
differences inherent to leaflet asymmetry.13 Additionally, the majority of realistic membranes vary 
the number of different lipid species between two to six different lipids,3 minus a few exceptions.14–

19 Again, the question of how complex a realistic membrane should be remains unanswered. Taken 
together, the inherent challenges and increased computational costs involved in validating realistic 
membrane modeling explain why relatively few computational studies have incorporated such 
complex bilayers. 
 Computationally, it is now understood that protein-lipid interactions are recruited and 
protein-specific.20 Experimentally, it has been seen that some protein conformations are 
inaccessible when reconstituted within a given membrane composition, a finding further 
consolidated by the ability of detergents to facilitate or deter membrane protein crystal structures 
from certain conformational states.21 Performing long timescale simulations studies with realistic 
membranes can serve as a starting point for improved understanding. Such simulations present an 
opportunity to expand upon current computational knowledge of protein-lipid interactions and 
enhance insights to lipid-dependent membrane protein conformational ensembles.  
 Herein, a realistic plant plasma membrane construct is chosen as a model system to observe 
the effects of variable membrane complexity on pure membrane properties and membrane protein 
function. Currently there exists no standard protocol for conducting MD simulations on membrane 
systems modeling a plant cell; unlike for mammalian systems, whose bilayers are generally 
assumed to be POPC-rich,22 plant membrane systems lack extensive study or even default 
compositions when simulated via MD. Some plant membrane compositions exist, though have 
mostly been used for a specific application, such as the thylakoid membrane for photosynthesis 
studies, and are not asymmetric.23–27 While plant species present biological differences, an 
averaged, generalizable model would facilitate membrane MD study in plants. Furthermore, by 
establishing a membrane composition with valid asymmetry whose physical properties are robust 
against size-dependent changes, the effects of membrane realism on molecular simulation 
timescales can be evaluated. For comparing the effects of membrane composition on protein 
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function, two formulas for plant plasma membrane construction were then implemented: (1) a 
composition which was purely based off experimental ratios scaling with respect to the membrane 
size (called “Maximum Complexity”), and (2) a size-independent composition where only the top 
ten most abundant lipids species – those which had a literature calculated relative abundance 
greater than 1% - were retained (termed “Top10”). Depending on the system size, our all-atom 
plant plasma membranes are represented by the asymmetrical arrangement of 9, 10, 15, or 16 
different lipid species. Such chemical diversity is rarely seen in all-atom MD approaches to 
membrane modeling. Model bilayers containing 10 or more different lipid species exhibited more 
or less equivalent physical properties.  

To this end, the apo form of OsSWEET2b, a rice sugar transporter, was inserted into each 
membrane type. The complete transport cycle of apo and holo variants of OsSWEET2b had 
previously been elucidated in a pure POPC membrane,28 allowing for a direct comparison to 
evaluate the differences brought by introduction of a native membrane composition. Between the 
two membrane constructs, OsSWEET2b apo transport cycles were capitulated across an aggregate 
of 61 and 91 µs using Maximum Complexity and Top10 membranes, respectively. Markov state 
models (MSMs) were used to remove sampling bias and interpret aggregate data from many short 
simulations into an ensemble view for characterizing longer timescale behaviors (i.e., 
OsSWEET2b gating dynamics). Thus, the use of MSMs helps in better estimating the free energy 
barriers between conformationally distinct gating states. While the establishment of a realistic 
plant plasma membrane is intended for enabling future general simulation applications in plant-
based systems, our results concerning transporter dynamics are intended to serve as a reference for 
MD practitioners considering how complex to make their own membrane models when studying 
membrane protein function. Ultimately, we advocate for constructing the most realistic membranes 
when lipidomic data is not limiting. Even in cases where simplification of membrane complexity 
is unavoidable, we present readers with discussion of some practical considerations when 
modeling membrane protein function. 
 
METHODS 
 
Curation of literature for plant plasma membrane construction. An extensive literature search was 
performed to determine the lipid composition of a realistic plant plasma membrane representing a 
generalized plant cell. Curated data including relative percentages of sterol and lipid headgroup 
composition were averaged regardless of plant species and tissues sampled. Fatty acid chain 
distributions for each headgroup were estimated only from sources where mass spectrometry 
information was provided on both the sn-1 and sn-2 acyl chains.29–43 To make this membrane as 
realistic as possible, we wanted to account for leaflet asymmetry. In terms of asymmetric lipid 
distribution across different leaflets within the plant plasma membrane, literature is limited; 
specifically, it has been reported that the distributions of lipid species across the plasma membrane 
upper:lower leaflets are 35:65 and 70:30 for phospholipids and sterols, respectively.44 However, 
to the best of our knowledge, no such data is provided on the specific distributions of phospholipid 
headgroups and acyl chain types across the plant plasma membrane leaflets. We proceeded under 
the assumption that the headgroup and acyl chain asymmetries seen across the outer and inner 
membranes of chloroplasts and mitochondria would be similar to that for the plant plasma 
membrane. From our literature search,45–58 we compiled the data of lipid species distributions 
across the outer and inner membranes of chloroplasts and plant mitochondria to determine relative 
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ratios for lipid species with different acyl chain lengths and degrees of unsaturation within each 
headgroup type. 
 
