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Abstract
Photoactivated localisation microscopy (PALM) produces an array of localisation coordinates by
means of photoactivatable fluorescent proteins. However, observations are subject to fluorophore
multiple-blinking and each protein is included in the dataset an unknown number of times at
different positions, due to localisation error. This causes artificial clustering to be observed in the
data. We present a workflow using calibration-free estimation of blinking dynamics and
model-based clustering, to produce a corrected set of localisation coordinates now representing the
true underlying fluorophore locations with enhanced localisation precision. These can be reliably
tested for spatial randomness or analysed by other clustering approaches, and previously
inestimable descriptors such as the absolute number of fluorophores per cluster are now
quantifiable, which we validate with simulated data. Using experimental data, we confirm that the
adaptor protein, LAT, is clustered at the T cell immunological synapse, with its nanoscale clustering
properties depending on location and intracellular phosphorylatable tyrosine residues.

Introduction
Single molecule localisation microscopy (SMLM) methods, such as PALM, circumvent the diffraction
limit of light by separating fluorophore detections in time through stochastic activation and
photobleaching, and then localizing the resulting sparse distribution of point spread functions1. The
resulting point-pattern is a purported realisation of the underlying ground truth positions of the
fluorophores, but is corrupted by a number of artefacts resulting from the photophysical behaviour
of the probes as well as the imaging and localisation steps. Most problematic is the multiple
appearance (multiple-blinking) problem where fluorophores undergo multiple on-off cycles before
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permanently bleaching, combined with the discretization effects that result from observing
fluorescent signals on discrete camera frames2. The multiple-blinking problem results in data sets
that are artificially clustered and overly populated (Figure 1a). As such, quantitative cluster analysis
of SMLM data, in particular testing for spatial randomness of the underlying fluorophores, remains a
challenge.
The most commonly employed method for correction of the multiple-blinking problem is to merge
events that appear close in space and time3,4,5. Such methods require a means of determining the
best spatial and temporal thresholds for merging. This determination typically relies on heuristic
methods, since the blinking behaviour of the fluorescent probes is often unknown, and can vary
between experiments. Apart from the challenges involved in determining optimal thresholds, these
methods have variable performance, depending on the underlying protein organization and
blinking characteristics. Instead of attempting to produce a corrected version of the data which can
then be used for any subsequent analysis, other approaches have looked to correct specific spatial
statistics to account for multiple-blinking. For example, it is possible to use calibration data to
estimate a multiple-blink corrected pair-correlation curve6,7. However this cannot then be used to
find a cluster map, or count absolute numbers of molecules.
In this work, we present a new method for correction of multiple-blinking artefacts in PALM data,
which estimates, directly from the sample data set, the parameters of a realistic model of
fluorescent protein photophysics8. Cluster analysis of the spatio-temporal (x,y,t,σ) data set then
allows computation of the marginal likelihood of any given blink-merge proposal, under a full
generative model for the data. We select the most likely of several proposals generated using a
customised hierarchical clustering algorithm. Finally, each blink cluster is consolidated into a single
position, now free from multiple-blinking and with improved localisation precision. The overall
effect is to convert the set of raw x,y,t,σ localisation data into a new set, x,y,σ, with enhanced
resolution.
We validate the method on simulated PALM data, varying both the ground-truth organization
(regular, random, clustered) and photophysical properties of the fluorescent proteins (light and
heavy multiple-blinking). In each case, we compare to the state-of-the-art method of dark time
thresholding (DTT). Our method allows for testing the completely spatially random (CSR)
hypothesis at the correct significance level, whereas the thresholding method fails to do so, and also
outperforms the state-of-art in every other metric (including ground truth recovery and extracted
cluster properties).
PALM is increasingly used in the biological sciences and owing to the properties of commonly used
total internal reflection fluorescence (TIRF) illumination, the distributions of membrane proteins
have been especially well studied. Despite this, because of artificial clustering resulting from
multiple-blinking, the question of whether membrane proteins are randomly distributed or not has
become increasingly contentious9. Using our validated method combined with subsequent testing of
the corrected protein locations, we show that the adaptor protein Linker for Activation of T cells
(LAT) is clustered in the plasma membrane of CD4+ Helper T cell lines after the formation of an
artificial immunological synapse10,11 against an activating, antibody-coated surface. However,
subsequent Bayesian cluster analysis12,13 shows the clustering properties to be dependent on its
macro-scale location within the synapse and on the presence of intracellular phosphorylatable
tyrosine residues which mediate protein binding. We now propose that PALM, combined with the
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method we present here, can be used to test for spatial randomness in other membrane protein
species.