Membrane and membrane protein system assembly. Pure membrane constructs were made with 
the designated compositions in the CHARMM-GUI Membrane Builder webtool.10 Pure membrane 
constructs were sized at 64, 128, 256, and 512 total lipids. These system sizes were chosen to 
reflect the necessary membrane sizes needed for common MD applications (e.g., pure membrane 
property calculations, small-molecule membrane interaction studies, membrane protein structure-
function capture). The largest system size which could be made using CHARMM-GUI was 512 
lipids; the larger sterol content resulted in lipid tail-ring penetration issues which could not be 
overcome when using CHARMM-GUI at larger sizes. For OsSWEET2b simulations, select 
structures representing previously published inward-facing (IF), outward-facing (OF), occluded 
(OC), and hourglass (HG) conformations were used for system construction.28 One of each of these 
four protein structures was then submitted to the Membrane Builder webtool for membrane 
building using the “Maximum Complexity” and “Top10” compositions at a membrane size of 256 
total lipids. Addition of all water molecules for each system was then repacked using PACKMOL 
18.169.59  
 
System parameterization. CHARMM36 protein and lipid forcefields were applied to each system 
in the psfgen VMD-plugin,60 where protein protonation states were determined using the 
PDB2PQR (PROPKA) server.61 CHARMM-formatted topology and structure files for pure 
membrane systems over 100,000 atoms in size were generated using the TopoTools plugin to 
output final structure files in a format other than the pdb format, as pdb files cannot be written to 
number more than 99,999 atoms.62 The default TIPS3P water model for CHARMM was used for 
all simulations. Potassium and chloride ions were added using the autoionize package to neutralize 
the systems. All systems prepared through VMD were then converted from CHARMM to AMBER 
format using the CHAMBER within the ParmEd toolkit to enable parallel computing capabilities 
in AMBER.63 During conversion, all membrane protein systems were subject to hydrogen mass 
repartitioning (HMR) in order to allow faster timesteps for simulation, which would help with 
capturing slower kinetic processes within single trajectories.64 Pure membrane simulations were 
not performed using HMR for simplifying characterization work.65 
 
Simulation details – Pure membrane simulations. All simulations were performed by using 
classical molecular dynamics (MD) in the AMBER18 software package.66 For pure membrane 
simulations, minimization was performed for 50000 cycles, where steepest descent was used for 
the first 5000 and then conjugate gradient for the remaining 45000 cycles. No positional restraints 
were employed. Each system was then heated for 2 ns from 0 to 10 K in an NVT ensemble. Each 
system was then heated at 10K in an NPT ensemble for 2 ns. NPT heating was then increased to 
300K for 2 ns. All prior heating stages were run using the sander CPU simulation code. In order 
to ease box dimension changes prior to using the pmemd.cuda GPU simulation code, a 5 ns NPT 
hold was performed at 300K using the pmemd CPU simulation code. Following the 5ns hold, all 
systems then underwent equilibration and production runs. Pure membrane simulations used semi-
isotropic pressure scaling and were run with a 2fs timestep. A Berendsen thermostat and barostat 
were used throughout heating steps, where the pressure was maintained at 1 bar.67 A Langevin 
thermostat and Monte Carlo barostat were then implemented for temperature and pressure 
maintenance in all equilibration runs, respectively.68,69 A Langevin collision frequency of 2 ps-1 
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was used, while default settings for the Monte Carlo barostat were kept. Equilibration and 
production runs proceeded using the pmemd.cuda GPU simulation code except for the 64-sized 
lipid membranes for reasons discussed in the main text, which were run using sander. The 
SHAKE algorithm was applied to all stages of simulation initialization except for minimization,70 
while the Particle Mesh Ewald method was used for treating long-range electrostatics at a 12 Å 
cutoff in correspondence with the CHARMM36 lipid forcefields.71,72 Pure membrane simulations 
were equilibrated for 1 µs and in triplicate, where the frame save rate was set to every 50000 
frames. Both  Maximum Complexity and Top10 models appeared to equilibrate within 400 ns. 
 
Simulation details – Membrane protein simulations. Membrane protein simulations were 
minimized in a similar fashion to the pure membrane simulations, although positional restraints at 
strengths of 5 kcal/mol were applied to all backbone atoms. Because of HMR, all membrane 
protein simulations were run with a 4fs timestep. Identical heating protocols were used for 
membrane protein simulations except for the following changes. Anisotropic pressure scaling was 
implemented throughout and a Berendsen thermostat and barostat were used for equilibration and 
production runs. Despite their widespread accessibility in MD software, it has not been 
recommended to use the Berendsen thermostat or barostat for production runs unless comparing 
results to already published work which had used them.73 Accordingly, we used a Berendsen 
thermostat and barostat to compare the effects of increased membrane complexity on the gating 
dynamics of OsSWEET2b.28 All atom restraints were removed from membrane protein simulations 
during the 5 ns holding period. OsSWEET2b simulations were equilibrated for 50 ns. Based on 
expected timescales, OsSWEET2b production runs ran for 25 µs, where only coordinates and not 
velocities were read from restart files. Velocities are purposefully reinitialized in adaptive 
sampling in order to achieve greater randomized seeding, and in turn, more efficient sampling over 
the desired conformational space. Frame recording rates were set for every 50000 steps. 
 
Adaptive sampling protocols. Pure membrane simulations were run using continuous MD while 
membrane protein simulations were run using adaptive sampling-based MD. In adaptive sampling 
regimes, any state recorded along a trajectory can be used as the starting point to seed a new 
trajectory.74–77 A k-means clustering of trajectory data based on some reaction coordinate allows 
for the potential states used for seeding new trajectories to be representative of the entire round of 
data collected.78 For production trajectories run from each starting OsSWEET2b conformer within 
each membrane construct, the top 50 structures from the least populated clusters were used to 
reseed new adaptive rounds of simulation. For apo simulations, distances between gating residues 
(intracellular gating residues Phe42 and Phe164; extracellular gating residues Arg69 and Asp189) 
were used as the reaction coordinates for clustering. Systematic adaptive sampling was performed 
until the gating landscape for OsSWEET2b gating dynamics was filled or completed. All distance 
measurements between atoms were conducted using MDTraj 1.9.3.79 Clustered states and 
trajectories were visualized using VMD 1.9.3, while aggregate data collected were visualized as 
projected landscapes using Matplotlib 3.2.0.80 
 
Pure membrane simulation analyses – validation of physicality among constructs. The physical 
correctness of asymmetric membrane simulations can be assessed in two different ways, where 
either approach attempts to evaluate to what extent lateral pressure distributions differ between 
leaflets. If the difference in lateral pressure experienced by either leaflet is too great, then the 
pressure experienced by one leaflet will dominate the dynamics experienced by the bilayer as a 
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whole. One method to clarifying satisfactory lateral pressure differences between leaflets is to 
compare the area-per-lipid (APL) mismatch between the two leaflets of the asymmetric 
construct.11 As long as APL mismatch is between 5 and 10%, the impacts of asymmetry on bilayer 
properties are expected to be mild, where the best-case scenario is to have an APL mismatch 
between 0 and 5%. Another approach is to use the upper and lower leaflet compositions of the 
desired asymmetric leaflet membrane to build two symmetric membrane constructs.22 So long as 
the membrane-spanning box dimensions of the symmetric systems -  in this case, the XY 
dimensions – demonstrate a similar box area difference from the asymmetric simulations, the 
defined leaflet asymmetry can be deemed acceptable. Symmetric membranes were built for each 
membrane size tested, prepared as described above, and with production runs totaling for 50 ns. 
The box dimensions from these trial simulations were then compared with the first 50 ns of 
asymmetric membrane simulations.  
 
Pure membrane simulation analyses – bulk and headgroup-specific physical property 
measurements. Pure membrane simulations were analyzed for bulk physical properties using two 
software: Membrainy and SuAVE.81,82 The following physical properties were calculated using 
these software: area-per-lipid (APL), entropy, gel fluidity, membrane thickness, membrane 
curvature order parameter, membrane curvature angle, lipid SCD order parameters, headgroup axial 
tilt angle, and headgroup lateral tilt angle. Electron density calculations were performed using the 
CPPTRAJ module found in AMBER.83 Membrainy input files were generated by converting the 
AMBER-formatted trajectory and topology files to GROMACS formats using GROMACS 
2020.84 SuAVE input coordinates were generated from trajectories using VMD and MDTraj. 
 
Membrainy software updates. Membrainy was updated to allow new lipids to be parameterized 
via a user-created external lipid library (i.e., accept custom lipid forcefields).81 The leaflet 
detection method was also modified for improved efficiency and to allow for a vector-based 
solution to better account for leaflet undulation when discriminating between leaflets for 
calculations. In this leaflet-identification approach, the vectors are created by using the 
phosphorous atom and the last carbon atom of each lipid tail. For lipids with two tails, the average 
vector orientation was taken. Sterols are treated as having only one tail. Vectors that point up 
indicate an individual lipid getting placed in the upper leaflet, with vectors pointing down 
indicating lower leaflet placement. An updated version, Membrainy 2020, capable of performing 
all calculations done in this manuscript is available online (http://www.membrainy.net/) and is 
compatible with Gromacs-2020.84 
 
OsSWEET2b Markov state model (MSM) construction and validation All stages of MSM 
construction were performed using PyEMMA software.85 Feature selection for OsSWEET2b 
MSM construction followed the same protocol as employed in previous studies on membrane 
proteins.28,86–88 Maintaining the same choice of input features enables a direct comparison to the 
previous OsSWEET2b work done in a pure POPC bilayer. An iterative process of hyperparameter 
selection for optimization of the maximum VAMP score was performed.89 The number of clusters 
tested for data clustering varied from 100 to 1000 clusters, increasing by increments of 50. The 
number of time-Independent Component (tIC) were varied from 1 to 9. The time-independent 
component analysis (tICA) lag time varied from 5, 6, 7, 10 and 12 ns. The optimal combination of 
hyperparameters for OsSWEET2b Scale MSM construction was 9 tICs, 1000 clusters, and a tICA 
lag time of 12 ns. For constructing MSM of OsSWEET2b in the Top10 membrane model, the 
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optimal combination of hyperparameters was 9 tICs, 650 clusters, and a tICA lag time of 7 ns. 
Provided the nine residue pair distances used for featurization, the slowest timescale process for 
OsSWEET2b dynamics in either membrane converged at an MSM lag time of 9 ns. Accordingly, 
final MSMs were constructed using the optimal hyperparameters with an MSM lag time of 9 ns. 
 