Results
Description of the algorithm
We work with the space-time localisations and uncertainties that result from localisation software
(here ThunderSTORM14) that is run on the raw microscope data. We apply drift correction, but
otherwise no pre-processing is used. The data points are then modeled as a collection of
independent and identically distributed fluorophore blinking clusters, with times following a
realistic 4-state model15,16, discretized by the camera frames. The spatial locations for each cluster
are independently drawn from a circular Gaussian distribution of fixed centre (the true molecule
position) and variable but known standard deviation (the localisation uncertainty). The centres are
given a uniform prior over the region of interest (ROI).
We refer to our algorithm as model-based correction (MBC), and a schematic of its workflow is
shown in Figure 1b. We first estimate the temporal rates governing the switching behaviour of
fluorescent proteins under the 4-state model8, and the fraction of background noise points. This is
done directly using the experimental data, requiring no additional calibration experiments. A
recently developed mathematical technique, (updated to remove one tunable parameter - see
Online Methods), extracts a component from the empirical mark and pair correlation functions
which depends only on the spatio-temporal dynamics of the multiple-blinking process, and not the
underlying protein distribution. The parameters of the 4-state model drive the theoretical shape of
this component, and so they can be optimised to best fit the empirical version8. The rate-estimates
allow computation of the likelihood of a sequence of timepoints purported to correspond to one
multiple-blinking fluorescent protein, and further yields an estimate on the total number, N, of
proteins and noise points in the ROI. Using a custom agglomerative hierarchical clustering (HC)
algorithm17, we split the data in the ROI into partitions with N categories. HC takes as input a
dissimilarity matrix and a linkage criterion. The dissimilarity matrix determines the distances
between pairs of points, and the linkage criterion determines the way to generalise this distance to
pairs of clusters. To favour groups likely to correspond to multiple-blinking clusters, we first scale
the temporal dimension by a time-dilation hyperparameter, S, and then compute the sum of
Euclidean distances in space and in time. For linkage, we choose Ward’s Minimum Variance
Method19, which is well-suited for Gaussian clusters, and consistently resulted in the most likely
partitions across all tested linkage criteria. By varying S, we obtain a large sequence of blinking
cluster proposals, and evaluate the marginal likelihood of each using a uniform prior on the
partitions. Finally, using the best found partition and the localisation uncertainties, we optimally
merge the clusters down to their estimated centres, using inverse-variance weighted averages, and
update the uncertainty associated with that centre.

PALM data simulation setup
For a given set of protein positions, corresponding PALM data were generated as follows. We
simulated fluorescent protein time traces according to the 4-state switching model (see Figure 1b),
and the continuous signals were discretised to emulate a camera operating at 25 frames per second
(40 ms integration time). This was done for 2 different sets of rates (given in Table 1, Online
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Methods), with the light blinking resulting in 5.36 appearances per protein, and the heavy blinking
resulting in 14.94 appearances. For each of these appearances, the observed spatial coordinates
were simulated by adding Gaussian localisation noise to the ground-truth position of the associated
fluorescent protein, with standard deviation following a Gamma distribution with mean 30 nm and
standard deviation 13.4 nm, emulating the localisation uncertainties that can be observed in real
PALM data10. Each simulated ROI was corrected using MBC and compared to correction using DTT
(Figure 2a). For DTT, points were considered to have come from the same fluorophore if they were
separated by at most 4 times the mean localisation uncertainty in space, and were no further than T
apart in time, where the optimal T was determined for each ROI using the method of Annibale et al4.

Testing for complete spatial randomness
We first evaluate our algorithm for testing for complete spatial randomness of the underlying
ground-truth proteins. In each run (n = 30 per condition), 500 proteins were placed at random in a
noiseless 3000 nm x 3000 nm ROI. For each ROI, we compute the function L(r)-r (Figure 2b), where
L is Besag’s L function19, testing its maximum (Figure 2c) under a CSR null hypothesis. The standard
DTT correction method was unable to recover the ground-truth functions and resulted in rejection
of the CSR null hypothesis in 24 and 30 out of the 30 regions, for light and heavy blinking
respectively. On the other hand, MBC resulted in the CSR null hypothesis being rejected for 2 and 4
of the regions for light and heavy blinking respectively. These numbers are within the expected
range at a 5% confidence level. Thus, we were able to reliably test the CSR hypothesis using MBC,
but not using DTT. The estimated total number of fluorescent proteins in each ROI is shown in
Figure 2d. Under CSR, DTT tends to overestimate the number of proteins in the ROI whereas MBC
closely recovers the ground truth.

Cluster analysis
In this experiment, we demonstrate that a clustering algorithm can extract correct cluster
descriptions from underlying clustered ground truth protein distributions when coupled with MBC,
and we compare performance with DTT. We simulated data from 2 clustered protein distributions
(n = 30 per condition). In each run, 500 ground-truth proteins were placed in a 3000 nm x 3000 nm
ROI, with either 10 clusters of 10 molecules each, overlaid with 400 CSR molecules (light clustering)
or 10 clusters of 40 molecules each, with 100 overlaid CSR molecules (heavy clustering). Clustered
points were simulated as symmetric Gaussian clusters with a standard deviation of 30 nm, and the
cluster centres were uniformly distributed over the ROI. Again, both light and heavy blinking was
then added to the localisations, resulting in 4 conditions of spatial organisation and blinking
characteristics (Figure 3a). We used Bayesian cluster analysis12 for detection of clusters in MBC and
DTT corrected data sets. Only MBC could consistently recover the 10 clusters under varying degrees
of blinking severity (Figure 3b). The failure of DTT to recover the correct number of clusters is even
more evident in the case of heavy clustering (Figures 3c and d).