Adaptive sampling error analysis. The data ensemble containing nine residue pair distances used 
for MSM featurization were replicated into ten slices. Each of these slices were comprised of a 
random selection of 80% of the overall data. MSMs were constructed off each of these data subsets 
using the same combination of hyperparameters as the entire dataset. With the gating dynamics 
represented as a 2D histogram plotting extracellular versus intracellular gating distances, the 
average error for each bin among each of the data slices was calculated as previously shown.28 
OsSWEET2b annular shell analyses. The linear interaction energy between OsSWEET2b residues 
and lipid species was calculated in CPPTRAJ. Snapshots were rendered using Chimera 1.14.90 
 
RESULTS AND DISCUSSION 
 
Establishing a realistic plant plasma membrane composition 
Based on the literature survey, the plant plasma membrane presents an ~48:52 split between 
sterols and phospholipids (PL) across the entire bilayer. However, the upper leaflet has a 
sterol:PL split of 65:35.44 Meanwhile, the lower leaflet exhibits a sterol:PL split of 30:70,44 which 
is consistent with the “positive-inside” rule, as more electropositive phospholipid headgroups are 
present along the intracellular leaflet to counter cytosolic electronegativity (Figure 1).91–93 In 
order of abundance, the plant plasma membrane is comprised of SITO (~32%), STIG (~16%), 
PLPE (~13%), PLPC (~12%), DLiPC and DLiPE (~5%), LLPC and PLPG (~4%), LLPE (~3%), 
POPC (~1%), and DSPC, DOPC, POPE, SLPE, POPG and DPPG (< 1%). While PLs represent 
the aggregate bulk of the plant plasma membrane, the most abundant individual lipid species are 
sterols, with SITO and STIG at ~32% and ~16%, respectively (Figure 2).  
 

Such sterol abundance has been seen in other membrane compositions.94 The most 
abundant individual PLs are PLPE (~14%) and PLPC (~12%) (Figure 2). Still, PC headgroup lipids 
account for the majority of PLs, followed by PE and PG. Regardless of leaflet, PLs predominantly 
exhibit 16:0/18:2 unsaturation (~60%), followed by 18:2/18:2 (~18%). Taken together, ~91% of 
PLs exhibit 18:2 unsaturation along one of their acyl chains. This is a far departure from simple 
mammalian membrane models which are often simulated using just POPC (16:0/18:1), serving as 
a reminder that “default” membrane practices for one organism type cannot be assumed to be 
appropriate for modeling another organism. For comparison, POPC represents ~1% of the plant 
plasma membrane composition, although the type of 18:1 unsaturation present in POPC-like lipids 
accounts for ~5% of all lipid unsaturation (Figure 1). The exact ratios for Maximum Complexity 
lipid bilayers for each size constructed (64, 128, 256, and 512 total lipids) are supplied in Tables 
S1-S5. 
 
Reducing the Maximum Complexity membranes to that of a Top10 composition, where any lipid 
species present under 1% relative abundance is removed from consideration, causes the relative 
abundances of the remaining lipid species (SITO, STIG, PLPE, PLPC, DLiPC, DLiPE, LLPC, 
PLPG, LLPE, and POPC) to fluctuate slightly. Removal of just five lipid species with < 1% relative 
abundance causes the remaining ten species to be represented in greater abundance, as the MD 
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system membrane size is the same but now with fewer types of lipids. Accordingly, this 
exacerbates leaflet-specific asymmetries as lipid counts become redistributed (i.e., the presence of 
slightly less sterols in the upper leaflet, or slightly more PLs in the lower leaflet, than would 
typically occur in nature). For the sterols, the disparity in relative abundance between the two 
leaflets decreases, where more sterols are redistributed to the lower leaflet. The reallocation of 
trace lipid counts to other lipids within their same headgroups results in relative increases for all 
PLs except for LLPE and POPC. PLPE content is increased by ~3%, making it now the second 
most abundant lipid species above STIG (Figure S1).  
 
 
 

 
  
Figure 1. Distribution of different lipid headgroups and degrees of tail unsaturation in model 
membranes constructed following a Maximum Complexity recipe. 
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Figure 2. Leaflet-specific percentage of different lipids present in a Maximum Complexity membrane construct. Ratios presented are 
based off those seen in the 256-lipid construct. 
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Pressure-related analyses indicate membrane physicality 

To evaluate the generalizability of this informatically-driven Maximum Complexity plant 
plasma membrane composition and its simplified Top10 version, common membrane physical 
properties (box area, area per lipid, entropy, gel fluidity, thickness, curvature, acyl chain order 
parameters, headgroup orientation, electron density) were calculated. 

Asymmetric membranes inherently experience differing lateral pressure profiles due to the 
different number of lipids present in each leaflet. Numerous developments by the field have been 
made to mitigate the damage to membrane physicality as a result of inherent differences between 
the leaflets of an asymmetric membrane. The generation of optimized and adjusted APL profiles 
for a given lipid species and zeroed lateral tension settings are some ways to help.8–12 Ultimately, 
asymmetric membrane physicality (i.e., how distinct lateral pressure profiles are for each leaflet) 
needs to be verified. Short simulations using symmetric bilayers for each leaflet of each membrane 
construct can be used to retrieve an MD box size specific to that leaflet pairing. For example, the 
upper leaflet from a Maximum Complexity construct was used to create a symmetric bilayer. This 
is critical for validating asymmetric bilayers, as the individual leaflets must have stable individual 
pressure constraints. The box size for a membrane system is a valuable metric for evaluating 
membrane construct stability. Given that the membrane bilayer spans the entire MD box in the X 
and Y dimensions, box size fluctuations give an estimate as to how the bilayer responds to the 
barostat. So long as the calculated box sizes between the symmetric leaflets are not too different 
from each other and the final asymmetric construct, then it can be viewed as reasonable for the 
specified leaflet pairing to comprise a single bilayer.22 Another validation approach is to compare 
the percentage difference in APL between the two leaflets of an asymmetric bilayer.11 Similar to 
box size, APL serves as another measure to evaluate how the bilayer is responding to pressure. 
When APL converges, a membrane is often said to have equilibrated. According to this approach 
developed by the Klauda and Im groups in 2015, the ideal APL mismatch between leaflets of an 
asymmetric membrane should be between 0 and 5%.11 Yet membranes demonstrating 5 to 10% 
mismatch only demonstrate mild effects from asymmetry, the extents of which are less noticeable 
in membranes with more unsaturated tails. 