Recovery of the ground truth
In addition to simulating realistic data, we also consider a more controlled, synthetic setup wherein
~500 fluorescent proteins are regularly positioned on a ~3000 nm x 3000 nm grid. The nature of
this dataset allows for easier comparative visualisation of the performance of MBC and DTT (Figure
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4a), and the improvements offered by our method are visually clear. To validate this, we also
compute the 1st Wasserstein distance between the true and corrected grids. This can be thought of
as the cost of transporting a standardised mass between two sets of points, and is also known as the
earth mover's distance. For a perfectly reconstructed grid, this distance is zero, with any
discrepancy increasing the distance. For 50 realisations of both light and heavy blinking on the grid,
we see that MBC presents an improvement over DTT, with a lower distance to the true grid,
particularly under heavy blinking conditions (Figure 4b). Because MBC is robust to heavy blinking,
relative to DTT, it is in fact able to use heavy blinking to its advantage, by averaging localisation
precisions from large groups of merged observations (Figure 4c).

Determining optimal imaging conditions
As a final test using known ground-truth simulated data, we used Virtual-SMLM20 to simulate raw
camera frames. This allowed us to test the effect of varying both the camera frame rate and the
intensity of the 405 nm activation laser on the performance of MBC. A ground truth of CSR
fluorescent proteins were simulated (Supplementary Figure 2a), imaged using the virtual
microscope and output analysed with ThunderSTORM. The camera integration time was set to
either 10 ms or 40 ms and the 405 nm laser intensity either kept constant, or ramped to maintain a
constant density of point spread functions (PSFs) per frame over the course of the acquisition. Raw
localisations (Supplementary Figure 2a) were then corrected using MBC (Supplementary Figure
2b). The Wasserstein distance shows marginally superior performance of the reconstruction when
using constant 405 laser power and when using longer, 40 ms frames. We attribute this to the lower
density of PSFs per frame in the constant-405 case leading to fewer overlapped PSFs during
localisation and to the increased localisation precision offered by the longer frames (Supplementary
Figure 2c). The performance of MBC itself is only weakly dependent on the imaging conditions, and
in each condition we were able to recover the ground truth number of molecules to within around
10% error. We conclude therefore that when using MBC, PALM imaging conditions should be chosen
to maximise conventional notions of data quality — low density of PSFs and high signal-to-noise
ratio. Because of this, we also conclude that MBC is also backwards compatible with all historically
acquired PALM data.

Analysis of experimental data
Nanoscale clustering is posited to play a role in regulating protein-protein interactions and
therefore the efficiency of signalling propagation along pathways21. In the context of an immune
response, T cell microclusters of proximal signalling molecules have been widely documented by
conventional total internal reflection fluorescence (TIRF) microscopy22,23. Many of these have
recently been studied by SMLM and shown to also be clustered on the nanoscale10,11,24,25. The claim
has proved controversial however, with counter-proposals that, in some circumstances, proteins
may in fact be randomly distributed on the cell surface, with observed clustering attributed to
multiple-blinking artefacts inherent to SMLM9. For PALM data, MBC should enable researchers to
navigate this controversy.
To demonstrate the application of MBC to experimental data, we analysed the distribution of the
adaptor protein LAT26 in the plasma membrane of the Jurkat CD4+ Helper T cell line at an artificial
immune synapse formed against an activating, antibody coated coverslip (see Online Methods). To
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assess the role of intracellular phosphorylation in maintaining this distribution, we also mutated
intracellular tyrosine residues to phenylalanine (YF LAT). Both wild-type (WT) LAT and YF LAT
were fused to the photoconvertible fluorescent protein mEos3.2 with cells imaged under TIRF
illumination. Raw localisations were obtained using ThunderSTORM and then corrected using MBC.
The resulting corrected localisations were then tested for spatial randomness using the L-function,
and any regions found to be clustered subjected to Bayesian cluster analysis12.
Figure 4 shows WT and YF LAT-mEos3.2 from representative regions acquired from the central
regions of the cell synapse and from the synapse periphery, both before (Figure 4a) and after
(Figure 4b) correction using MBC. Clearly, the large, dense clusters evident in the uncorrected data
in all conditions are reduced in the corrected regions. However, by analysing the L-function curves
from the ROIs (Figure 5c) and extracting the maximum value of those curves (Figure 5d), we were
able to perform significance testing on whether the LAT distributions were truly CSR. For the two
WT LAT conditions, the null hypothesis that LAT is randomly distributed was rejected in most
regions. Therefore, it is likely that WT LAT was clustered in most analysed WT ROIs. This was not
true for the YF mutant however, with the null hypothesis of randomly distributed LAT not rejected
in the majority of peripheral regions (Figure 5d). This therefore may point to a role of intracellular
tyrosine phosphorylation in maintaining LAT clustering.
For all regions where the CSR null hypothesis was rejected (treated as clustered regions) we then
further interrogated the data using Bayesian cluster analysis. In addition to existing cluster
descriptors output by the algorithm, the number of points per cluster (cluster membership) is now
biologically relevant, since this now represents the number of real fluorophores, not detected
localisations. For WT LAT the data showed no statistically significant difference in cluster
membership between central and peripheral regions. However, the YF mutant showed a significant
decrease in the number of molecules per cluster in peripheral regions, both when compared to YF
central regions (p = 0.026) and compared to WT peripheral regions (p = 0.001) (Figure 5e). Other
outputs from the cluster analysis: number of clusters per ROI, cluster radius, percentage of
molecules in clusters, total molecules per ROI and the relative density of molecules inside and
outside clusters are shown in Supplementary Figure 2, with p-values summarised in Supplementary
Table 1. The decrease in cluster membership and, in some ROIs, the loss of clustering altogether, in
peripheral regions of the T cell synapse resulting from the YF mutation, is a strong indication that
intracellular tyrosine phosphorylation is involved in maintaining LAT signalling clusters. Signalling
phosphorylation events are known to originate in the synapse periphery and it is therefore
consistent that the effect of the mutation is most pronounced there, compared to the central region
where signalling is terminated27.

Discussion
Super-resolution fluorescence microscopy by SMLM, such as PALM, results in a pointillist data
representing an attempted realisation of the underlying ground-truth fluorophore locations1. A
common goal in the biological sciences is to test whether such underlying distributions are
clustered or randomly distributed and, if clustered, to determine their clustering properties.
Achieving this goal has proved difficult however, because the generated localisations are corrupted
by artefacts, principally the repeated localisation of the same fluorophore due to multiple-blinking2.
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This has led to controversy about whether proteins are truly clustered in cells, hindering our
understanding of the causes and function of nanoscale protein clustering.
Here, we develop an algorithm, MBC, for correcting multiple-blinking that requires no user input, no
additional calibration data, and is not limited to a specific analysis goal. We show that it can be used
to reliably test for spatial randomness or recover other clustering properties from the ground truth.
A number of methods have been put forward to test for spatial randomness in SMLM data. These
include, for example, methods based on varying the labelling density and observing the effects on
specific cluster analysis outputs28 or by labelling the same species with two different fluorophores
allowing a cross-comparison to be made29. These methods, however, require multiple sample
preparation rounds and are therefore more complex and time-consuming. Correction can also be
made by measuring blinking behaviour in a separate sample of well-isolated fluorophores7, but this
again adds complexity and experimental effort and requires the assumption that probe
photophysics is maintained between the sample and the calibration. It is also possible to measure or
simulate multiple-blinking using realistic photophysical models and use these to derive new CSR
confidence intervals for the L-function curves30. It should be noted however that while all of these
competing methods can be used to account for multiple-blinking, none produce a new set of
corrected positions and therefore none can be used to extract rich descriptors such as those output
by a clustering algorithm. MBC therefore represents a new capability - of obtaining a set of
corrected ground-truth locations of sufficient quality that any subsequent statistical analysis can be
conducted with assurance.
The limitations of MBC are as follows. The method is only applicable to the four-state photophysical
model typical of PALM acquisitions, and therefore cannot be used to correct dSTORM or other
SMLM modalities. Performance of the correction will decrease as the clustering of the ground-truth
increases, however, it tested favourably with realistic and heavily clustered scenarios. The method
also adds computational time to any analysis pipeline. For a 3000 nm x 3000 nm ROI containing 500
ground-truth proteins, we estimate the MBC step to take 3-5 minutes per ROI on a standard desktop
computer. Of course, as it results in fewer points per ROI, subsequent analysis will typically be
accelerated. While here the correction is limited to 2D data, it can in principle be adapted to 3D x,y,z
coordinates.
In conclusion, MBC allows for accurate recovery of ground-truth fluorophore positions, with
enhanced precision, from PALM data sets subjected to multiple-blinking artefacts. For the first time,
these corrected sets are of sufficient quality to allow accurate cluster analysis and the statistical
testing for complete spatial randomness. We therefore believe that PALM combined with MBC will
be an invaluable tool for addressing questions on the existence, determinants and functions of
protein nanoscale clustering.
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Online Methods
Blinking simulation parameters

Rate parameter Light Blinking (LB) Heavy Blinking (HB)

rF 0.005 s-1 0.005 s-1

rB 8 s-1 2.5 s-1

rD 10 s-1 10 s-1

rR 0.75 s-1 0.75 s-1

Table 1: Rate parameters used to simulate multiple-blinking for the light and heavy blinking
cases, using the 4-state model shown in Figure 1B.

Sample preparation
For LAT images, Jurkat E6.1 cells (ECACC 88042803) expressing LAT-mEos3.2 (wild-type, WT LAT,
or signalling deficient mutant, YF LAT) were introduced to anti-CD3 (at 2 μg/ml; eBioscience clone
OKT3, 16-0037-81) and anti-CD28 (at 5 μg/ml; RnD Systems, clone CD28.2, 16-0289-85) coated
glass-bottomed chamber slides (#1.5 glass, ibidi μSlides) at 50 × 10³ cells/cm² in warm HBSS and
incubated at 37°C for 5 minutes to allow for synapse formation. The chamber wells were gently
washed with warm HBSS and then fixed in 3% paraformaldehyde in phosphate-buffered saline
(PBS) for 20 minutes at 37°C. Fixed cells were washed five times in PBS and used immediately for
PALM imaging.

Imaging
PALM image sequences were acquired on a Nikon N-STORM system in a TIRF configuration using a
100 × 1.49 NA CFI Apochromat TIRF objective for a pixel size of 160 nm. Samples were continuously
illuminated with 561 nm laser light at approximately 2 kW/cm² and 405 nm laser light (to induce
photo-conversion) at approximately 2 W/cm². Images were recorded on an Andor IXON Ultra 897
EMCCD with an electron multiplier gain of 200 and pre-amplifier gain profile 3 to a centered 256 ×
256 pixel region at 40 ms per frame for 5,000 to 15,000 frames.