A general rule of thumb is to assume that membranes containing more than one type of 
lipid species requires 100 ns of equilibration for each of the different lipid species present.95 From 
APL analyses it appears that each of the membrane constructs equilibrated after 400 ns of 
simulation, although the APL for each 64-sized bilayer leaflet appear to be distinct from the other 
membranes’ (Figure 3). APL mismatch analysis shows the 128- and 256-sized Maximum 
Complexity membrane constructs with 6.06% mismatch between leaflets (Table 1). Meanwhile, 
the Maximum Complexity constructs containing 64 and 512 lipids have 11.76% and 7.52% leaflet 
APL mismatch, respectively (Table 1).  When comparing the symmetric constructs for each 
asymmetric leaflet to the asymmetric bilayer, the leaflet area differences are all below 5%, except 
for the 64-lipid lower leaflet construct (Table 2). 
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Table 1. APL and APL % mismatch between leaflets of membrane constructs 
 
  

 
The leaflet area deviations from the asymmetric bilayer are most similar between 

symmetric Maximum Complexity constructs containing 128 and 256 lipids, which is in agreement 
with the APL analyses. Thus, when generating plant plasma membranes for simulation, 
asymmetric bilayers between 128 and 256 lipids in size would be expected to be least affected by 
lateral pressure differences caused by asymmetry, followed by the 512-sized membrane. The APL 
mismatch for the 64-sized bilayer suggests that lateral pressure differences experienced by either 
leaflet would compromise simulation integrity, likely leading to unrealistic or unphysical 
representation of the membrane. No 512-sized Top10 construct which arrived at the equilibration 
stage of simulation made from the given lipid could pass either of these pressure tests because of 

Figure 3. Area per lipid (APL) values for the (A) lower and (B) upper leaflet of different sized 
membrane constructs. 

AVG APL AVG APL AVG APL SEM APL
Lower Leaflet Upper Leaflet % mismatch % mismatch

Maximum Complexity 64 47.72 ± 0.26 42.11 ± 0.23 11.76 6.84E-14
Maximum Complexity 128 46.04 ± 0.14 43.25 ± 0.13 6.06 4.23E-14
Maximum Complexity 256 45.71 ± 0.17 42.92 ± 0.16 6.06 1.29E-13

Top10 256 45.98 ± 0.03 42.82 ± 0.03 6.06 4.62E-14
Maximum Complexity 512 46.30 ± 0.04 42.82 ± 0.04 7.52 2.92E-13

Systems

Lower Leaflet Area Difference (%) Upper Leaflet Area Difference (%)
Maximum Complexity 64 5.86 2.59

Maximum Complexity 128 5.03 4.7
Maximum Complexity 256 4.52 4.14

Top10 256 3.28 0.71
Maximum Complexity 512 4.53 3.17

Symmetric System Data
Systems

Table 2. Leaflet-specific pressure tests. Comparing box area difference between symmetric leaflet 
constructs and final asymmetric bilayers. 
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leaflet-specific asymmetry being too different. Thus, the asymmetry recipe applied to this 
simplified Top10 construct was only valid for a 256-sized bilayer. 
 