Virtual microscope simulations
Raw camera frames were generated using Virtual-SMLM20 operating in PALM mode (i.e., using a 4
state photophysical model). The frame rate was set to 25 or 100 frames per second. The activation
laser (i.e. initial state transition) was either fixed or ramped up over the acquisition. In the first case,
the number of fluorophores emitting per frame decreases over time. In the second case, it remains
constant over the acquisition. Emission traces were generated independently for each fluorophore
and imaging continued until all fluorophores had been imaged and bleached. All other state
transition probabilities and photophysics properties were fixed to mimic mEos blinking
characteristics. The PSFs were recorded on a virtual EMCCD camera, with an EM gain fixed at 300.
Virtual-SMLM took as input ground truth maps of mEos2 positions. 5556 mEos proteins were
placed randomly over a 10000 nm x 10000 nm 2D area. Generated camera frames were then
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analysed using ThunderSTORM and the data cropped into non-overlapping 3000 x 3000 nm
regions.

Localisation
Localisation of fluorophore coordinates were reconstructed using ThunderSTORM14 and corrected
for sample drift using cross-correlation of images from 5 bins at a magnification of 5. No further
post-processing was performed.

Mathematical details

1. Marginal likelihood of clusters

We represent the observed process by a series of localisations with associated ‘blink’

times T1,...,Tn, and localisation uncertainties , where R = [x0,x1] × [y0,y1] is the region of
interest.
For a given partition of the localisations into groups, we compute the marginal likelihood of the data
as follows. Consider a group comprising the observations 1,...,m, with 1 ≤ m ≤ n (without loss of
generality), posited to correspond to one, distinct, molecule. In particular, we defer until later the
treatment of background noise.
The independence assumptions set out in the main article result in the following marginal
likelihood factorisation:

.

Denoting by µ = (µX,µY ) the true position of the molecule, the spatial components above have

likelihood (given only for )𝑋
𝑖( )

𝑖=1

𝑚

,

where ηi = 1/σi
2. Defining the weighted mean

,

we find

Placing a uniform prior on µX, we find
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.

The temporal component has likelihood

,

where each term is computed as follows. The blink times T1,...,Tm are not typically observed exactly,
and instead one has access only to associated frame numbers F1,...,Fm, taken to represent (small)
windows of time containing them. We therefore consider a visit to the fluorescent state to be a block
of L ≥ 1 contiguous fluorescent frames (or consecutive frame numbers), and impute the length of
this visit to be the time elapsed over L−1 frames, to obtain auxiliary quantities fk : time spent in
fluorescent state (kth visit).

Up to discrete-approximation error, each fk represents the minimum of two exponential random
variables with respective rates rD and rB, with likelihood contribution p(fk) = (rD + rB)exp{−(rD + rB)fk}.

Similarly, let dk denote the time elapsed over the kth interval between noncontiguous frames, taken
to represent

dk : time spent in dark state (kth visit).

The likelihood contribution is

p(dk) = rR exp(−rRdk) · rD/(rD + rB).

Finally, let u denote the time since the last blink (a period during which it is unknown whether the
process has entered a dark or bleached state). The final contribution is

.

To finalise calculations, one must account for background noise (in the case m = 1). Such points are
assumed to be uniform in spacetime. The complete marginal likelihood is:

,

where V = T(x0 − x1)(y1 − y0), T is the length of the period of observation, and η is the
background probability.
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2. Identifying and summarizing clusters

For both MBC and DTT clustering, an expected number of clusters, N, is first estimated, and a
version of agglomerative hierarchical clustering (AHC) is then used to partition the dataset into N
clusters. In AHC, each point is initially considered to be a distinct cluster. Using a user-specified
metric and a linkage criterion, a stepwise greedy merging of the closest clusters is repeated until a
partition with a predetermined number of clusters is obtained, or until no more clusters can be
merged with a distance less than some specified number. The metric determines the distances
between pairs of points, and the linkage criterion generalises these to a distance between clusters.
Once the final partition has been identified, we merge each cluster down to its estimated centre, and
the uncertainty of the centre is computed. In the following, we use the notation

3. MBC clustering

For MBC, the number of desired clusters, N, is an output of the rate-estimation step, and is thus
decoupled from the clustering problem. For the AHC step, we use the family of metrics

dS((L1,T1),(L2,T2)) = dl(L1,L2)/(σ1 + σ2)  + S · dt(T1,T2)

for S ≥ 0, which is simply the sum of the (scaled) Euclidean distance between the locations and
times. For the linkage criterion we chose Ward’s Minimum Variance Method, as implemented via the
Lance-Williams formula17, as it tends to find homogeneous clusters of spherical shape.
By varying S, we obtain a sequence of partitions, each slightly different but all chosen to have N
clusters. The marginal likelihood is computed for each of the resulting partitions, and the most likely
partition is selected.

4. DTT clustering

DTT, or dark time thresholding, is a general idea in SMLM blinking correction literature, but
implementation details are rarely discussed. The general principle is to merge locations that are
close in space and time, with hard thresholds on the maximally allowed bridging distances in space
and time. As a way to implement this idea in the AHC framework, we define the distance between 2
observations as

𝑑
τ

𝑠
,τ

𝑡

((𝐿
1
, 𝑇

1
), (𝐿

2
, 𝑇

2
)) =  𝑑

𝑙
(𝐿

1
, 𝐿

2
) + 𝑑

𝑡
(𝑇

1
, 𝑇

2
) + ∞ · 1(𝑑

𝑙
(𝐿

1
, 𝐿

2
) >  τ

𝑠
 𝑜𝑟 𝑑

𝑡
(𝑇

1
, 𝑇

2
) >  τ

𝑡
)

where ∞·0 = 0. Although not strictly a metric, this distance measure allows us to implement the dark
time thresholding idea. We use the single-linkage criterion for cluster merging, which considers the
distance between two clusters to be the smallest pairwise distance between them. Combined with
our metric, this means that the clustering algorithm is allowed to merge points and clusters, so long
as they can be combined via paths that do not violate the hard thresholds. Finally, a clustering is
achieved by continuing to merge clusters until only infinite distances between clusters remain (no
more legal merges can be made). For τs, we used 4 times the mean localisation uncertainty. The
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temporal threshold, τt, was determined as follows. First, the method of Annibale4 was used to
determine N. Next, τt was increased incrementally until the AHC algorithm produced a partition with
N clusters, or as close to N as possible.

5. Cluster centres and uncertainty

Let be the coordinates of an arbitrary cluster with centre µ. Once a particular clustering is𝑋
𝑖
, 𝑌

𝑖( )
𝑖=1

𝑚

given, it makes sense to treat the cluster centres as fixed parameters to be estimated. Thinking
therefore of µ as fixed, the maximum likelihood estimator, , maximizes the likelihood of the cluster
coordinates

where C does not depend on µ, and it follows immediately that

.

Using , we can estimate the position of the molecule associated with a given cluster. As the
coordinates of are independent, the covariance matrix of is given as

where I2 is the 2 × 2 identity matrix, and

and the updated localisation uncertainty is then simply the associated standard deviation

.

6. Modifications to the rate-estimation procedures

The estimation of rates in the 4-state model is done using the methods of Jensen8. Using the
notation of this work in the following, we here discuss an automatic way to select the set U, which
should ideally cover large quantiles of the “survival time” distribution of a typical fluorophore (time
from activation to permanent photobleaching). Although a suggestion for the selection of U is given
in Jensen8, this requires that the model be fit twice, and depends on a standard assumption on the
lifetimes of PALM fluorophores, and can thus lead to estimates of lowered quality in situations of
atypical blinking.
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To select an informative U in an automatic, data-driven way, we ideally wish to consider pairs of
points from the same blinking cluster. As the probability of this event increases with spatial
proximity, we consider the following statistic, which sums over pairs of nearest neighbors:

𝐻(𝑢) = 1
𝑁  

𝑖
∑ 1(|𝑡

𝑖
− 𝑡

𝑛𝑛(𝑖)
| ≤ 𝑢),   𝑢 ≥ 0 

where is the total number of observed datapoints, is the time (measured in seconds) associated𝑁 𝑡
𝑖

with point , and is the index of the nearest neighbor (in space) to point . Although the effect𝑖 𝑛𝑛(𝑖) 𝑖
of background noise on this statistic can be quantified, it plays only a small effect in practice, and
complicates the mathematical exposition, so we ignore it here. Computing the mean of can be𝐻(𝑢)
done approximately by splitting the summation into 2 terms, where the first term corresponds to
pairs coming from the same blinking cluster, and the second term corresponds to pairs(𝑖,  𝑛𝑛(𝑖))
coming from different blinking clusters. Denote by the set of index such that point𝑁

𝑠
𝑖 ∈ {1, 2,..,  𝑁}

belongs to the same blinking cluster as point , and let be the𝑛𝑛(𝑖) 𝑖 𝑁
𝑑 

=  {1, 2,..,  𝑁} − 𝑁
𝑠

remaining index in . Then{1, 2,..,  𝑁}

𝐸[𝑁 · 𝐻(𝑢)] =  𝐸[
𝑖 ∈ 𝑁

𝑠

∑ 1(|𝑡
𝑖

− 𝑡
𝑛𝑛(𝑖)

| ≤ 𝑢)] + 𝐸[
𝑖∈𝑁

𝑑

∑  1(|𝑡
𝑖

− 𝑡
𝑛𝑛(𝑖)

| ≤ 𝑢)]

Let be the set of protein locations, and denote by the number of points in the blinking cluster𝑋 𝐺
𝑥

associated with the protein at location . Further, let be the index of point in the blinking cluster𝑥 𝑥
𝑖

𝑖

with centre . Dealing with the first term, we condition on to obtain𝑥 (𝐺
𝑥
, 𝑋)

𝐸[
𝑖∈𝑁

𝑠

∑  1(|𝑡
𝑖

− 𝑡
𝑛𝑛(𝑖)

| ≤ 𝑢)] =  𝐸[
𝑥 ∈𝑋
∑

𝑖 = 1

𝐺
𝑥

∑ 1(|𝑡
𝑥

𝑖

− 𝑡
𝑛𝑛(𝑥

𝑖
)
| ≤ 𝑢) · 1(𝑥

𝑖
∈ 𝑁

𝑠
)]