Physical property analyses demonstrate robust compositional recipes 
 The remaining bulk property analyses included here are APL, entropy, gel fluidity, 
thickness, and curvature. Mixing entropy indicates the probability that a lipid of one type will have 
a chemically different lipid as its neighbor. The higher the lipid type mixing entropy, the more 
mixed the membrane.96 For each of the leaflets, entropy analyses follow a size-dependent trend. 
Given that compositional complexity scales with membrane size when following the Maximum 
Complexity recipe, it is expected that larger membranes would have higher entropy or mixing 
probabilities (Figure 4). However, the 256-sized Top10 construct violates this relationship, where 
its upper leaflet has a higher entropy than the 512-sized membrane. Overall upper leaflet entropy 
values appear to be more similar between each of the membrane constructs, suggesting that their 
shared sterol-rich profiles may underlie similarities in lipid organization. Like upper leaflet 
entropy, 256-sized Top10 construct bilayer entropy matches that for the 512-sized Maximum 
Complexity construct. 
 Gel fluidity measures the linearity of the lipid tails, which can provide insights into the 
bulk ordering of the membrane.81 Here, all membrane constructs demonstrate the same bilayer 
properties, but the fluidity of each of the leaflets differs. For either leaflet, the 64-sized Maximum 
Complexity and 256-sized Top10 constructs appear to have distinct distributions of gel fluidity 
percentage from the remaining construct sizes, where the Top10 construct’s lower leaflet is less 
and its upper leaflet is more fluid than the Maximum Complexity constructs. Membrane thickness 
calculations follow similar, albeit less pronounced per leaflet, trends as gel fluidity (Figure 4). 
Membrane curvature calculations lastly show that regardless of size, all Maximum Complexity 
membranes demonstrate the same curvature distribution, peaking at a curvature angle of 18º 
(indicative of a planar surface).82 Meanwhile, the Top10 membrane construct differs, where the 
lower leaflet is slightly more planar and the upper leaflet more curved (Figure 4). 
Headgroup-specific properties measured include acyl chain order parameters, headgroup 
orientation, and electron density. Surprisingly, when comparing properties between lipid species 
which are shared between each of the membrane constructs, all of these results are nearly 
equivalent or within error (Figures S2-S13). It appears that headgroup-specific properties are not 
as influenced by the relative system complexity nor size. On the other hand, bulk membrane 
properties differ only slightly between a few membrane constructs. The 256-sized Top10 construct 
appears to have altered distributions from the 256-sized Maximum Complexity membrane likely 
because of composition-dependent effects. Again, the major differences seen in the 256-sized 
Top10 construct were the relative redistribution of sterols to the lower leaflet and the amplification 
of 18:2 lipid species across the bilayer. It is possible that slight alteration of relative lipid 
abundances could impact the initial packing schemes within CHARMM-GUI. As for the 64-sized 
Maximum Complexity construct, differences in bulk properties can be accredited to a number of 
factors. Pressure tests (Tables 1 and 2) indicate that the asymmetry seen in such a small membrane 
may not be physically valid. This discrepancy may be exacerbated by an analytical effect from the 
MD engine. The box-size for 64-sized Maximum Complexity constructs approached the minimum 
nonbonded cutoff specifications required to perform simulations using Amber software. Thus, 64-
sized membranes could only be simulated using the more sensitive CPU-based code, sander, 
which may amplify any size-dependent effects when compared to the systems run using the GPU-
based code pmemd.cuda.66 Aside from the abovementioned constructs, Maximum Complexity 
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constructs sized 128 to 512 lipids appear robust enough to be used for any plant membrane MD 
application and demonstrate equivalent properties. 
 
Effect of simplified complexity on membrane transporter dynamics 

OsSWEET2b, a vacuolar sugar transporter, was selected for modeling the effects of 
reducing membrane complexity on membrane protein function. Although OsSWEET2b is not 
found in the plant plasma membrane, it is suitable to study for two demonstrative purposes. Firstly, 
the apo transport cycle for this protein has previously been elucidated in a symmetric and 
homogenous POPC membrane.28 Simulation of OsSWEET2b enables direct comparison of the 
influence of using a complex membrane construct versus an overly simplified one. Secondly, 
detailed lipidomic data providing both acyl chain identities for constituent lipids of a tonoplast 
(vacuolar) membrane does not exist. Indeed, this lack of high-resolution lipidomic data concerning 
relative lipid species abundances is a fundamental driver causing MD practitioners to resort to very 
simple membranes. While exact structure elucidation is missing, plant tonoplast membrane 
composition has been measured at low resolution with the measurements of headgroup and single 
acyl chain abundance.43,50,53,97–107 Overall, the plant tonoplast offers similar trends in relative 
headgroup and individual acyl chain representation to suggest that the same lipids would be 
represented as shown in these plasma membrane constructs. Thus, based on rationale and 
experimental evidence suggesting enough similarity between tonoplast and plasma membrane 
compositions, we proceed with simulating the transport cycles of OsSWEET2b. 
  To evaluate the effect of protein-lipid interactions, it is advisable to generate multiple 
versions of the same membrane composition with different initial packings.108 By using multiple 
membrane starting structures to generate different membranes with the same overall composition, 
a greater diversity of potential protein-lipid interactions can be observed, thereby providing greater 
perspective into the effects of a complex membrane composition.108 Such a project design also 
makes the capture of OsSWEET2b gating dynamics more efficient as it enables greater initial 
starting structures for seeding adaptive sampling-based trajectories.74,109 
 OsSWEET2b gating dynamics cover roughly the same conformational spread of 
intracellular and extracellular gating distances when simulated with the either the Maximum 
Complexity or Top10 membrane constructs. Both landscapes present reasonable sampling of 
extracellular gating distances ranging between ~4-20 Å and intracellular gating distance ranges of 
~5-25 Å (Figure 5). Small deviations between the energetic accessibility of intermediate states of 
each landscape exist, although the majority of them fall within the 0.2 kcal/mol sampling error 
(Figure S14). For example, the extent of stabilization for IF states differs between the constructs, 
where the Top10 construct demonstrates an energetic cost of ~0.6-0.8 kcal/mol versus ~1.2-1.4 
kcal/mol seen in the Maximum Complexity construct (state 2 of each landscape), which falls 
within error (Figure 5). Energetic costs underlying some transitions exceed sampling error. The 
difference in transition energy from Maximum Complexity states 2→4 and the corresponding 
Top10 path between states 2→3 exceeds the error limit, exhibiting free energy costs of 2.8 ± 0.2 
and 3.5 ± 0.3 kcal/mol, respectively (Figure 5). A similar analysis on the most probable path 
between Maximum Complexity states 3→5 and the corresponding Top10 states show respective 
free energy barriers of 1.8 ± 0.2 versus 2.4 ± 0.3 kcal/mol. 
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Figure 4. Membrane construct physical property analyses demonstrate robustness of compositional recipe.
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Figure 5. MSM-weighted OsSWEET2b gating dynamics. (A) apo OsSWEET2b simulations done 
in the 256 Maximum Complexity membrane construct. (B) apo OsSWEET2b simulations done in 
the 256 Top10 Complexity membrane construct. Key conformational states are numerically 
labeled. 
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Aside from more stringent quantitative analyses, visual inspection of the gating landscape 
shows how the Maximum Complexity membrane construct is able to better resolve microstates 
seen with respect to IF, extended IF-OC, and extended OF-OC gating states (Figure 5). 
OsSWEET2b Top10 simulations indicate more coarse and less comparable lumping of OF states, 
where sampling of a more OF and less OC state is less likely when compared to the Maximum 
Complexity gating landscape. This coarser representation of Top10 microstates also reflects the 
slightly higher barriers between intermediate OC states and fully IF or OF states. When compared 
to the Maximum Complexity construct, the simplification of lipid composition provided by the 
Top10 construct does provide a smoothening effect to the one-dimensional projections of either 
the intracellular and extracellular gating distances, particularly when it comes to resolving IF-OC 
and OF-OC states (Figure S15). The thermodynamic differences between Maximum Complexity 
and Top10 conformational landscapes are small (~ 1 kcal/mol) but these differences based on lipid 
composition could lead to significant changes in kinetics and impact conformational sampling. 