=  𝐸[
𝑥 ∈𝑋
∑

𝑖 = 1

𝐺
𝑥

∑ 𝐸[1(|𝑡
𝑥

𝑖

− 𝑡
𝑛𝑛(𝑥

𝑖
)
| ≤ 𝑢) · 1(𝑥

𝑖
∈ 𝑁

𝑠
)|𝐺

𝑥
,  𝑋] ]

=  𝐸[
𝑥 ∈𝑋
∑ 𝑝

𝑥,𝐺
𝑥

·
𝑖 = 1

𝐺
𝑥

∑
𝑗 = 1

𝐺
𝑥

∑ 1(𝑖 ≠ 𝑗)  
1(|𝑡

𝑥
𝑖

−𝑡
𝑥

𝑗
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𝐺
𝑥
−1 ]

=  𝐸[
𝑥 ∈𝑋
∑ 𝑝

𝑥,𝐺
𝑥

𝐺
𝑥 

· (𝑖≠𝑗)=1

𝐺
𝑥

∑ 1(|𝑡
𝑥

𝑖

−𝑡
𝑥

𝑗

| ≤ 𝑢)

𝐺
𝑥
(𝐺

𝑥
−1) ]

where by we denote the sum of all distinct pairs with index between and , and
(𝑖≠𝑗)=1

𝐺
𝑥

∑ 1 𝐺
𝑥

. In going from the second to the third line we used that, given the event𝑝
𝑥,𝐺

𝑥

 =  𝑃(𝑥
1
 ∈  𝑁

𝑠
|𝑋,  𝐺

𝑥
)

and , the timepoint is randomly sampled among all timepoints in(1(𝑥
𝑖
 ∈ 𝑁

𝑠
) = 1) 𝐺

𝑥
𝑡

𝑛𝑛(𝑥
𝑖
)

𝐺
𝑥

− 1

the blinking cluster at x different from , as the locations and times in a blinking cluster are𝑡
𝑥

𝑖

independent conditional on , and further that the probability does not depend𝐺
𝑥

𝑃(𝑥
𝑖
 ∈ 𝑁

𝑠
| 𝑋, 𝐺

𝑥
)

on , because given the locations in a blinking cluster are identically distributed. Using a𝑖 (𝑋,  𝐺
𝑥
)

simple Taylor approximation, we thus obtain

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436128
http://creativecommons.org/licenses/by-nc/4.0/


𝐸[
𝑖 ∈𝑁

𝑠

∑ 1(|𝑡
𝑖

− 𝑡
𝑛𝑛(𝑖)

| ≤ 𝑢 )] ≈  𝐸[
𝑥 ∈𝑋
∑ 𝑝

𝑥,𝐺
𝑥

𝐺
𝑥 

] · γ
1
(𝑢) =  𝐸[|𝑁

𝑠
|] ·  γ

1
(𝑢)

where denotes the number of elements in , and 𝛾1(u) = for arbitrary . The|𝑁
𝑠
| 𝑁

𝑠

𝐸[
𝑖 ≠𝑗

𝐺
𝑥
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𝑥

𝑖
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𝑗
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𝑥
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identity follows by setting in the above. Treating the second term𝐸[|𝑁
𝑠
|] =  𝐸[

𝑥 ∈𝑋
∑ 𝑝

𝑥,𝐺
𝑥

𝐺
𝑥 

] 𝑢 =  ∞

in in the same manner, we get𝐸[𝑁 · 𝐻(𝑢)]

𝐸[𝑁 · 𝐻(𝑢)] ≈  𝐸[|𝑁
𝑠
|] ·  γ

1
(𝑢) + (𝐸[𝑁] − 𝐸[|𝑁

𝑠
|]) · γ

2
(𝑢)

where , and its estimator , are as defined in Jensen8. Finally, using a second Taylorγ
2
(𝑢)

^
γ

2
(𝑢)

expansion we split up the LHS, so that

𝐸[𝐻(𝑢)] ≈
𝐸[|𝑁

𝑠
|]

𝐸[𝑁] · γ
1
(𝑢) +  (1 −

𝐸[|𝑁
𝑠
|]

𝐸[𝑁] ) · γ
2
(𝑢)

In the above, is the distribution function of a non-negative random variable, and𝑢 ↦ γ
1
(𝑢)

constitutes one part of the basis for rate parameter estimation in Jensen8. U should therefore be
chosen to cover the time interval over which moves between 0 and 1. Using the expression forγ

1
(𝑢)

above, we do this in the following way. First, we compute the empirical distribution𝐸[𝐻(𝑢)]
function , and, setting in relation to its mean, we construct the loss-function𝐻(𝑢) 𝐻(𝑢)

𝐿(𝑟
𝐵

,  𝑟
𝐷

,  𝑟
𝑅

,  𝑐) =  
𝑢 ∈𝑀

∑ (𝐻(𝑢) −  [𝑐 · γ
1
(𝑢) +  (1 − 𝑐)·

^
γ

2
(𝑢)])2 

where the rates control the shape of , and is the set consisting of the -quantiles of theγ
1
(𝑢) 𝑀 𝑘

50

empirical , for . The number of quantiles to consider can be chosen arbitrarily,𝐻(𝑢) 𝑘 ∈ {1, 2,..., 49}
with more typically leading to slightly better solutions, but slowing down optimization. In
minimizing this loss-function, the rates are required to be positive, and . The loss function𝑐 ∈ [0, 1]
is not informative enough to result in accurate rate estimates, but it does result in an estimate of

, which we use to select an informative U. We do this by setting U to be the -quantiles of theγ
1
(𝑢) 𝑘

50

estimated , which ensures that the range of informative timepoints are adequately explored.γ
1
(𝑢)

Again, more quantiles can be considered, if time permits.