 
Exploring specific protein-lipid interactions with varying membrane complexity 

Regardless of which realistic membrane composition was used, apo simulations performed 
using a native versus a purely POPC composition demonstrate overall lower energetic costs for 
transport (Figure S16). In fact, the apo gating dynamics landscape for simulations done in a 
realistic membrane composition more closely resemble the previously published holo gating 
dynamics performed in a purely POPC membrane composition.28 Between the ~1 kcal/mol lower 
barrier for all transitions and the protein spending less time in higher energy intermediate states, 
the extent of stabilization provided by a native membrane environment mimics the energetic 
stability provided by substrate introduction, suggesting that specific interactions between 
OsSWEET2b and annular shell lipids could be a contributing factor. 

An annular shell analysis, which differentiates the lipids in the immediate vicinity of the 
protein compared to the bulk, was performed on OsSWEET2b states from a higher energy 
transitionary region containing extracellular gating distances between 5.25-5.75 Å and 
intracellular gating distances between 13.25-13.75 Å from simulations involving either membrane 
construct. This region covers a transition between an IF and extended IF-OC conformational state 
and is one where minor discrepancy in free energy differences between each of the membranes 
exists. Each of the states were visualized to see which lipids presented themselves within 7 Å of 
the OsSWEET2b transmembrane-spanning surface. The annular shell compositions provided by 
the four different system setups for each membrane construct mainly differ in leaflet-dependent 
manners. Upper-leaflet sterol and PE content, as well as 16:0, 18:1, and 18:2 unsaturation lipid 
tails differ between annular shells formed in Maximum Complexity and Top10 constructs (Figure 
S17). Meanwhile the lower leaflet annular shell composition is more or less equivalent minus the 
presence of 18:0 and 18:1 unsaturated lipid tails (Figure S17). Analyzing snapshots revealed the 
presence of a putative lipid binding site with interaction energies largely dominated by Tyr168. 
Defining a “full binder” as a lipid species whose scaffold fits entirely into the cleft formed by 
residues Ile17, Phe18, Leu24, Val27, Thr28, Tyr168, Leu171, and Leu175, Maximum Complexity 
membrane setups never pose a sterol as the “full binder” while Top10 membrane setups can (Table 
S6, Figure S18). Top10 membrane setups can additionally pose sterols as partial binders which are 
able to interact with Tyr168; this was not seen in any of the Maximum Complexity setups, each of 
which had more stable interaction energies with a PL by at most ~1.8 kcal/mol (Table S6). It is 
possible that even slight modification in relative lipid abundance results in altered packing of 
specific lipid species. For example, redistribution of sterols to the lower leaflet in Top10 system 
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setups could alter the ordering of PLs with large polar headgroups, like PC.110–113 Small 
modifications in bulk lipid ordering could present changes to which conformations of what lipid 
species would be compatible for annular shell constitution. It could be that altered contacts, such 
as those seen in this putative lipid binding site, found in different membrane constructs are a result 
of tiny changes in membrane complexity and lipid species representation. Given some combination 
of specific membrane composition and protein, such small changes could manifest into energetic 
differences between the accessibility of some conformational transition paths over others. Again, 
the specificity of protein-lipid interactions and dependence of initial or achieved annular packings 
given a bilayer composition offer an element of kinetic control in making conformational sampling 
feasible. 

 
CONCLUSIONS 

This work establishes the composition of a realistic model plant plasma membrane and 
utilizes this construct as a model system for examining the effects of realistic membrane 
composition on long timescale membrane protein dynamics. Hurdles to simulating realistic 
membranes include lack of lipidomic data and trial-and-error workflows to appropriately account 
for leaflet asymmetry. After establishing the robust properties of the Maximum Complexity 
membrane composition, we show that even the removal of trace lipid species can alter the free 
energy barriers of intermediate conformational states for a given membrane protein. Simulations 
performed herein using native lipid bilayers provide easier access to intermediate states and may 
give faster kinetics than a nonnative lipid bilayer. The use of an appropriate membrane appears to 
become crucial when sampling for rare events and optimizing computational efficiency for 
membrane protein simulations. More importantly, a more native lipid bilayer produces different 
results than overly simplified homogeneous lipid bilayers, providing greater confidence and 
accuracy in the resolution of the membrane protein conformations sampled.  