Significance testing
The p-values reported in Supplementary Table 1 are based on a permutation test of the difference of
means, using 10,000 simulations.
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Figure 1: Illustration of the MBC workflow. a) During PALM image acquisition and subsequent
localisation steps, the ground-truth protein positions are corrupted by multiple-blinking in
combination with discretisation by the camera frames and scrambling by the localisation
uncertainty, resulting in a data set which is over-populated and over-clustered. b) Our algorithm
(MBC) takes as input x,y,t,σ data and estimates the rate parameters of a 4-state photophysical
model, from which it derives the total number of molecules in the ROI. This is then used as input to
a hierarchical clustering step (experimental data shown with colours representing the clusters
found), after which clusters are merged to their centres, creating a new dataset free from
multiple-blinking and with enhanced localisation precision.
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Figure 2: Testing for spatial randomness. a) Representative simulated data of ground-truth CSR
points with light or heavy blinking (LB or HB) either corrected by MBC or DTT as a comparison. b)
L(r)-r (mean in solid line) with pointwise 95% quantile bands (dashed line). c) max(L(r)-r) derived
from these functions. Points in red correspond to ROIs that were rejected as CSR in a Monte-Carlo
test (p <= 0.05). Note that DTT often (and sometimes always) incorrectly rejects the CSR null
hypothesis, whereas MBC does not. d) Number of molecules per ROI (log-scaled) showing superior
correction of MBC compared to DDT in light and heavy blinking cases.
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Figure 3: Testing on clustered ground-truth data sets. a) Low levels of clustering with either
light or heavy blinking, corrected by MBC or DDT. b) Number of detected clusters (true number of
clusters in dashed line) by Bayesian analysis. c) High levels of clustering with either light or heavy
blinking, corrected by MBC or DDT. d) Number of detected clusters (true number of clusters in
dashed line) by Bayesian analysis. MBC has superior performance in all cases except heavy
clustering/light blinking, where results are comparable.
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Figure 4: Testing against molecules on a fixed grid. a) Ground truth and representative
simulated data. b) Wasserstein distances between simulated data and ground truth showing that
MBC generates output closer to the ground truth. c) Normalised histograms of localisation
uncertainties of individual molecules (nm) showing that MBC also generates increased localisation
precisions compared to uncorrected data or DDT.
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Figure 5: Cluster analysis of LAT-mEos3.2 at the T cell immunological synapse.
a) Representative, raw 3000 nm x 3000 nm ROIs from each of the 4 conditions (WT Centre, WT
Periphery, YF Centre and YF Periphery). b) Representative MBC-corrected ROIs, on which analysis
was conducted. c) L(r)-r (mean in solid line) with pointwise 95% quantile bands (dashed line). d)
max(L(r)-r) derived from these functions. Points coloured in red correspond to ROIs where the CSR
null hypothesis was rejected in a Monte Carlo test (p < 0.05). These ROI were then retained for
subsequent Bayesian cluster analysis. e) Number of proteins per cluster detected by Bayesian
analysis.
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WT
Centre
mean

WT
Periphery
mean

YF Centre
mean

YF
Periphery
mean

WT
Centre vs
YF Centre
p-value

WT
Periphery
vs YF
Periphery
p-value

WT
Centre vs
WT
Periphery
p-value

YF Centre
vs YF
Periphery
p-value

Number of
clusters 10.0 16.5 4.76 4.25 0.006 < 10-5 0.043 0.701

Number of
molecules
per cluster 29.7 18.3 42.1 4.26 0.574 0.001 0.316 0.026

Cluster
radius (nm) 73.5 52.5 100 38.6 0.372 0.167 0.075 0.027

Percentage
of
molecules
in clusters 22.6 21.8 35.2 23.4 0.151 0.568 0.761 0.172

Total
number of
molecules 931 866 226 79.6 < 10-5 < 10-5 0.794 0.003

Relative
density of
clustered vs
unclustered
molecules 15.7 20.8 53.0 217 < 10-5 < 10-5 0.162 0.006

Supplementary Table 1. Summary of means and p-values for experimental data analysis of WT
LAT and YF LAT at the immunological synapse.
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Supplementary Figure 1: MBC Performance as a function of camera frame rate and the
activating, 405 nm laser power. a) Example ground-truth and raw localisation maps for the
different conditions. b) Example MBC-corrected maps. c) Wasserstein distances. c) Normalised
histograms of localisation uncertainty. d) Percentage error in estimated number of ground-truth
molecules (mean in dashed line).
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Supplementary Figure 2: Additional statistics from the Bayesian cluster analysis of non-CSR
LAT-mEos3.2 regions. a) Number of detected clusters, b) cluster radii (nm), c) percentage of
molecules in clusters, d) number of molecules per ROI and e) relative density of molecules located
in clusters as compared to the surrounding region.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436128
http://creativecommons.org/licenses/by-nc/4.0/