Either for simplicity’s sake or out of necessity, MD practitioners are too often without 
proper lipidomic data (i.e., mass spectrometry results showing relative abundances for both lipid 
acyl chains in a leaflet-specific manner) when assembling membrane lipid bilayers for their own 
studies, ultimately resorting to “default” membrane compositions. Simplistic lipid bilayers for one 
cell type may be unacceptable for another organism; only 1% of plant plasma membranes are 
comprised of POPC, which may not even be represented in membrane systems of smaller scale. 
True, membrane proteins can still function so long as the surrounding lipid environment provides 
headgroups and acyl chains which are reminiscent of the native membrane composition,114,115 but 
function in a nonnative setting may not be optimal. From the perspective of simulation, protein 
insertion into an incorrect membrane could result in misrepresentation of state probability, or the 
generation of a different landscape altogether. In this sense, the ability of an incorrect membrane 
environment to eschew an energy landscape is similar to that imposed by mutation. 

With the increasing availability of computational power and the demand for larger, more 
accurately represented lipid bilayers, traditional simplistic approaches will no doubt be pushed 
aside for more complex systems, allowing true representations of realistic membrane-protein 
dynamics. OsSWEET2b simulations performed in a realistic plant membrane mirrored the 
dynamics seen in holo simulations performed using purely POPC membranes, emphasizing how 
lipid species can behave as ligands themselves (Figure S16). General protein-lipid binding motifs 
have been shown,116,117 but the lack of consistent realistic membrane modeling when it comes to 
membrane protein simulations currently leaves this knowledge unexploited. Introducing a large 
diversity of lipid species into a finite-sized MD membrane system also complicates the annular 
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shell composition for a given protein. While additional membrane simulation approaches have 
been suggested for modeling the effect of protein-lipid interactions,108 we recommend that 
attention be paid to packing procedures chosen for complex membrane assembly.118 Replicating 
complex membrane assembly is one way to better account for how lipid diversity interfaces with 
membrane protein function via varied annular shell composition. Small differences in annular shell 
composition between the two membrane constructs accompanied OsSWEET2b gating dynamics 
which could not equally access the same intermediate states. It is possible that small changes in 
very complex membrane compositions could result in altered lipid organization, which may 
directly impact modeled membrane protein function and dynamics. For instance, hydrophobic 
mismatch – when the thicknesses of the transmembrane spanning region of a membrane protein 
and the surrounding lipid bilayer are incompatible – can result in energetic penalties which either 
restrict or promote certain protein conformational changes.114,119,120 Thus even small manipulations 
in lipid bilayer composition could directly impact membrane protein function by affecting the 
probability for the optimal annular shell composition to be assembled for a given protein 
conformation during bilayer construction. This may explain why explain why some intermediate 
states are not as accessible for OsSWEET2b while embedded in the Top10 versus the Maximum 
Complexity construct. Furthermore, optimal protein-lipid interactions can be completely lost when 
using traditional simplistic lipid bilayers (e.g., just POPC) where hydrophobic mismatch penalties 
could be maximized. 

A caveat to these findings is that comparative membrane modeling was only performed on 
one protein, OsSWEET2b. Here we show that removal of minor lipid species with relative 
abundances < 1% do indeed alter the accessibility of some intermediate conformational states 
when using a realistic membrane. Still, more studies on other membrane proteins are required to 
obtain a generalizable understanding of how non-optimal versus realistic membrane compositions 
affect the thermodynamics and kinetics of protein dynamics. Current understanding of how to 
universally approach and contextualize protein-lipid interactions in MD simulations is as unrefined 
as the present implementation of realistic membranes in biomolecular simulations. The study of 
complex membrane composition and membrane protein function often appear as mutually 
exclusive works. Increased prevalence of realistic membranes in membrane protein function 
studies will ease these two simulation communities to become more conjunctive. As the modeling 
of more realistic membranes for protein function simulations becomes more standard, deeper 
simulation analyses will become more routine and facilitate improved translation of in silico 
findings to in vitro or vivo. With the intent of being used as a modeling practices resource, the 
results of this work will aid in the encouragement of realistic membrane simulations and increased 
research output in plant-based membrane MD applications.  
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ABBREVIATIONS 
MSM, Markov state models; MD, molecular dynamics; PDB, protein data bank; GPU, graphical 
processing unit; CPU, central processing unit; HMR, hydrogen mass repartitioning; APL, area-
per-lipid; tIC, time-independent component; tICA, time-independent component analysis; PL, 
phospholipid; SITO, β-sitosterol; STIG, stigmasterol; PLPE, 1-palmitoyl-2-linoleoyl-sn-glycero-
3-phosphoethanolamine; PLPC, 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine; DLiPC, 
1,2-dilinoleoyl-sn-glycero-3-phosphocholine; DLiPE, 1,2-dilinoleoyl-sn-glycero-3-
phosphoethanolamine; LLPC, 1-linoleoyl-2-linolenoyl-sn-glycero-3-phosphocholine; PLPG, 1-
palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylglycerol; LLPE, 1-linoleoyl-2-linolenoyl-sn-
glycero-3-phosphoethanolamine; POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; 
DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine; DOPC, 1,2-dioleoyl-sn-glycero-3-
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phosphocholine; POPE, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine; POPG, 1-
palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol; DPPG, 1,2-dipalmitoyl-sn-glycero-3-
phosphatidylglycerol; SLPE, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine; HG, 
hourglass; IF, inward-open; OC, occluded; OF, outward-open 
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